1
|
Gambichler T, Goesmann S, Skrygan M, Susok L, Schütte C, Hamdani N, Schmidt W. Epithelial Antimicrobial Peptide/Protein and Cytokine Expression Profiles Obtained from Nasopharyngeal Swabs of SARS-CoV-2-Infected and Non-Infected Subjects. Viruses 2024; 16:1471. [PMID: 39339947 PMCID: PMC11437508 DOI: 10.3390/v16091471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Immune responses of the epithelia of the upper respiratory tract are likely crucial in early inhibition of the viral replication and finally clearance of SARS-CoV-2. We aimed to compare the expression profiles of antimicrobial peptides/proteins (AMPs) and related cytokines observed in the nasopharynx of SARS-CoV-2-infected patients and non-infected controls and to assess the associations between these parameters and COVID-19 patients' outcomes. We included 45 subjects who had tested positive for SARS-CoV-2 and 22 control subjects who had tested negative for SARS-CoV-2. Biomaterial for SARS-CoV-2 detection, as well as gene and protein expression studies, was obtained from all subjects using nasopharyngeal swabs which were performed a maximum of 7 days before inclusion in the study. Univariable and multivariable statistics were performed. When compared to the controls, the mRNA expression levels of human β-defensin 1 (hBD-1), LL-37, and trappin-2 were significantly higher in specimens of nasopharyngeal swabs from COVID-19 patients. Protein expression of hBD-1 was also increased in the COVID-19 group. mRNA expression levels of interferon-ɣ (IFN-ɣ), tumor necrosis factor- ɑ (TNF-ɑ), and interleukin-6 (IL-6) measured in SARS-CoV-2-infected patients were significantly higher than those observed in the controls, which could also be confirmed in the protein levels of IFN-ɣ and IL-6. A significant correlation between mRNA and protein levels could be observed only for IL-6. Univariable analysis revealed that low IFN-ɣ mRNA levels were associated with severe/fatal outcomes. The occurrence of COVID-19 pneumonia was significantly associated with lower expression levels of IL-6 mRNA, IFN-ɣ mRNA, and TNF-ɑ mRNA. Concerning the severe/fatal outcomes, the multivariable logistic regression model revealed that none of the aforementioned parameters remained significant in the model. However, the logistic regression model revealed that higher TNF-ɑ mRNA expression was a significant independent predictor of absence of pneumonia [odds ratio: 0.35 (95% CI 0.14 to 0.88, p = 0.024)]. In conclusion, nasopharyngeal expression of AMPs (hBD-1, LL-37, and trappin-2) and cytokines (IL-6, IFN-ɣ, and TNF-ɑ) is upregulated in response to early SARS-CoV-2 infection, indicating that these AMPs and cytokines play a role in the local host defense against the virus. Upregulated nasopharyngeal TNF-ɑ mRNA expression during the early phase of SARS-CoV-2 infection was a significant independent predictor of the absence of COVID-19 pneumonia. Hence, high TNF-ɑ mRNA expression in the nasopharynx appears to be a protective factor for lung complications in COVID-19 patients.
Collapse
Affiliation(s)
- Thilo Gambichler
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Dermatology, Dortmund Hospital, Faculty of Health, School of Medicine, University Witten/Herdecke, 44137 Dortmund, Germany
- Department of Dermatology, Christian Hospital Unna, 59423 Unna, Germany
| | - Silke Goesmann
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Marina Skrygan
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Laura Susok
- Department of Dermatology, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Dermatology, Dortmund Hospital, Faculty of Health, School of Medicine, University Witten/Herdecke, 44137 Dortmund, Germany
| | - Christian Schütte
- Department of Internal Medicine, Ruhr-University Bochum, 44791 Bochum, Germany
| | - Nahza Hamdani
- Department of Molecular and Experimental Cardiology, Ruhr-University Bochum, 44791 Bochum, Germany
- Department of Cardiology, Ruhr-University Bochum, 44791 Bochum, Germany
- Institute of Physiology, Ruhr-University Bochum, 44801 Bochum, Germany
| | - Wolfgang Schmidt
- Department of Internal Medicine, Ruhr-University Bochum, 44791 Bochum, Germany
| |
Collapse
|
2
|
Liu X, Zhang C, Ren J, Deng G, Xu X, Liu J, Gao X, Li R, Li J, Wang G. The Causal Relationship between Plasma Myeloperoxidase Levels and Respiratory Tract Infections: A Bidirectional Mendelian Randomization Study. Mediators Inflamm 2024; 2024:6626706. [PMID: 38576857 PMCID: PMC10994701 DOI: 10.1155/2024/6626706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 04/06/2024] Open
Abstract
Background Observational researches reported the underlying correlation of plasma myeloperoxidase (MPO) concentration with respiratory tract infections (RTIs), but their causality remained unclear. Here, we examined the cause-effect relation between plasma MPO levels and RTIs. Materials and Methods Datasets of plasma MPO levels were from the Folkersen et al. study (n = 21,758) and INTERVAL study (n = 3,301). Summarized data for upper respiratory tract infection (URTI) (2,795 cases and 483,689 controls) and lower respiratory tract infection (LRTI) in the intensive care unit (ICU) (585 cases and 430,780 controls) were from the UK Biobank database. The primary method for Mendelian randomization (MR) analysis was the inverse variance weighted approach, with MR-Egger and weighted median methods as supplements. Cochrane's Q test, MR-Egger intercept test, MR pleiotropy residual sum and outliers global test, funnel plots, and leave-one-out analysis were used for sensitivity analysis. Results We found that plasma MPO levels were positively associated with URTI (odds ratio (OR) = 1.135; 95% confidence interval (CI) = 1.011-1.274; P=0.032) and LRTI (ICU) (OR = 1.323; 95% CI = 1.006-1.739; P=0.045). The consistent impact direction is shown when additional plasma MPO level genome-wide association study datasets are used (URTI: OR = 1.158; 95% CI = 1.072-1.251; P < 0.001; LRTI (ICU): OR = 1.216; 95% CI = 1.020-1.450; P=0.030). There was no evidence of a causal effect of URTI and LRTI (ICU) on plasma MPO concentration in the reverse analysis (P > 0.050). The sensitivity analysis revealed no violations of MR presumptions. Conclusions Plasma MPO levels may causally affect the risks of URTI and LRTI (ICU). In contrast, the causal role of URTI and LRTI (ICU) on plasma MPO concentration was not supported in our MR analysis. Further studies are needed to identify the relationship between RTIs and plasma MPO levels.
Collapse
Affiliation(s)
- Xiu Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chuchu Zhang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiajia Ren
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guorong Deng
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xi Xu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jueheng Liu
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xiaoming Gao
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ruohan Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jiamei Li
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Gang Wang
- Department of Critical Care Medicine, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Key Laboratory of Surgical Critical Care and Life Support, Xi'an Jiaotong University, Ministry of Education, Xi'an, China
| |
Collapse
|
3
|
Stakišaitis D, Kapočius L, Tatarūnas V, Gečys D, Mickienė A, Tamošuitis T, Ugenskienė R, Vaitkevičius A, Balnytė I, Lesauskaitė V. Effects of Combined Treatment with Sodium Dichloroacetate and Sodium Valproate on the Genes in Inflammation- and Immune-Related Pathways in T Lymphocytes from Patients with SARS-CoV-2 Infection with Pneumonia: Sex-Related Differences. Pharmaceutics 2024; 16:409. [PMID: 38543303 PMCID: PMC10974540 DOI: 10.3390/pharmaceutics16030409] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/06/2024] [Accepted: 03/13/2024] [Indexed: 12/10/2024] Open
Abstract
The study presents data on the anti-inflammatory effects of a combination of sodium dichloroacetate and sodium valproate (DCA-VPA) on the expression of inflammation- and immune response-related genes in T lymphocytes of SARS-CoV-2 patients. The study aimed to assess the effects of DCA-VPA on the genes of cytokine activity, chemokine-mediated signaling, neutrophil chemotaxis, lymphocyte chemotaxis, T-cell chemotaxis, and regulation of T-cell proliferation pathways. The study included 21 patients with SARS-CoV-2 infection and pneumonia: 9 male patients with a mean age of 68.44 ± 15.32 years and 12 female patients with a mean age of 65.42 ± 15.74 years. They were hospitalized between December 2022 and March 2023. At the time of testing, over 90% of sequences analyzed in Lithuania were found to be of the omicron variant of SARS-CoV-2. The T lymphocytes from patients were treated with 5 mmol DCA and 2 mmol VPA for 24 h in vitro. The effect of the DCA-VPA treatment on gene expression in T lymphocytes was analyzed via gene sequencing. The study shows that DCA-VPA has significant anti-inflammatory effects and apparent sex-related differences. The effect is more potent in T cells from male patients with SARS-CoV-2 infection and pneumonia than in females.
Collapse
Affiliation(s)
- Donatas Stakišaitis
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
- Laboratory of Molecular Oncology, National Cancer Institute, 08660 Vilnius, Lithuania
| | - Linas Kapočius
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
| | - Vacis Tatarūnas
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| | - Dovydas Gečys
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| | - Auksė Mickienė
- Department of Infectious Diseases, Lithuanian University of Health Sciences, 47116 Kaunas, Lithuania;
| | - Tomas Tamošuitis
- Department of Intensive Care Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Rasa Ugenskienė
- Department of Genetics and Molecular Medicine, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania;
| | - Arūnas Vaitkevičius
- Institute of Clinical Medicine, Faculty of Medicine, Vilnius University Hospital Santaros Klinikos, Vilnius University, 08661 Vilnius, Lithuania;
| | - Ingrida Balnytė
- Department of Histology and Embryology, Medical Academy, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania; (L.K.); (I.B.)
| | - Vaiva Lesauskaitė
- Institute of Cardiology, Laboratory of Molecular Cardiology, Lithuanian University of Health Sciences, 50161 Kaunas, Lithuania; (V.T.); (D.G.); (V.L.)
| |
Collapse
|
4
|
Ye H, Lin X, Zhang Z, Xu Z, Huang T, Cai S, Fan Y, Wang S. Adenosine Deaminase as a Potential Diagnostic and Prognostic Biomarker for Severe Fever with Thrombocytopenia Syndrome. ACS OMEGA 2024; 9:11005-11011. [PMID: 38463302 PMCID: PMC10918779 DOI: 10.1021/acsomega.4c00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Severe fever with thrombocytopenia syndrome (SFTS) is a serious infectious disease caused by the Dabie bandavirus, with a high mortality rate. Currently, there are no effective vaccines or specific treatments for SFTS. Early diagnosis and accurate severity assessment are crucial. METHODS This study included 171 cases of SFTS, COVID-19, and hepatitis B virus (HBV) patients and healthy controls. We compared the serum adenosine deaminase (ADA) activity across these groups. The diagnostic and prognostic efficiency of serum ADA for SFTS was evaluated by using receiver operating characteristic (ROC) curve analysis. We also examined the correlation between serum ADA in SFTS patients and clinical lab parameters as well as serum cytokines. RESULTS SFTS patients had significantly higher serum ADA activity than those of COVID-19, HBV patients, and healthy controls. Nonsurvivor SFTS patients had notably higher ADA than survivors. ROC analysis indicated ADA as an effective SFTS diagnostic and prognostic biomarker. ADA correlated with prognosis, viral load, APTT, PT, AST, ferritin, negatively with HDL-c and LDL-c, and positively with cytokines like IL-6, TNF-α, and IL-1β. Multiorgan failure patients showed significant ADA increase. CONCLUSION Elevated serum ADA activity in SFTS patients is linked with disease severity and prognosis, showing potential as a diagnostic and prognostic biomarker for SFTS.
Collapse
Affiliation(s)
- Hongling Ye
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Xiawen Lin
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zheng Zhang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Zhiye Xu
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Taihong Huang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Shijie Cai
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Yinyin Fan
- Department of Pancreatic and Metabolic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Sen Wang
- Department of Clinical Laboratory Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| |
Collapse
|
5
|
Rong N, Wei X, Liu J. The Role of Neutrophil in COVID-19: Positive or Negative. J Innate Immun 2024; 16:80-95. [PMID: 38224674 PMCID: PMC10861219 DOI: 10.1159/000535541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 11/27/2023] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Neutrophils are the first line of defense against pathogens. They are divided into multiple subpopulations during development and kill pathogens through various mechanisms. Neutrophils are considered one of the markers of severe COVID-19. SUMMARY In-depth research has revealed that neutrophil subpopulations have multiple complex functions. Different subsets of neutrophils play an important role in the progression of COVID-19. KEY MESSAGES In this review, we provide a detailed overview of the developmental processes of neutrophils at different stages and their recruitment and activation after SARS-CoV-2 infection, aiming to elucidate the changes in neutrophil subpopulations, characteristics, and functions after infection and provide a reference for mechanistic research on neutrophil subpopulations in the context of SARS-CoV-2 infection. In addition, we have also summarized research progress on potential targeted drugs for neutrophil immunotherapy, hoping to provide information that aids the development of therapeutic drugs for the clinical treatment of critically ill COVID-19 patients.
Collapse
Affiliation(s)
- Na Rong
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China,
| | - Xiaohui Wei
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Jiangning Liu
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Comparative Medicine Center, Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Jedrzejewska A, Kawecka A, Braczko A, Romanowska-Kocejko M, Stawarska K, Deptuła M, Zawrzykraj M, Franczak M, Krol O, Harasim G, Walczak I, Pikuła M, Hellmann M, Kutryb-Zając B. Changes in Adenosine Deaminase Activity and Endothelial Dysfunction after Mild Coronavirus Disease-2019. Int J Mol Sci 2023; 24:13140. [PMID: 37685949 PMCID: PMC10487738 DOI: 10.3390/ijms241713140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Endothelial cells are a preferential target for SARS-CoV-2 infection. Previously, we have reported that vascular adenosine deaminase 1 (ADA1) may serve as a biomarker of endothelial activation and vascular inflammation, while ADA2 plays a critical role in monocyte and macrophage function. In this study, we investigated the activities of circulating ADA isoenzymes in patients 8 weeks after mild COVID-19 and related them to the parameters of inflammation and microvascular/endothelial function. Post-COVID patients revealed microvascular dysfunction associated with the changes in circulating parameters of endothelial dysfunction and inflammatory activation. Interestingly, serum total ADA and ADA2 activities were diminished in post-COVID patients, while ADA1 remained unchanged in comparison to healthy controls without a prior diagnosis of SARS-CoV-2 infection. While serum ADA1 activity tended to positively correspond with the parameters of endothelial activation and inflammation, sICAM-1 and TNFα, serum ADA2 activity correlated with IL-10. Simultaneously, post-COVID patients had lower circulating levels of ADA1-anchoring protein, CD26, that may serve as an alternative receptor for virus binding. This suggests that after the infection CD26 is rather maintained in cell-attached form, enabling ADA1 complexing. This study points to the possible role of ADA isoenzymes in cardiovascular complications after mild COVID-19.
Collapse
Affiliation(s)
- Agata Jedrzejewska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Ada Kawecka
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Alicja Braczko
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Marzena Romanowska-Kocejko
- Department of Cardiac Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.R.-K.); (M.H.)
| | - Klaudia Stawarska
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (M.P.)
| | - Małgorzata Zawrzykraj
- Division of Clinical Anatomy, Department of Anatomy, Medical University of Gdansk, 80-210 Gdansk, Poland;
| | - Marika Franczak
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Oliwia Krol
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Gabriela Harasim
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Iga Walczak
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.D.); (M.P.)
| | - Marcin Hellmann
- Department of Cardiac Diagnostics, Medical University of Gdansk, 80-210 Gdansk, Poland; (M.R.-K.); (M.H.)
| | - Barbara Kutryb-Zając
- Department of Biochemistry, Medical University of Gdansk, 80-211 Gdansk, Poland; (A.J.); (A.K.); (A.B.); (K.S.); (M.F.); (O.K.); (G.H.); (I.W.)
| |
Collapse
|
7
|
Gajula SNR, Khairnar AS, Jock P, Kumari N, Pratima K, Munjal V, Kalan P, Sonti R. LC-MS/MS: A sensitive and selective analytical technique to detect COVID-19 protein biomarkers in the early disease stage. Expert Rev Proteomics 2023; 20:5-18. [PMID: 36919634 DOI: 10.1080/14789450.2023.2191845] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
INTRODUCTION The COVID-19 outbreak has put enormous pressure on the scientific community to detect infection rapidly, identify the status of disease severity, and provide an immediate vaccine/drug for the treatment. Relying on immunoassay and a real-time reverse transcription polymerase chain reaction (rRT-PCR) led to many false-negative and false-positive reports. Therefore, detecting biomarkers is an alternative and reliable approach for determining the infection, its severity, and disease progression. Recent advances in liquid chromatography and mass spectrometry (LC-MS/MS) enable the protein biomarkers even at low concentrations, thus facilitating clinicians to monitor the treatment in hospitals. AREAS COVERED This review highlights the role of LC-MS/MS in identifying protein biomarkers and discusses the clinically significant protein biomarkers such as Serum amyloid A, Interleukin-6, C-Reactive Protein, Lactate dehydrogenase, D-dimer, cardiac troponin, ferritin, Alanine transaminase, Aspartate transaminase, gelsolin and galectin-3-binding protein in COVID-19, and their analysis by LC-MS/MS in the early stage. EXPERT OPINION Clinical doctors monitor significant biomarkers to understand, stratify, and treat patients according to disease severity. Knowledge of clinically significant COVID-19 protein biomarkers is critical not only for COVID-19 caused by the coronavirus but also to prepare us for future pandemics of other diseases in detecting by LC-MS/MS at the early stages.
Collapse
Affiliation(s)
- Siva Nageswara Rao Gajula
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Ankita Sahebrao Khairnar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Pallavi Jock
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Nikita Kumari
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Kendre Pratima
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Vijay Munjal
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Pavan Kalan
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| | - Rajesh Sonti
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Balanagar, India
| |
Collapse
|