1
|
Huang FBQ, Liao K, Sun YN, Li ZH, Zhang YR, Liao PF, Jiang SY, Zhu ZY, Chen DY, Lei Y, Liu SP, Lin YN, Zhuang ZK. Cross-species single-cell transcriptomics reveals neuronal similarities and heterogeneity in amniote pallium. Zool Res 2025; 46:193-208. [PMID: 39846196 DOI: 10.24272/j.issn.2095-8137.2024.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2025] Open
Abstract
The amniote pallium, a vital component of the forebrain, exhibits considerable evolutionary divergence across species and mediates diverse functions, including sensory processing, memory formation, and learning. However, the relationships among pallial subregions in different species remain poorly characterized, particularly regarding the identification of homologous neurons and their transcriptional signatures. In this study, we utilized single-nucleus RNA sequencing to examine over 130 000 nuclei from the macaque ( Macaca fascicularis) neocortex, complemented by datasets from humans ( Homo sapiens), mice ( Mus musculus), zebra finches ( Taeniopygia guttata), turtles ( Chrysemys picta bellii), and lizards ( Pogona vitticeps), enabling comprehensive cross-species comparison. Results revealed transcriptomic conservation and species-specific distinctions within the amniote pallium. Notable similarities were observed among cell subtypes, particularly within PVALB + inhibitory neurons, which exhibited species-preferred subtypes. Furthermore, correlations between pallial subregions and several transcription factor candidates were identified, including RARB, DLX2, STAT6, NR3C1, and THRB, with potential regulatory roles in gene expression in mammalian pallial neurons compared to their avian and reptilian counterparts. These results highlight the conserved nature of inhibitory neurons, remarkable regional divergence of excitatory neurons, and species-specific gene expression and regulation in amniote pallial neurons. Collectively, these findings provide valuable insights into the evolutionary dynamics of the amniote pallium.
Collapse
Affiliation(s)
- Fu-Bao-Qian Huang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Kuo Liao
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Yu-Nong Sun
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Zi-Hao Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
- BGI Research, Hangzhou, Zhejiang 310030, China
| | - Yan-Ru Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Ping-Fang Liao
- BGI Research, Hangzhou, Zhejiang 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Yuan Jiang
- BGI Research, Hangzhou, Zhejiang 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Yong Zhu
- BGI Research, Hangzhou, Zhejiang 310030, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Duo-Yuan Chen
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - Ying Lei
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - Shi-Ping Liu
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China
| | - You-Ning Lin
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China. E-mail:
| | - Zhen-Kun Zhuang
- BGI Research, Hangzhou, Zhejiang 310030, China
- BGI Research, Shenzhen, Guangdong 518083, China. E-mail:
| |
Collapse
|
2
|
Coronel R, García-Moreno E, Siendones E, Barrero MJ, Martínez-Delgado B, Santos-Ocaña C, Liste I, Cascajo-Almenara MV. Brain organoid as a model to study the role of mitochondria in neurodevelopmental disorders: achievements and weaknesses. Front Cell Neurosci 2024; 18:1403734. [PMID: 38978706 PMCID: PMC11228165 DOI: 10.3389/fncel.2024.1403734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 07/10/2024] Open
Abstract
Mitochondrial diseases are a group of severe pathologies that cause complex neurodegenerative disorders for which, in most cases, no therapy or treatment is available. These organelles are critical regulators of both neurogenesis and homeostasis of the neurological system. Consequently, mitochondrial damage or dysfunction can occur as a cause or consequence of neurodevelopmental or neurodegenerative diseases. As genetic knowledge of neurodevelopmental disorders advances, associations have been identified between genes that encode mitochondrial proteins and neurological symptoms, such as neuropathy, encephalomyopathy, ataxia, seizures, and developmental delays, among others. Understanding how mitochondrial dysfunction can alter these processes is essential in researching rare diseases. Three-dimensional (3D) cell cultures, which self-assemble to form specialized structures composed of different cell types, represent an accessible manner to model organogenesis and neurodevelopmental disorders. In particular, brain organoids are revolutionizing the study of mitochondrial-based neurological diseases since they are organ-specific and model-generated from a patient's cell, thereby overcoming some of the limitations of traditional animal and cell models. In this review, we have collected which neurological structures and functions recapitulate in the different types of reported brain organoids, focusing on those generated as models of mitochondrial diseases. In addition to advancements in the generation of brain organoids, techniques, and approaches for studying neuronal structures and physiology, drug screening and drug repositioning studies performed in brain organoids with mitochondrial damage and neurodevelopmental disorders have also been reviewed. This scope review will summarize the evidence on limitations in studying the function and dynamics of mitochondria in brain organoids.
Collapse
Affiliation(s)
- Raquel Coronel
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
- Department of Systems Biology, Faculty of Medicine and Health Sciences, University of Alcalá (UAH), Alcalá de Henares, Spain
| | - Enrique García-Moreno
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Emilio Siendones
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Maria J. Barrero
- Models and Mechanisms Unit, Institute of Rare Diseases Research (IIER), Spanish National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Beatriz Martínez-Delgado
- Molecular Genetics Unit, Institute of Rare Diseases Research (IIER), CIBER of Rare Diseases (CIBERER), Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Carlos Santos-Ocaña
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| | - Isabel Liste
- Neural Regeneration Unit, Functional Unit for Research on Chronic Diseases (UFIEC), National Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - M. V. Cascajo-Almenara
- Andalusian Centre for Developmental Biology, CIBERER, National Institute of Health Carlos III (ISCIII), Pablo de Olavide University-CSIC-JA, Seville, Spain
| |
Collapse
|
3
|
Jin L, Liu Y, Wu Y, Huang Y, Zhang D. REST Is Not Resting: REST/NRSF in Health and Disease. Biomolecules 2023; 13:1477. [PMID: 37892159 PMCID: PMC10605157 DOI: 10.3390/biom13101477] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Chromatin modifications play a crucial role in the regulation of gene expression. The repressor element-1 (RE1) silencing transcription factor (REST), also known as neuron-restrictive silencer factor (NRSF) and X2 box repressor (XBR), was found to regulate gene transcription by binding to chromatin and recruiting chromatin-modifying enzymes. Earlier studies revealed that REST plays an important role in the development and disease of the nervous system, mainly by repressing the transcription of neuron-specific genes. Subsequently, REST was found to be critical in other tissues, such as the heart, pancreas, skin, eye, and vascular. Dysregulation of REST was also found in nervous and non-nervous system cancers. In parallel, multiple strategies to target REST have been developed. In this paper, we provide a comprehensive summary of the research progress made over the past 28 years since the discovery of REST, encompassing both physiological and pathological aspects. These insights into the effects and mechanisms of REST contribute to an in-depth understanding of the transcriptional regulatory mechanisms of genes and their roles in the development and progression of disease, with a view to discovering potential therapeutic targets and intervention strategies for various related diseases.
Collapse
Affiliation(s)
- Lili Jin
- School of Life Sciences, Liaoning University, Shenyang 110036, China
| | - Ying Liu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yifan Wu
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Yi Huang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| | - Dianbao Zhang
- Department of Stem Cells and Regenerative Medicine, Key Laboratory of Cell Biology, National Health Commission of China, and Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang 110122, China
| |
Collapse
|
4
|
Wang YC, Liu P, Yue LY, Huang F, Xu YX, Zhu CQ. NRSF deficiency leads to abnormal postnatal development of dentate gyrus and impairment of progenitors in subgranular zone of hippocampus. Hippocampus 2021; 31:935-956. [PMID: 33960056 DOI: 10.1002/hipo.23336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 04/19/2021] [Accepted: 04/25/2021] [Indexed: 02/05/2023]
Abstract
Neuron-restrictive silencing factor (NRSF) is a zinc-finger transcription factor that regulates expression of a diverse set of genes. However, NRSF function in brain development still remains elusive. In the present study, we generated NRSF-conditional knockout (NRSF-cKO) mice by hGFAP-Cre/loxp system to study the effect of NRSF deficiency on brain development. Results showed that NRSF conditional knockout caused a smaller hippocampus and a thinner granule cell layer (GCL) in mice. Moreover, the reduction and disarrangement of GFAP+ cells in subgranular zone (SGZ) of NRSF-cKO mice was accompanied with the decreased number of premature neurons, neural stem cells (NSCs) and neural progenitor cells (NPCs), as well as compromising the majority of mitotically active cells. The analysis of postnatal development of hippocampus indicated the existence of an abnormality at postnatal day (P) 8, rather than at P1, in NRSF-cKO mice, although the densities of Ki67+ cells with mitotic ability in dentate gyrus were relatively unaffected at P1 and P8. Meanwhile, NRSF deficiency led to abnormal organization of SGZ at P8 during postnatal development. RNA-Seq analysis revealed 79 deregulated genes in hippocampus of NRSF-cKO mice at P8, which were involved in p53 signal transduction, neuron migration and negative regulation of cell proliferation, etc. The deregulation of p53 pathway in NRSF-cKO mice at P1 and P8 was evidenced, of which p21/Cdkn1a was accumulated in a portion of NSCs and NPCs in hippocampus during postnatal development. Together, these results, for the first time, revealed that NRSF could significantly influence the postnatal development of hippocampus, especially the formation of SGZ.
Collapse
Affiliation(s)
- Yan-Cong Wang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Pu Liu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ling-Yun Yue
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Yu-Xia Xu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Cui-Qing Zhu
- Department of Translational Neuroscience, Jing'an District Center Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontier Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Herculano-Houzel S. Life history changes accompany increased numbers of cortical neurons: A new framework for understanding human brain evolution. PROGRESS IN BRAIN RESEARCH 2019; 250:179-216. [PMID: 31703901 DOI: 10.1016/bs.pbr.2019.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Narratives of human evolution have focused on cortical expansion and increases in brain size relative to body size, but considered that changes in life history, such as in age at sexual maturity and thus the extent of childhood and maternal dependence, or maximal longevity, are evolved features that appeared as consequences of selection for increased brain size, or increased cognitive abilities that decrease mortality rates, or due to selection for grandmotherly contribution to feeding the young. Here I build on my recent finding that slower life histories universally accompany increased numbers of cortical neurons across warm-blooded species to propose a simpler framework for human evolution: that slower development to sexual maturity and increased post-maturity longevity are features that do not require selection, but rather inevitably and immediately accompany evolutionary increases in numbers of cortical neurons, thus fostering human social interactions and cultural and technological evolution as generational overlap increases.
Collapse
Affiliation(s)
- Suzana Herculano-Houzel
- Department of Psychology, Department of Biological Sciences, Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States.
| |
Collapse
|
6
|
Abstract
The classic Darwinian theory and the Synthetic evolutionary theory and their linear models, while invaluable to study the origins and evolution of species, are not primarily designed to model the evolution of organisations, typically that of ecosystems, nor that of processes. How could evolutionary theory better explain the evolution of biological complexity and diversity? Inclusive network-based analyses of dynamic systems could retrace interactions between (related or unrelated) components. This theoretical shift from a Tree of Life to a Dynamic Interaction Network of Life, which is supported by diverse molecular, cellular, microbiological, organismal, ecological and evolutionary studies, would further unify evolutionary biology.
Collapse
Affiliation(s)
- Eric Bapteste
- Sorbonne Universités, UPMC Université Paris 06, Institut de Biologie Paris-Seine (IBPS), F-75005 Paris, France
- CNRS, UMR7138, Institut de Biologie Paris-Seine, F-75005 Paris, France
| | - Philippe Huneman
- Institut d’Histoire et de Philosophie des Sciences et des Techniques (CNRS / Paris I Sorbonne), F-75006 Paris, France
| |
Collapse
|