1
|
Bidelman GM, York A, Pearson C. Neural correlates of phonetic categorization under auditory (phoneme) and visual (grapheme) modalities. Neuroscience 2025; 565:182-191. [PMID: 39631659 DOI: 10.1016/j.neuroscience.2024.11.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/07/2024]
Abstract
This study assessed the neural mechanisms and relative saliency of categorization for speech sounds and comparable graphemes (i.e., visual letters) of the same phonetic label. Given that linguistic experience shapes categorical processing, and letter-speech sound matching plays a crucial role during early reading acquisition, we hypothesized sound phoneme and visual grapheme tokens representing the same linguistic identity might recruit common neural substrates, despite originating from different sensory modalities. Behavioral and neuroelectric brain responses (ERPs) were acquired as participants categorized stimuli from sound (phoneme) and homologous letter (grapheme) continua each spanning a /da/-/ga/ gradient. Behaviorally, listeners were faster and showed stronger categorization of phoneme compared to graphemes. At the neural level, multidimensional scaling of the EEG revealed responses self-organized in a categorial fashion such that tokens clustered within their respective modality beginning ∼150-250 ms after stimulus onset. Source-resolved ERPs further revealed modality-specific and overlapping brain regions supporting phonetic categorization. Left inferior frontal gyrus and auditory cortex showed stronger responses for sound category members compared to phonetically ambiguous tokens, whereas early visual cortices paralleled this categorical organization for graphemes. Auditory and visual categorization also recruited common visual association areas in extrastriate cortex but in opposite hemispheres (auditory = left; visual = right). Our findings reveal both auditory and visual sensory cortex supports categorical organization for phonetic labels within their respective modalities. However, a partial overlap in phoneme and grapheme processing among occipital brain areas implies the presence of an isomorphic, domain-general mapping for phonetic categories in dorsal visual system.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA.
| | - Ashleigh York
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; Univeristy of Mississippi Medical Center, Jackson, MS, USA
| | - Claire Pearson
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
| |
Collapse
|
2
|
Mechtenberg H, Heffner CC, Myers EB, Guediche S. The Cerebellum Is Sensitive to the Lexical Properties of Words During Spoken Language Comprehension. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:757-773. [PMID: 39175786 PMCID: PMC11338305 DOI: 10.1162/nol_a_00126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 10/30/2023] [Indexed: 08/24/2024]
Abstract
Over the past few decades, research into the function of the cerebellum has expanded far beyond the motor domain. A growing number of studies are probing the role of specific cerebellar subregions, such as Crus I and Crus II, in higher-order cognitive functions including receptive language processing. In the current fMRI study, we show evidence for the cerebellum's sensitivity to variation in two well-studied psycholinguistic properties of words-lexical frequency and phonological neighborhood density-during passive, continuous listening of a podcast. To determine whether, and how, activity in the cerebellum correlates with these lexical properties, we modeled each word separately using an amplitude-modulated regressor, time-locked to the onset of each word. At the group level, significant effects of both lexical properties landed in expected cerebellar subregions: Crus I and Crus II. The BOLD signal correlated with variation in each lexical property, consistent with both language-specific and domain-general mechanisms. Activation patterns at the individual level also showed that effects of phonological neighborhood and lexical frequency landed in Crus I and Crus II as the most probable sites, though there was activation seen in other lobules (especially for frequency). Although the exact cerebellar mechanisms used during speech and language processing are not yet evident, these findings highlight the cerebellum's role in word-level processing during continuous listening.
Collapse
Affiliation(s)
- Hannah Mechtenberg
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - Christopher C. Heffner
- Department of Communicative Sciences and Disorders, University at Buffalo, Buffalo, NY, USA
| | - Emily B. Myers
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Department of Speech, Language and Hearing Sciences, University of Connecticut, Storrs, CT, USA
| | - Sara Guediche
- College of Science and Mathematics, Augusta University, Augusta, GA, USA
| |
Collapse
|
3
|
Bidelman GM, York A, Pearson C. Neural correlates of phonetic categorization under auditory (phoneme) and visual (grapheme) modalities. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604940. [PMID: 39211275 PMCID: PMC11361091 DOI: 10.1101/2024.07.24.604940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
We tested whether the neural mechanisms of phonetic categorization are specific to speech sounds or generalize to graphemes (i.e., visual letters) of the same phonetic label. Given that linguistic experience shapes categorical processing, and letter-speech sound matching plays a crucial role during early reading acquisition, we hypothesized sound phoneme and visual grapheme tokens representing the same linguistic identity might recruit common neural substrates, despite originating from different sensory modalities. Behavioral and neuroelectric brain responses (ERPs) were acquired as participants categorized stimuli from sound (phoneme) and homologous letter (grapheme) continua each spanning a /da/ - /ga/ gradient. Behaviorally, listeners were faster and showed stronger categorization of phoneme compared to graphemes. At the neural level, multidimensional scaling of the EEG revealed responses self-organized in a categorial fashion such that tokens clustered within their respective modality beginning ∼150-250 ms after stimulus onset. Source-resolved ERPs further revealed modality-specific and overlapping brain regions supporting phonetic categorization. Left inferior frontal gyrus and auditory cortex showed stronger responses for sound category members compared to phonetically ambiguous tokens, whereas early visual cortices paralleled this categorical organization for graphemes. Auditory and visual categorization also recruited common visual association areas in extrastriate cortex but in opposite hemispheres (auditory = left; visual=right). Our findings reveal both auditory and visual sensory cortex supports categorical organization for phonetic labels within their respective modalities. However, a partial overlap in phoneme and grapheme processing among occipital brain areas implies the presence of an isomorphic, domain-general mapping for phonetic categories in dorsal visual system.
Collapse
|
4
|
Luthra S, Mechtenberg H, Giorio C, Theodore RM, Magnuson JS, Myers EB. Using TMS to evaluate a causal role for right posterior temporal cortex in talker-specific phonetic processing. BRAIN AND LANGUAGE 2023; 240:105264. [PMID: 37087863 PMCID: PMC10286152 DOI: 10.1016/j.bandl.2023.105264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Theories suggest that speech perception is informed by listeners' beliefs of what phonetic variation is typical of a talker. A previous fMRI study found right middle temporal gyrus (RMTG) sensitivity to whether a phonetic variant was typical of a talker, consistent with literature suggesting that the right hemisphere may play a key role in conditioning phonetic identity on talker information. The current work used transcranial magnetic stimulation (TMS) to test whether the RMTG plays a causal role in processing talker-specific phonetic variation. Listeners were exposed to talkers who differed in how they produced voiceless stop consonants while TMS was applied to RMTG, left MTG, or scalp vertex. Listeners subsequently showed near-ceiling performance in indicating which of two variants was typical of a trained talker, regardless of previous stimulation site. Thus, even though the RMTG is recruited for talker-specific phonetic processing, modulation of its function may have only modest consequences.
Collapse
Affiliation(s)
| | | | | | | | - James S Magnuson
- University of Connecticut, United States; BCBL. Basque Center on Cognition Brain and Language, Donostia-San Sebastián, Spain; Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | | |
Collapse
|
5
|
Luthra S, Magnuson JS, Myers EB. Right Posterior Temporal Cortex Supports Integration of Phonetic and Talker Information. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2023; 4:145-177. [PMID: 37229142 PMCID: PMC10205075 DOI: 10.1162/nol_a_00091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 11/08/2022] [Indexed: 05/27/2023]
Abstract
Though the right hemisphere has been implicated in talker processing, it is thought to play a minimal role in phonetic processing, at least relative to the left hemisphere. Recent evidence suggests that the right posterior temporal cortex may support learning of phonetic variation associated with a specific talker. In the current study, listeners heard a male talker and a female talker, one of whom produced an ambiguous fricative in /s/-biased lexical contexts (e.g., epi?ode) and one who produced it in /∫/-biased contexts (e.g., friend?ip). Listeners in a behavioral experiment (Experiment 1) showed evidence of lexically guided perceptual learning, categorizing ambiguous fricatives in line with their previous experience. Listeners in an fMRI experiment (Experiment 2) showed differential phonetic categorization as a function of talker, allowing for an investigation of the neural basis of talker-specific phonetic processing, though they did not exhibit perceptual learning (likely due to characteristics of our in-scanner headphones). Searchlight analyses revealed that the patterns of activation in the right superior temporal sulcus (STS) contained information about who was talking and what phoneme they produced. We take this as evidence that talker information and phonetic information are integrated in the right STS. Functional connectivity analyses suggested that the process of conditioning phonetic identity on talker information depends on the coordinated activity of a left-lateralized phonetic processing system and a right-lateralized talker processing system. Overall, these results clarify the mechanisms through which the right hemisphere supports talker-specific phonetic processing.
Collapse
Affiliation(s)
- Sahil Luthra
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
| | - James S. Magnuson
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Basque Center on Cognition Brain and Language (BCBL), Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Emily B. Myers
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, CT, USA
| |
Collapse
|
6
|
McMurray B, Sarrett ME, Chiu S, Black AK, Wang A, Canale R, Aslin RN. Decoding the temporal dynamics of spoken word and nonword processing from EEG. Neuroimage 2022; 260:119457. [PMID: 35842096 PMCID: PMC10875705 DOI: 10.1016/j.neuroimage.2022.119457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 11/23/2022] Open
Abstract
The efficiency of spoken word recognition is essential for real-time communication. There is consensus that this efficiency relies on an implicit process of activating multiple word candidates that compete for recognition as the acoustic signal unfolds in real-time. However, few methods capture the neural basis of this dynamic competition on a msec-by-msec basis. This is crucial for understanding the neuroscience of language, and for understanding hearing, language and cognitive disorders in people for whom current behavioral methods are not suitable. We applied machine-learning techniques to standard EEG signals to decode which word was heard on each trial and analyzed the patterns of confusion over time. Results mirrored psycholinguistic findings: Early on, the decoder was equally likely to report the target (e.g., baggage) or a similar sounding competitor (badger), but by around 500 msec, competitors were suppressed. Follow up analyses show that this is robust across EEG systems (gel and saline), with fewer channels, and with fewer trials. Results are robust within individuals and show high reliability. This suggests a powerful and simple paradigm that can assess the neural dynamics of speech decoding, with potential applications for understanding lexical development in a variety of clinical disorders.
Collapse
Affiliation(s)
- Bob McMurray
- Dept. of Psychological and Brain Sciences, Dept. of Communication Sciences and Disorders, Dept. of Linguistics and Dept. of Otolaryngology, University of Iowa.
| | - McCall E Sarrett
- Interdisciplinary Graduate Program in Neuroscience, Unviersity of Iowa
| | - Samantha Chiu
- Dept. of Psychological and Brain Sciences, University of Iowa
| | - Alexis K Black
- School of Audiology and Speech Sciences, University of British Columbia, Haskins Laboratories
| | - Alice Wang
- Dept. of Psychology, University of Oregon, Haskins Laboratories
| | - Rebecca Canale
- Dept. of Psychological Sciences, University of Connecticut, Haskins Laboratories
| | - Richard N Aslin
- Haskins Laboratories, Department of Psychology and Child Study Center, Yale University, Department of Psychology, University of Connecticut
| |
Collapse
|
7
|
Mechtenberg H, Xie X, Myers EB. Sentence predictability modulates cortical response to phonetic ambiguity. BRAIN AND LANGUAGE 2021; 218:104959. [PMID: 33930722 PMCID: PMC8513138 DOI: 10.1016/j.bandl.2021.104959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/02/2021] [Accepted: 04/09/2021] [Indexed: 06/12/2023]
Abstract
Phonetic categories have undefined edges, such that individual tokens that belong to different speech sound categories may occupy the same region in acoustic space. In continuous speech, there are multiple sources of top-down information (e.g., lexical, semantic) that help to resolve the identity of an ambiguous phoneme. Of interest is how these top-down constraints interact with ambiguity at the phonetic level. In the current fMRI study, participants passively listened to sentences that varied in semantic predictability and in the amount of naturally-occurring phonetic competition. The left middle frontal gyrus, angular gyrus, and anterior inferior frontal gyrus were sensitive to both semantic predictability and the degree of phonetic competition. Notably, greater phonetic competition within non-predictive contexts resulted in a negatively-graded neural response. We suggest that uncertainty at the phonetic-acoustic level interacts with uncertainty at the semantic level-perhaps due to a failure of the network to construct a coherent meaning.
Collapse
Affiliation(s)
- Hannah Mechtenberg
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| | - Xin Xie
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY 14627, USA.
| | - Emily B Myers
- Department of Speech, Language, and Hearing Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA; Department of Psychological Sciences, University of Connecticut, Storrs, Mansfield, CT 06269, USA.
| |
Collapse
|
8
|
Guediche S, de Bruin A, Caballero-Gaudes C, Baart M, Samuel AG. Second-language word recognition in noise: Interdependent neuromodulatory effects of semantic context and crosslinguistic interactions driven by word form similarity. Neuroimage 2021; 237:118168. [PMID: 34000398 DOI: 10.1016/j.neuroimage.2021.118168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/05/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Spoken language comprehension is a fundamental component of our cognitive skills. We are quite proficient at deciphering words from the auditory input despite the fact that the speech we hear is often masked by noise such as background babble originating from talkers other than the one we are attending to. To perceive spoken language as intended, we rely on prior linguistic knowledge and context. Prior knowledge includes all sounds and words that are familiar to a listener and depends on linguistic experience. For bilinguals, the phonetic and lexical repertoire encompasses two languages, and the degree of overlap between word forms across languages affects the degree to which they influence one another during auditory word recognition. To support spoken word recognition, listeners often rely on semantic information (i.e., the words we hear are usually related in a meaningful way). Although the number of multilinguals across the globe is increasing, little is known about how crosslinguistic effects (i.e., word overlap) interact with semantic context and affect the flexible neural systems that support accurate word recognition. The current multi-echo functional magnetic resonance imaging (fMRI) study addresses this question by examining how prime-target word pair semantic relationships interact with the target word's form similarity (cognate status) to the translation equivalent in the dominant language (L1) during accurate word recognition of a non-dominant (L2) language. We tested 26 early-proficient Spanish-Basque (L1-L2) bilinguals. When L2 targets matching L1 translation-equivalent phonological word forms were preceded by unrelated semantic contexts that drive lexical competition, a flexible language control (fronto-parietal-subcortical) network was upregulated, whereas when they were preceded by related semantic contexts that reduce lexical competition, it was downregulated. We conclude that an interplay between semantic and crosslinguistic effects regulates flexible control mechanisms of speech processing to facilitate L2 word recognition, in noise.
Collapse
Affiliation(s)
- Sara Guediche
- Basque Center on Cognition Brain, and Language, Donostia-San Sebastian 20009, Spain.
| | | | | | - Martijn Baart
- Basque Center on Cognition Brain, and Language, Donostia-San Sebastian 20009, Spain; Department of Cognitive Neuropsychology, Tilburg University, P.O. Box 90153, 5000 LE Tilburg, the Netherlands
| | - Arthur G Samuel
- Basque Center on Cognition Brain, and Language, Donostia-San Sebastian 20009, Spain; Stony Brook University, NY 11794-2500, United States; Ikerbasque Foundation, Spain
| |
Collapse
|
9
|
Bidelman GM, Pearson C, Harrison A. Lexical Influences on Categorical Speech Perception Are Driven by a Temporoparietal Circuit. J Cogn Neurosci 2021; 33:840-852. [PMID: 33464162 DOI: 10.1162/jocn_a_01678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Categorical judgments of otherwise identical phonemes are biased toward hearing words (i.e., "Ganong effect") suggesting lexical context influences perception of even basic speech primitives. Lexical biasing could manifest via late stage postperceptual mechanisms related to decision or, alternatively, top-down linguistic inference that acts on early perceptual coding. Here, we exploited the temporal sensitivity of EEG to resolve the spatiotemporal dynamics of these context-related influences on speech categorization. Listeners rapidly classified sounds from a /gɪ/-/kɪ/ gradient presented in opposing word-nonword contexts (GIFT-kift vs. giss-KISS), designed to bias perception toward lexical items. Phonetic perception shifted toward the direction of words, establishing a robust Ganong effect behaviorally. ERPs revealed a neural analog of lexical biasing emerging within ~200 msec. Source analyses uncovered a distributed neural network supporting the Ganong including middle temporal gyrus, inferior parietal lobe, and middle frontal cortex. Yet, among Ganong-sensitive regions, only left middle temporal gyrus and inferior parietal lobe predicted behavioral susceptibility to lexical influence. Our findings confirm lexical status rapidly constrains sublexical categorical representations for speech within several hundred milliseconds but likely does so outside the purview of canonical auditory-sensory brain areas.
Collapse
Affiliation(s)
- Gavin M Bidelman
- University of Memphis, TN.,University of Tennessee Health Sciences Center, Memphis, TN
| | | | | |
Collapse
|
10
|
Luthra S. The Role of the Right Hemisphere in Processing Phonetic Variability Between Talkers. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2021; 2:138-151. [PMID: 37213418 PMCID: PMC10174361 DOI: 10.1162/nol_a_00028] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 11/13/2020] [Indexed: 05/23/2023]
Abstract
Neurobiological models of speech perception posit that both left and right posterior temporal brain regions are involved in the early auditory analysis of speech sounds. However, frank deficits in speech perception are not readily observed in individuals with right hemisphere damage. Instead, damage to the right hemisphere is often associated with impairments in vocal identity processing. Herein lies an apparent paradox: The mapping between acoustics and speech sound categories can vary substantially across talkers, so why might right hemisphere damage selectively impair vocal identity processing without obvious effects on speech perception? In this review, I attempt to clarify the role of the right hemisphere in speech perception through a careful consideration of its role in processing vocal identity. I review evidence showing that right posterior superior temporal, right anterior superior temporal, and right inferior / middle frontal regions all play distinct roles in vocal identity processing. In considering the implications of these findings for neurobiological accounts of speech perception, I argue that the recruitment of right posterior superior temporal cortex during speech perception may specifically reflect the process of conditioning phonetic identity on talker information. I suggest that the relative lack of involvement of other right hemisphere regions in speech perception may be because speech perception does not necessarily place a high burden on talker processing systems, and I argue that the extant literature hints at potential subclinical impairments in the speech perception abilities of individuals with right hemisphere damage.
Collapse
|
11
|
Getz LM, Toscano JC. The time-course of speech perception revealed by temporally-sensitive neural measures. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2020; 12:e1541. [PMID: 32767836 DOI: 10.1002/wcs.1541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 05/28/2020] [Accepted: 06/26/2020] [Indexed: 11/07/2022]
Abstract
Recent advances in cognitive neuroscience have provided a detailed picture of the early time-course of speech perception. In this review, we highlight this work, placing it within the broader context of research on the neurobiology of speech processing, and discuss how these data point us toward new models of speech perception and spoken language comprehension. We focus, in particular, on temporally-sensitive measures that allow us to directly measure early perceptual processes. Overall, the data provide support for two key principles: (a) speech perception is based on gradient representations of speech sounds and (b) speech perception is interactive and receives input from higher-level linguistic context at the earliest stages of cortical processing. Implications for models of speech processing and the neurobiology of language more broadly are discussed. This article is categorized under: Psychology > Language Psychology > Perception and Psychophysics Neuroscience > Cognition.
Collapse
Affiliation(s)
- Laura M Getz
- Department of Psychological Sciences, University of San Diego, San Diego, California, USA
| | - Joseph C Toscano
- Department of Psychological and Brain Sciences, Villanova University, Villanova, Pennsylvania, USA
| |
Collapse
|
12
|
Al-Fahad R, Yeasin M, Bidelman GM. Decoding of single-trial EEG reveals unique states of functional brain connectivity that drive rapid speech categorization decisions. J Neural Eng 2020; 17:016045. [PMID: 31822643 PMCID: PMC7004853 DOI: 10.1088/1741-2552/ab6040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Categorical perception (CP) is an inherent property of speech perception. The response time (RT) of listeners' perceptual speech identification is highly sensitive to individual differences. While the neural correlates of CP have been well studied in terms of the regional contributions of the brain to behavior, functional connectivity patterns that signify individual differences in listeners' speed (RT) for speech categorization is less clear. In this study, we introduce a novel approach to address these questions. APPROACH We applied several computational approaches to the EEG, including graph mining, machine learning (i.e., support vector machine), and stability selection to investigate the unique brain states (functional neural connectivity) that predict the speed of listeners' behavioral decisions. MAIN RESULTS We infer that (i) the listeners' perceptual speed is directly related to dynamic variations in their brain connectomics, (ii) global network assortativity and efficiency distinguished fast, medium, and slow RTs, (iii) the functional network underlying speeded decisions increases in negative assortativity (i.e., became disassortative) for slower RTs, (iv) slower categorical speech decisions cause excessive use of neural resources and more aberrant information flow within the CP circuitry, (v) slower responders tended to utilize functional brain networks excessively (or inappropriately) whereas fast responders (with lower global efficiency) utilized the same neural pathways but with more restricted organization. SIGNIFICANCE Findings show that neural classifiers (SVM) coupled with stability selection correctly classify behavioral RTs from functional connectivity alone with over 92% accuracy (AUC = 0.9). Our results corroborate previous studies by supporting the engagement of similar temporal (STG), parietal, motor, and prefrontal regions in CP using an entirely data-driven approach.
Collapse
Affiliation(s)
- Rakib Al-Fahad
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
| | - Mohammed Yeasin
- Department of Electrical and Computer Engineering, University of Memphis, Memphis, 38152 TN, USA
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
| | - Gavin M. Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA
- School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA
- University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA
| |
Collapse
|
13
|
Bidelman GM, Walker B. Plasticity in auditory categorization is supported by differential engagement of the auditory-linguistic network. Neuroimage 2019; 201:116022. [PMID: 31310863 DOI: 10.1016/j.neuroimage.2019.116022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/30/2019] [Accepted: 07/12/2019] [Indexed: 12/21/2022] Open
Abstract
To construct our perceptual world, the brain categorizes variable sensory cues into behaviorally-relevant groupings. Categorical representations are apparent within a distributed fronto-temporo-parietal brain network but how this neural circuitry is shaped by experience remains undefined. Here, we asked whether speech and music categories might be formed within different auditory-linguistic brain regions depending on listeners' auditory expertise. We recorded EEG in highly skilled (musicians) vs. less experienced (nonmusicians) perceivers as they rapidly categorized speech and musical sounds. Musicians showed perceptual enhancements across domains, yet source EEG data revealed a double dissociation in the neurobiological mechanisms supporting categorization between groups. Whereas musicians coded categories in primary auditory cortex (PAC), nonmusicians recruited non-auditory regions (e.g., inferior frontal gyrus, IFG) to generate category-level information. Functional connectivity confirmed nonmusicians' increased left IFG involvement reflects stronger routing of signal from PAC directed to IFG, presumably because sensory coding is insufficient to construct categories in less experienced listeners. Our findings establish auditory experience modulates specific engagement and inter-regional communication in the auditory-linguistic network supporting categorical perception. Whereas early canonical PAC representations are sufficient to generate categories in highly trained ears, less experienced perceivers broadcast information downstream to higher-order linguistic brain areas (IFG) to construct abstract sound labels.
Collapse
Affiliation(s)
- Gavin M Bidelman
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; School of Communication Sciences & Disorders, University of Memphis, Memphis, TN, USA; University of Tennessee Health Sciences Center, Department of Anatomy and Neurobiology, Memphis, TN, USA.
| | - Breya Walker
- Institute for Intelligent Systems, University of Memphis, Memphis, TN, USA; Department of Psychology, University of Memphis, Memphis, TN, USA; Department of Mathematical Sciences, University of Memphis, Memphis, TN, USA
| |
Collapse
|