1
|
Narzary C, Sarkar D, Das P, Papi D. Ethnobotany, Phytochemistry, and Pharmacological Activity of Dioscorea bulbifera: A Comprehensive Review. Chem Biodivers 2025; 22:e202401408. [PMID: 39283965 DOI: 10.1002/cbdv.202401408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/13/2024] [Indexed: 11/02/2024]
Abstract
Dioscorea bulbifera (Family: Dioscoreaceae) also referred to as 'Air potato,' carries significant importance in the traditional medicine of China, West Africa and India. It is a common ingredient in numerous herbals and Ayurvedic formulations used to treat a variety of ailments. The literature review extensively examined the historical usage, phytoconstituents, characterisation of phytoconstituents, and medicinal uses of tubers, leaves, rhizomes and bulbils, with a particular focus on comparing research findings. Among the bioactive constituents, aglycone forms of steroidal saponins such as dioscorine, dioscin, diosbulbins, and diosgenin exhibit significant biological activities. Extracts from different parts of the plant exhibited pharmacological activities like anti-viral, anti-malarial, analgesic, antidiabetic, and anticancer. It is necessary to conduct an in-depth investigation to bridge between traditional knowledge and scientific evidence. This comprehensive review aims to provide a detailed understanding of the ethnobotany, phytoconstituent, chemical characterization and pharmacological potential of D. bulbifera, highlighting its prospects and challenges for future research and medicinal application.
Collapse
Affiliation(s)
- Christina Narzary
- Department of Pharmacy, Regional College of Pharmaceutical Sciences, Patarkuchi Lane, Beside Dichang Resort, Tepesia, Sonapur, Guwahati, Assam, PIN 782402, India
- Assam down town University, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam, PIN 781026, India
| | - Dhrubajyoti Sarkar
- Assam down town University, Sankar Madhab Path, Gandhinagar, Panikhaiti, Guwahati, Assam, PIN 781026, India
| | - Priyanka Das
- Department of Pharmacy, Regional College of Pharmaceutical Sciences, Patarkuchi Lane, Beside Dichang Resort, Tepesia, Sonapur, Guwahati, Assam, PIN 782402, India
| | - Dakme Papi
- School of Pharmacy, Arunachal University of Studies, Namsai, Arunachal Pradesh, PIN-792103, India
| |
Collapse
|
2
|
Sanguansermsri D, Sanguansermsri P, Buaban K, Choommongkol V, Akekawatchai C, Charoensri N, Fraser I, Wongkattiya N. Antibacterial activity of Dioscorea bulbifera Linn. extract and its active component flavanthrinin against skin-associated bacteria. BMC Complement Med Ther 2024; 24:180. [PMID: 38698382 PMCID: PMC11064328 DOI: 10.1186/s12906-024-04480-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 04/22/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Dioscorea bulbifera Linn. has been used for wound care in Thailand. However, a comprehensive evaluation of its antibacterial activity is required. This study aimed to investigate the antibacterial efficacy of D. bulbifera extract against skin-associated bacteria and isolate and characterize its active antibacterial agent, flavanthrinin. METHODS Air-dried bulbils of D. bulbifera were pulverised and extracted with hexane, dichloromethane, ethyl acetate, methanol, ethanol, and distilled water; vacuum filtered; concentrated; freeze-dried; and stored at -20 ºC. Antibacterial activity of the extracts was assessed using microdilution techniques against several skin-associated bacteria. Thin-layer chromatography (TLC) bioautography was used to identify the active compounds in the extract, which were fractionated by column chromatography and purified by preparative TLC. The chemical structures of the purified compounds were analysed using nuclear magnetic resonance (NMR). The cytotoxicity of the extract and its active compounds was evaluated in Vero cells. RESULTS The ethyl acetate extract exhibited distinct inhibition zones against bacteria compared to other extracts. Therefore, the ethyl acetate extract of D. bulbifera in the ethyl acetate layer was used for subsequent analyses. D. bulbifera extract exhibited antibacterial activity, with minimum inhibitory concentrations (MICs) of 0.78-1.56 mg/mL. An active compound, identified through TLC-bioautography, demonstrated enhanced antibacterial activity, with MICs of 0.02-0.78 mg/mL. NMR analysis identified this bioactive compound as flavanthrinin. Both D. bulbifera extract and flavanthrinin-containing fraction demonstrated potent antibacterial activity against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and S. epidermidis. The flavanthrinin containing fraction demonstrated low cytotoxicity against Vero cells, showing CC50 values of 0.41 ± 0.03 mg/mL. These values are lower than the MIC value, indicating that this fraction is safer than the initial ethyl acetate extract. CONCLUSIONS Dioscorea bulbifera extract and its bioactive component flavanthrinin demonstrated significant antibacterial activity against the skin-associated bacteria Staphylococci, including MRSA. Flavanthrinin has potential as a complementary therapeutic agent for managing skin infections owing to its potent antibacterial effects and low cytotoxicity.
Collapse
Affiliation(s)
- Donruedee Sanguansermsri
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
- Center of Excellence in Medical Biotechnology, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Phanchana Sanguansermsri
- Department of Biochemistry, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Kittisak Buaban
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
| | - Vachira Choommongkol
- Department of Chemistry, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand
- The Center of Excellence in Agricultural Innovation for Graduate Entrepreneur (AgrInno), Maejo University, Chiang Mai, 50290, Thailand
| | - Chareeporn Akekawatchai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, 12121, Thailand
| | - Noree Charoensri
- Department of Medical Technology, Chiangmai Neurological Hospital, Chiangmai, 50200, Thailand
| | - Ian Fraser
- School of Chemistry, Monash University, Clayton, VIC, 3800, Australia
| | - Nalin Wongkattiya
- Program in Biotechnology, Faculty of Science, Maejo University, Chiang Mai, 50290, Thailand.
| |
Collapse
|
3
|
Yang DK, Tungalag T, Kang HS. Bulbils of Aerial Yam Attenuate Ethanol-Induced Hepatotoxicity in HepG2 Cells through Inhibition of Oxidative Stress by Activation of the Nuclear Factor Erythroid-2-Related Factor 2 Signaling Pathway. Nutrients 2024; 16:542. [PMID: 38398866 PMCID: PMC10892442 DOI: 10.3390/nu16040542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Bulbil of yam (BY) extract contains various active compounds possessing many pharmacological properties. However, little is known about the effect and underlying mechanism of BY extract on ethanol-induced liver damage. The present study explored the beneficial potential of BY extract on ethanol-induced hepatotoxicity. To evaluate its effectiveness, ethanol-induced HepG2 liver cells were pretreated with BY extract. BY extract effectively rescued cells from ethanol treatment through inhibition of apoptotic cell death as well as inhibiting expression of mitogen-activated protein kinase (MAPK) proteins as stress inducers. BY extract increased the expression of typical antioxidants. Furthermore, BY extract significantly inhibited mitochondrial dysfunction and endoplasmic reticulum (ER) stress, which are major ROS-inducing factors. Finally, as an underlying mechanism of the protective effects of BY extract on ethanol-induced liver damage, it activated Nrf2 protein through translocation from the cytosol to the nucleus, which in turn activated its target oxidative stress suppressor genes. Collectively, our findings demonstrate that BY extract has potential antioxidative effects in ethanol-induced liver cells and contributes to the establishment of a treatment strategy for alcohol-derived liver injuries.
Collapse
Affiliation(s)
- Dong Kwon Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea; (D.K.Y.); (T.T.)
| | - Tsendsuren Tungalag
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea; (D.K.Y.); (T.T.)
- Biosafety Research Institute and Laboratory of Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea
| | - Hyung-Sub Kang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, Jeonbuk National University, Iksan 54596, Jeollabuk-do, Republic of Korea; (D.K.Y.); (T.T.)
| |
Collapse
|
4
|
Mkala EM, Jost M, Wanke S, Ngarega BK, Hughes A, Mutinda ES, Waswa EN, Mwanzia VM, Oulo MA, Wanga VO, Ngumbau VM, Mwachala G, Hu GW, Wang QF. How vulnerable are holoparasitic plants with obligate hosts to negative climate change impacts? ECOL INFORM 2022; 69:101636. [DOI: https:/doi.org/10.1016/j.ecoinf.2022.101636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
|
5
|
Mkala EM, Jost M, Wanke S, Ngarega BK, Hughes A, Mutinda ES, Waswa EN, Mwanzia VM, Oulo MA, Wanga VO, Ngumbau VM, Mwachala G, Hu GW, Wang QF. How vulnerable are holoparasitic plants with obligate hosts to negative climate change impacts? ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Wonok W, Chaveerach A, Siripiyasing P, Sudmoon R, Tanee T. The Unique Substance, Lidocaine and Biological Activity of the Dioscorea Species for Potential Application as a Cancer Treatment, Natural Pesticide and Product. PLANTS 2021; 10:plants10081551. [PMID: 34451596 PMCID: PMC8399169 DOI: 10.3390/plants10081551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/05/2022]
Abstract
The six Dioscorea species, D. brevipetiolata, D. bulbifera, D. depauperata (Dd), D. glabra (Dg), D. pyrifolia and D. hamiltonii were analyzed for phytochemicals, toxicity in PBMCs, and biological activity in two cancer cell lines by MTT and comet assays, and pesticide efficiency. Via GC-MS, lidocaine was found to be the predominant compound in two of the studied species. To confirm the systematics, lidocaine was also found in lower amounts in 11 species. The MTT assay showed no toxicity in all six of the studied species. The comet assay showed the key result that the ethanol extracts of Dd and Dg violently broke DNA into pieces. Biological activity of these two species’ extracts showed toxicity on HepG2 and no effects on HCT-116. The water extracts of Dd and Dg, applied to Brassica chinensis showed high efficiency as a bioprotectant. In summary, lidocaine seems to be the predominant identifying compound of the genus Dioscorea in Thailand, which is useful in systematics. At least the two species, Dd and Dg, may be used for human hepatocyte cancer treatment and as an alternative pesticide for economically important vegetables. Dioscorea species containing lidocaine or extracted lidocaine have promise for natural product creation.
Collapse
Affiliation(s)
- Warin Wonok
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (W.W.); (A.C.)
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand; (W.W.); (A.C.)
| | - Pornnarong Siripiyasing
- Faculty of Science and Technology, Rajabhat Mahasarakham University, Maha Sarakham 44000, Thailand;
| | | | - Tawatchai Tanee
- Faculty of Environment and Resource Studies, Mahasarakham University, Maha Sarakham 44150, Thailand
- Correspondence:
| |
Collapse
|
7
|
Rinaldo D. Carbohydrate and bioactive compounds composition of starchy tropical fruits and tubers, in relation to pre and postharvest conditions: A review. J Food Sci 2020; 85:249-259. [PMID: 32031261 DOI: 10.1111/1750-3841.15002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 11/07/2019] [Accepted: 11/20/2019] [Indexed: 12/12/2022]
Abstract
In some tropical countries, people are suffering from both undernourishment and noncommunicable disorders, such as overweight/obesity. Starchy tropical fruits and tubers are of particular interest for their carbohydrate content and for the micronutrients they provide. The present study summarizes the content in carbohydrate, phenolics, carotenoids, and vitamin C, as well as the antioxidant activity of a wide range of tropical fruits and tubers. The energy content of fruits and tubers studied is in the range of 1,200 to 1,800 kJ/100 g of dry weight. They are thus important staple foods and, due to their diversity and seasonality, they can provide energy all year long by alternating the resources in the human diet. Starchy fruit and tuber crops have antiobesity properties as they are bulky, rich in moisture, and contain less than 2% of fat. Noncolored fruit and tubers provide total phenolics at about 20 to 140 mEq/100 g fresh weight. They thus have a high antioxidant capacity, as related to their total phenolic content but also to the presence of carotenoids, such as lutein, mostly in Dioscorea bulbifera and cocoyam. Yellow and orange-fleshed varieties contain more total phenolics and also more provitamin A carotenoids than noncolored fleshed ones. The contents in total phenolic and carotenoid greatly vary with the species and variety. The influence of pre and postharvest conditions on micronutrient content is discussed. Further studies on new processing methods are needed to maximize polyphenols and carotenoids retention in the foods and increase the bioaccessibility of these compounds. PRACTICAL APPLICATION: This paper provides information on the nutritional quality of starchy tropical fruits and tubers. Nutritional quality is studied from the point of view of providing energy and bioactive compounds. The paper aims to promote the use of local resources in tropical areas, which could ultimately limit the adverse effects of food globalization on noncommunicable disorders. It could also lead to tropical countries being less dependent on food imports.
Collapse
Affiliation(s)
- Dominique Rinaldo
- INRA, UR ASTRO (AgroSystèmes Tropicaux), Domaine de Duclos, F-97170, Petit-Bourg, France
| |
Collapse
|