1
|
Choi HS, Baek KH. Pro-apoptotic and anti-apoptotic regulation mediated by deubiquitinating enzymes. Cell Mol Life Sci 2022; 79:117. [PMID: 35118522 PMCID: PMC11071826 DOI: 10.1007/s00018-022-04132-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Although damaged cells can be repaired, cells that are considered unlikely to be repaired are eliminated through apoptosis, a type of predicted cell death found in multicellular organisms. Apoptosis is a structured cell death involving alterations to the cell morphology and internal biochemical changes. This process involves the expansion and cracking of cells, changes in cell membranes, nuclear fragmentation, chromatin condensation, and chromosome cleavage, culminating in the damaged cells being eaten and processed by other cells. The ubiquitin-proteasome system (UPS) is a major cellular pathway that regulates the protein levels through proteasomal degradation. This review proposes that apoptotic proteins are regulated through the UPS and describes a unique direction for cancer treatment by controlling proteasomal degradation of apoptotic proteins, and small molecules targeted to enzymes associated with UPS.
Collapse
Affiliation(s)
- Hae-Seul Choi
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, 335 Pangyo-Ro, Bundang-Gu, Seongnam-Si, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
2
|
Cossu F, Sorrentino L, Fagnani E, Zaffaroni M, Milani M, Giorgino T, Mastrangelo E. Computational and Experimental Characterization of NF023, A Candidate Anticancer Compound Inhibiting cIAP2/TRAF2 Assembly. J Chem Inf Model 2020; 60:5036-5044. [PMID: 32820924 DOI: 10.1021/acs.jcim.0c00518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Protein-protein interactions are the basis of many important physiological processes and are currently promising, yet difficult, targets for drug discovery. In this context, inhibitor of apoptosis proteins (IAPs)-mediated interactions are pivotal for cancer cell survival; the interaction of the BIR1 domain of cIAP2 with TRAF2 was shown to lead the recruitment of cIAPs to the TNF receptor, promoting the activation of the NF-κB survival pathway. In this work, using a combined in silico-in vitro approach, we identified a drug-like molecule, NF023, able to disrupt cIAP2 interaction with TRAF2. We demonstrated in vitro its ability to interfere with the assembly of the cIAP2-BIR1/TRAF2 complex and performed a thorough characterization of the compound's mode of action through 248 parallel unbiased molecular dynamics simulations of 300 ns (totaling almost 75 μs of all-atom sampling), which identified multiple binding modes to the BIR1 domain of cIAP2 via clustering and ensemble docking. NF023 is, thus, a promising protein-protein interaction disruptor, representing a starting point to develop modulators of NF-κB-mediated cell survival in cancer. This study represents a model procedure that shows the use of large-scale molecular dynamics methods to typify promiscuous interactors.
Collapse
Affiliation(s)
- Federica Cossu
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Luca Sorrentino
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Elisa Fagnani
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy
| | - Mattia Zaffaroni
- Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Mario Milani
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Toni Giorgino
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| | - Eloise Mastrangelo
- Istituto di Biofisica, Consiglio Nazionale Delle Ricerche (CNR-IBF), Via Celoria, 26, I-20133 Milan, Italy.,Dipartimento di Bioscienze, Università Degli Studi di Milano, Via Celoria, 26, I-20133 Milan, Italy
| |
Collapse
|
3
|
Zhao XY, Wang XY, Wei QY, Xu YM, Lau ATY. Potency and Selectivity of SMAC/DIABLO Mimetics in Solid Tumor Therapy. Cells 2020; 9:cells9041012. [PMID: 32325691 PMCID: PMC7226512 DOI: 10.3390/cells9041012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 02/05/2023] Open
Abstract
Aiming to promote cancer cell apoptosis is a mainstream strategy of cancer therapy. The second mitochondria-derived activator of caspase (SMAC)/direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) protein is an essential and endogenous antagonist of inhibitor of apoptosis proteins (IAPs). SMAC mimetics (SMs) are a series of synthetically chemical compounds. Via database analysis and literature searching, we summarize the potential mechanisms of endogenous SMAC inefficiency, degradation, mutation, releasing blockage, and depression. We review the development of SMs, as well as preclinical and clinical outcomes of SMs in solid tumor treatment, and we analyze their strengths, weaknesses, opportunities, and threats from our point of view. We also highlight several questions in need of further investigation.
Collapse
Affiliation(s)
| | | | | | - Yan-Ming Xu
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| | - Andy T. Y. Lau
- Correspondence: (Y.-M.X.); (A.T.Y.L.); Tel.: +86-754-8890-0437 (Y.-M.X.); +86-754-8853-0052 (A.T.Y.L.)
| |
Collapse
|
4
|
Wang D, Zhao J, Li S, Wei J, Nan L, Mallampalli RK, Weathington NM, Ma H, Zhao Y. Phosphorylated E2F1 is stabilized by nuclear USP11 to drive Peg10 gene expression and activate lung epithelial cells. J Mol Cell Biol 2019; 10:60-73. [PMID: 28992046 DOI: 10.1093/jmcb/mjx034] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 08/15/2017] [Indexed: 12/21/2022] Open
Abstract
Phosphorylation affects ubiquitination, stability, and activity of transcriptional factors, thus regulating various cellular functions. E2F transcriptional factor 1 (E2F1) regulates paternally expressed imprinted gene 10 (Peg10) expression, thereby promoting cell proliferation. However, the effect of E2F1 stability on Peg10 expression and the molecular regulation of E2F1 stability by its phosphorylation have not been well demonstrated. Here, we describe a new pathway in which phosphorylation of E2F1 by GSK3β increases E2F1 association with the deubiquitinating enzyme, ubiquitin-specific protease 11 (USP11), which removes K63-linked ubiquitin chains thereby preventing E2F1 degradation in the nuclei. Downregulation of USP11 increases E2F1 ubiquitination and reduces E2F1 stability and protein levels, thereby decreasing Peg10 mRNA levels. Physiologically, USP11 depletion suppresses cell proliferation and wound healing in lung epithelial cells, and these effects are reversed by E2F1 and PEG10 overexpression. Thus, our study reveals a new molecular model that phosphorylation promotes substrate stability through increasing its association with a deubiquitinating enzyme. The data suggest that GSK3β and USP11 act in concert to modulate E2F1 abundance and PEG10 expression in lung epithelial cells to affect cell wound healing. This study provides new therapeutic targets to lessen lung injury by improving lung epithelial cell repair and remodeling after injury.
Collapse
Affiliation(s)
- Dan Wang
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Jing Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Shuang Li
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Department of General Surgery, the First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jianxin Wei
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA
| | - Ling Nan
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Rama K Mallampalli
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| | - Nathaniel M Weathington
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| | - Haichun Ma
- Department of Anesthesia, the First Affiliated Hospital of Jilin University, Changchun, China
| | - Yutong Zhao
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh, Pittsburgh, USA.,Acute Lung Injury Center of Excellence and Vascular Medical Institute, University of Pittsburgh, Pittsburgh, USA
| |
Collapse
|
5
|
Shah P, Qiang L, Yang S, Soltani K, He YY. Regulation of XPC deubiquitination by USP11 in repair of UV-induced DNA damage. Oncotarget 2017; 8:96522-96535. [PMID: 29228550 PMCID: PMC5722502 DOI: 10.18632/oncotarget.22105] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/13/2017] [Indexed: 12/31/2022] Open
Abstract
Nucleotide excision repair (NER) is the most versatile DNA repair pathway for removing DNA damage caused by UV radiation and many environmental carcinogens. NER is essential for suppressing tumorigenesis in the skin, lungs and brain. Although the core NER proteins have been identified and characterized, molecular regulation of NER remains poorly understood. Here we show that ubiquitin-specific peptidase 11 (USP11) positively regulates NER by deubiquitinating xeroderma pigmentosum complementation group C (XPC) and promoting its retention at the DNA damage sites. In addition, UV irradiation induces both USP11 recruitment to the chromatin and USP11 interaction with XPC in an XPC-ubiquitination-dependent manner. Furthermore, we found that USP11 is down-regulated in chronically UV-exposed mouse skin and in skin tumors from mice and humans. Our findings indicate that USP11 plays an important role in maintaining NER capacity, and suggest that USP11 acts as a tumor suppressor via its role in DNA repair.
Collapse
Affiliation(s)
- Palak Shah
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| | - Lei Qiang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Seungwon Yang
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Keyoumars Soltani
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
| | - Yu-Ying He
- Department of Medicine, Section of Dermatology, University of Chicago, Chicago, IL, USA
- Committee on Molecular Pathogenesis and Molecular Medicine, University of Chicago, Chicago, IL, USA
| |
Collapse
|