1
|
Jamasbi E, Hamelian M, Hossain MA, Varmira K. The cell cycle, cancer development and therapy. Mol Biol Rep 2022; 49:10875-10883. [PMID: 35931874 DOI: 10.1007/s11033-022-07788-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 07/11/2022] [Indexed: 10/16/2022]
Abstract
The process of cell division plays a vital role in cancer progression. Cell proliferation and error-free chromosomes segregation during mitosis are central events in life cycle. Mistakes during cell division generate changes in chromosome content and alter the balances of chromosomes number. Any defects in expression of TIF1 family proteins, SAC proteins network, mitotic checkpoint proteins involved in chromosome mis-segregation and cancer development. Here we discuss the function of organelles deal with the chromosome segregation machinery, proteins and correction mechanisms involved in the accurate chromosome segregation during mitosis.
Collapse
Affiliation(s)
- Elaheh Jamasbi
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Hamelian
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammed Akhter Hossain
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, VIC, 3010, Australia
| | - Kambiz Varmira
- Research Center of Oils and Fats (RCOF), Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
Garrity M, Kavus H, Rojas-Vasquez M, Valenzuela I, Larson A, Reed S, Bellus G, Mignot C, Munnich A, Isidor B, Chung WK. Neurodevelopmental phenotypes in individuals with pathogenic variants in CHAMP1. Cold Spring Harb Mol Case Stud 2021; 7:a006092. [PMID: 34021018 PMCID: PMC8327885 DOI: 10.1101/mcs.a006092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/10/2021] [Indexed: 02/06/2023] Open
Abstract
De novo pathogenic variants in CHAMP1 (chromosome alignment maintaining phosphoprotein 1), which encodes kinetochore-microtubule associated protein on 13q34, cause a rare neurodevelopmental disorder. We enrolled 14 individuals with pathogenic variants in CHAMP1 that were documented by exome sequencing or gene panel sequencing. Medical history interviews, seizure surveys, Vineland Adapted Behavior Scales Second Edition, and other behavioral surveys were completed by primary caregivers of available participants in Simons Searchlight. Clinicians extracted clinical data from the medical record for two participants. We report on clinical features of 14 individuals (ages 2-26) with de novo predicted loss-of-function variants in CHAMP1 and compare them with previously reported cases (total n = 32). At least two individuals have the same de novo variant: p.(Ser181Cysfs*5), p.(Trp348*), p.(Arg398*), p.(Arg497*), or p.(Tyr709*). Common phenotypes include intellectual disability/developmental delay, language impairment, congenital and acquired microcephaly, behavioral problems including autism spectrum disorder, seizures, hypotonia, gastrointestinal issues of reflux and constipation, and ophthalmologic issues. Other rarely observed phenotypes include leukemia, failure to thrive, and high pain tolerance. Pathogenic variants in CHAMP1 are associated with a variable clinical phenotype of developmental delay/intellectual disability and seizures.
Collapse
Affiliation(s)
- Madison Garrity
- Columbia University School of Dental Medicine, New York, New York 10032, USA
| | - Haluk Kavus
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
| | - Marta Rojas-Vasquez
- Department of Pediatric Hematology-Oncology, Stollery Children's Hospital, Edmonton, Alberta T6G 2B7, Canada
| | - Irene Valenzuela
- Department of Clinical and Molecular Genetics, Hospital Vall d'Hebron, 08035 Barcelona, Spain
| | - Austin Larson
- Section of Clinical Genetics and Metabolism, Department of Pediatrics, University of Colorado, Aurora, Colorado 80045, USA
| | - Sara Reed
- Clinical Genetics and Genomic Medicine, Geisinger Health System, Danville, Pennsylvania 17821, USA
| | - Gary Bellus
- Clinical Genetics and Genomic Medicine, Geisinger Health System, Danville, Pennsylvania 17821, USA
| | - Cyril Mignot
- APHP-Sorbonne Université, Département de Génétique, Hôpital Trousseau et Groupe Hospitalier Pitié-Salpêtrière, 75013 Paris, France
| | - Arnold Munnich
- Imagine Institute, INSERM UMR 1163, Université de Paris; Fédération de Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpital Necker-Enfants Malades, 75015 Paris, France
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU Nantes, 44093 Nantes Cedex 1, France
- L'Institut du Thorax, INSERM, CNRS, Université de Nantes, 44007 Nantes, France
| | - Wendy K Chung
- Department of Pediatrics, Columbia University Medical Center, New York, New York 10032, USA
- Department of Medicine, Columbia University Medical Center, New York, New York 10032, USA
| |
Collapse
|
3
|
Zhou G, Zhao M, Liang R, Xie J, Chen X, Chen Q, Zheng L, Cao X, Niu B. A Study of the Mechanism of Binding between Neratinib and MAD2L1 Based on Molecular Simulation and Multi-spectroscopy Methods. Curr Pharm Des 2019; 25:4287-4295. [PMID: 31696805 DOI: 10.2174/1381612825666191107102413] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/04/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Nilatinib is an irreversible tyrosine kinase inhibitor, which is used in the treatment of some kinds of cancer. To study the interaction between Neratinib and MAD2L1, a potential tumor target, is of guiding significance for enriching the medicinal value of Neratinib. METHOD The binding mechanism between Mitotic arrest deficient 2-like protein 1 (MAD2L1) and Neratinib under simulative physiological conditions was investigated by molecule simulation and multi-spectroscopy approaches. RESULTS Molecular docking showed the most possible binding mode of Neratinib-MAD2L1 and the potential binding sites and interaction forces of the interaction between MAD2L1 and Neratinib. Fluorescence spectroscopy experiments manifested that Neratinib could interact with MAD2L1 and form a complex by hydrogen bond and van der Waals interaction. These results were consistent with the conclusions obtained from molecular docking. In addition, according to Synchronous fluorescence and three-dimensional fluorescence results, Neratinib might lead to the conformational change of MAD2L1, which may affect the biological functions of MAD2L1. CONCLUSION This study indicated that Neratinib could interact with MAD2L1 and lead to the conformational change of MAD2L1. These works provide helpful insights for the further study of biological function of MAD2L1 and novel pharmacological utility of Neratinib.
Collapse
Affiliation(s)
- Guangya Zhou
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, 200444, China
| | - Manman Zhao
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology, Fudan University, Shanghai 200032, China
| | - Ruirui Liang
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, 200444, China
| | - Jiayang Xie
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, 200444, China
| | - Xinyi Chen
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, 200444, China
| | - Qin Chen
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, 200444, China
| | - Linfeng Zheng
- Department of Radiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Xin Cao
- Zhongshan Hospital Institute of Clinical Science, Fudan University Shanghai Medical College, Shanghai, 200032, China
| | - Bing Niu
- Shanghai Key Laboratory of Bio-Energy Crops, College of Life Science, Shanghai University, 200444, China
| |
Collapse
|