1
|
Asem A, Yang C, De Vos S, Mahmoudi F, Xia L, Shen CY, Hontoria F, Rogers DC, Gajardo G. Mitogenomic phylogeny and divergence time estimation of Artemia Leach, 1819 (Branchiopoda: Anostraca) with emphasis on parthenogenetic lineages. BMC Genomics 2025; 26:228. [PMID: 40065211 PMCID: PMC11892183 DOI: 10.1186/s12864-025-11391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Accepted: 02/20/2025] [Indexed: 03/14/2025] Open
Abstract
The brine shrimp Artemia, a crustacean adapted to the extreme conditions of hypersaline environments, comprises nine regionally distributed sexual species scattered (island-like) over heterogeneous environments and asexual (parthenogenetic) lineages with different ploidies. Such sexual and asexual interaction within the genus raises questions regarding the origin and time of divergence of both sexual species and asexual lineages, including the persistence of the latter over time, a problem not yet clarified using single mitochondrial and nuclear markers. Based on the complete mitochondrial genome of all species and parthenogenetic lineages, this article first describes the mitogenomic characteristics (nucleotide compositions, genome mapping, codon usage, and tRNA secondary structure) of sexual species and asexual types and, secondly, it provides a comprehensive updated phylogenetic analysis. Molecular dating and geographical evidence suggest that the ancestral Artemia taxon originated in ca. 33.97 Mya during the Paleogene Period. The mitogenomic comparisons suggest that the common ancestor of diploid and triploid parthenogenetic lineages (ca. 0.07 Mya) originated from a historical ancestor (ca. 0.61 Mya) in the Late Pleistocene. Additionally, the common ancestor of tetraploid and pentaploid parthenogenetic lineages (ca. 0.05 Mya) diverged from a historical maternal ancestor with A. sinica (ca. 0.96 Mya) in the early Pleistocene. The parthenogenetic lineages do not share a direct ancestor with any sexual species. The Asian clade ancestor diverged more recently (ca. 14.27 Mya, Middle Miocene). The mitogenomic characteristics, maternal phylogenetic tree, and especially divergence time prove that A. monica and A. franciscana are two biological species.
Collapse
Affiliation(s)
- Alireza Asem
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572000, China.
| | - Chaojie Yang
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572000, China
| | - Stephanie De Vos
- Department of Applied Animal Science and Welfare, Swedish University of Agricultural Sciences, Aquakultur, Sweden
| | - Farnaz Mahmoudi
- College of Fisheries and Life Sciences, Hainan Tropical Ocean University, Sanya, 572000, China
| | - Lidong Xia
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Chun-Yang Shen
- Department of Biology, Chengde Medical University, Chengde, 067000, China
| | - Francisco Hontoria
- Instituto de Acuicultura de Torre de La Sal (IATS, CSIC), Ribera de Cabanes (Castellón), 12595, Spain.
| | - D Christopher Rogers
- GRDA Scenic Rivers & Watershed Research Laboratory, Northeastern State University, 611 N Grand Ave, Tahlequah, OK, 74464-2302, USA.
| | - Gonzalo Gajardo
- Departamento de Ciencias Biológicas y Biodiversidad, Universidad de Los Lagos, Osorno, 5290000, Chile.
| |
Collapse
|
2
|
Zheng S, Zhang C, Zhou J, Zhang S, Liu Y, Jin X, Wang Y, Liu B. Daphnia sp. (Branchiopoda: Cladocera) Mitochondrial Genome Gene Rearrangement and Phylogenetic Position Within Branchiopoda. Biochem Genet 2024; 62:3030-3051. [PMID: 38063953 DOI: 10.1007/s10528-023-10594-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/08/2023] [Indexed: 07/31/2024]
Abstract
In high-altitude (4500 m) freshwater lakes, Daphnia is the apex species and the dominant zooplankton. It frequently dwells in the same lake as the Gammarid. Branchiopoda, a class of Arthropoda, Crustacea, is a relatively primitive group in the subphylum Crustacea, which originated in the Cambrian period of the Paleozoic. The complete mitogenome sequence of Daphnia sp. (Branchiopoda: Cladocera) was sequenced and annotated in this study and deposited in GenBank. The sequence structure of this species was studied by comparing the original sequences with BLAST. In addition, we have also researched the mechanisms of their mitochondrial gene rearrangement by establishing a model. We have used the Bayesian inference [BI] and maximum likelihood [ML] methods to proceed with phylogenetic analysis inference, which generates identical phylogenetic topology that reveals the phylogenetic state of Daphnia. The complete mitogenome of Daphnia sp. shows that it was 15,254 bp in length and included two control regions (CRs) and 37 genes (13 protein-coding genes, 22 tRNAs and two ribosomal RNAs [16S and 12S]). In addition to tRNA-Ser (GCT), other tRNAs have a typical cloverleaf secondary structure. Meanwhile, the mitogenome of Daphnia sp. was clearly rearranged when compared to the mitogenome of typical Daphnia. In a word, we report a newly sequenced mitogenome of Daphnia sp. with a unique rearrangement phenomenon. These results will be helpful for further phylogenetic research and provide a foundation for future studies on the characteristics of the mitochondrial gene arrangement process in Daphnia.
Collapse
Affiliation(s)
- Sixu Zheng
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Chi Zhang
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China.
| | - Jianshe Zhou
- Institute of Fisheries Science, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Shufei Zhang
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510300, Guangdong, China
| | - Yifan Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Xun Jin
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Yunpeng Wang
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China
| | - Bingjian Liu
- National Engineering Laboratory of Marine Germplasm Resources Exploration and Utilization, Zhejiang Ocean University, No.1, Haida South Road, Zhoushan, 316022, Zhejiang, People's Republic of China.
| |
Collapse
|
3
|
Hiki K, Oka K, Nakajima N, Watanabe H, Yamamoto H, Yamagishi T. The complete mitochondrial genome of water flea Ceriodaphnia dubia (Crustacea: Cladocera) NIES strain. Mitochondrial DNA B Resour 2023; 8:831-835. [PMID: 37560176 PMCID: PMC10408566 DOI: 10.1080/23802359.2023.2241663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/21/2023] [Indexed: 08/11/2023] Open
Abstract
Water flea Ceriodaphnia dubia has been widely used for risk assessments of chemicals and environmental contamination. In this study, the complete mitochondrial genome (mitogenome) of this species NIES strain was determined using short-read high throughput and long-read sequencing technologies. The mitogenome of C. dubia was 15,170 bp in length and consisted of 13 protein-coding genes (PCGs), 2 ribosomal RNAs (rRNAs), and 22 transfer RNAs (tRNAs). The gene order was identical to the pattern conserved across crustaceans. The complete mitogenome of the NIES strain will serve as genetical reference in ecological risk assessments in Japan, as well as resources for future phylogenetical studies using cladocerans.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Kenta Oka
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Nobuyoshi Nakajima
- Biodiversity Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Haruna Watanabe
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| | - Takahiro Yamagishi
- Health and Environmental Risk Division, National Institute for Environmental Studies, Tsukuba, Japan
| |
Collapse
|
4
|
Kihm JH, Jo E, Park TYS, Kim BM. The complete mitochondrial genome of the Arctic fairy shrimp Branchinectapaludosa (Müller, 1788) (Anostraca, Branchinectidae) from Sirius Passet, North Greenland. Biodivers Data J 2022; 10:e90200. [PMID: 36761531 PMCID: PMC9836551 DOI: 10.3897/bdj.10.e90200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/04/2022] [Indexed: 11/12/2022] Open
Abstract
Here we report the complete mitochondrial genome of the Arctic fairy shrimp, Branchinectapaludosa (Müller, 1788) (Anostraca, Branchinectidae), which was collected in the High Arctic of North Greenland. A complete 16,059 bp mitochondrion of B.paludosa was sequenced and assembled with the Illumina next generation sequencing platform. The B.paludosa mitogenome contains 13 PCGs, 22 tRNAs and 2 rRNA genes that are commonly observed in most metazoans and shows the conserved gene arrangement pattern of Anostraca. Our results of the phylogenomic analysis are consistent with the previous phylogenetic relationship, based on nuclear 18S ribosomal DNA. The B.paludosa mitogenome will be useful for understanding the geographical distribution and phylogenetic relationship of anostracans.
Collapse
Affiliation(s)
- Ji-Hoon Kihm
- Division of Earth Sciences, Korea Polar Research Institute, Incheon, Korea, SouthDivision of Earth Sciences, Korea Polar Research InstituteIncheonKorea, South
| | - Euna Jo
- Division of Life Sciences, Korea Polar Research Institute, Incheon, Korea, SouthDivision of Life Sciences, Korea Polar Research InstituteIncheonKorea, South
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Korea, SouthDivision of Biotechnology, College of Life Sciences and Biotechnology, Korea UniversitySeoulKorea, South
| | - Tae-Yoon S Park
- Division of Earth Sciences, Korea Polar Research Institute, Incheon, Korea, SouthDivision of Earth Sciences, Korea Polar Research InstituteIncheonKorea, South
- Polar Science, University of Science & Technology, Daejeon, Korea, SouthPolar Science, University of Science & TechnologyDaejeonKorea, South
| | - Bo-Mi Kim
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, Korea, SouthResearch Unit of Cryogenic Novel Material, Korea Polar Research InstituteIncheonKorea, South
| |
Collapse
|
5
|
Sun X, Cheng J. Comparative Mitogenomic Analyses and New Insights into the Phylogeny of Thamnocephalidae (Branchiopoda: Anostraca). Genes (Basel) 2022; 13:1765. [PMID: 36292650 PMCID: PMC9602129 DOI: 10.3390/genes13101765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Thamnocephalidae, a family of Anostraca which is widely distributed on all continents of the world except Antarctica, currently consists of six genera and approximately 63 recognized species. The relationships among genera in Thamnocephalidae and the monophyly of Thamnocephalidae, determined using morphological characteristics or gene markers, remain controversial. In order to address the relationships within Thamnocephalidae, we sequenced Branchinella kugenumaensis mitogenomes and conducted a comparative analysis to reveal the divergence across mitogenomes of B. kugenumaensis. Using newly obtained mitogenomes together with available Anostracan genomic sequences, we present the most complete phylogenomic understanding of Anostraca to date. We observed high divergence across mitogenomes of B. kugenumaensis. Meanwhile, phylogenetic analyses based on both amino acids and nucleotides of the protein-coding genes (PCG) provide significant support for a non-monophyletic Thamnocephalidae within Anostraca, with Asian Branchinella more closely related to Streptocephalidae than Australian Branchinella. The phylogenetic relationships within Anostraca were recovered as follows: Branchinectidae + Chirocephalidae as the basal group of Anostraca and halophilic Artemiidae as a sister to the clade Thamnocephalidae + Streptocephalidae. Both Bayesian inference (BI)- and maximum likelihood (ML)-based analyses produced identical topologies.
Collapse
Affiliation(s)
| | - Jinhui Cheng
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, 39 Beijing Eastroad, Nanjing 210008, China
| |
Collapse
|
6
|
Kitano T, Sato H, Takahashi N, Igarashi S, Hatanaka Y, Igarashi K, Umetsu K. Complete mitochondrial genomes of three fairy shrimps from snowmelt pools in Japan. BMC ZOOL 2022; 7:11. [PMID: 37170326 PMCID: PMC10127424 DOI: 10.1186/s40850-022-00111-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Fairy shrimps belong to order Anostraca, class Branchiopoda, subphylum Crustacea, and phylum Arthropoda. Three fairy shrimp species (Eubranchipus uchidai, E. asanumai, and E. hatanakai) that inhabit snowmelt pools are currently known in Japan. Whole mitochondrial genomes are useful genetic information for conducting phylogenetic analyses. Mitochondrial genome sequences for Branchiopoda members are gradually being collated.
Results
Six whole mitochondrial genomes from the three Eubranchipus species are presented here. Eubranchipus species share the anostracan pattern of gene arrangement in their mitochondrial genomes. The mitochondrial genomes of the Eubranchipus species have a higher GC content than those of other anostracans. Accelerated substitution rates in the lineage of Eubranchipus species were observed.
Conclusion
This study is the first to obtain whole mitochondrial genomes for Far Eastern Eubranchipus species. We show that the nucleotide sequences of cytochrome oxidase subunit I and the 16S ribosomal RNA of E. asanumai presented in a previous study were nuclear mitochondrial DNA segments. Higher GC contents and accelerated substitution rates are specific characteristics of the mitochondrial genomes of Far Eastern Eubranchipus. The results will be useful for further investigations of the evolution of Anostraca as well as Branchiopoda.
Collapse
|
7
|
Tladi M, Wasserman RJ, Cuthbert RN, Dalu T, Nyamukondiwa C. Thermal limits and preferences of large branchiopods (Branchiopoda: Anostraca and Spinicaudata) from temporary wetland arid zone systems. J Therm Biol 2021; 99:102997. [PMID: 34420629 DOI: 10.1016/j.jtherbio.2021.102997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 04/06/2021] [Accepted: 05/16/2021] [Indexed: 11/15/2022]
Abstract
Large branchiopods are specialist crustaceans adapted for life in temporary, thermally dynamic wetland ecosystems. Certain large branchiopod species are, however, restricted to specific temporary wetland types, exemplified by their physico-chemical and hydroperiod characteristics. Here, we contrasted the thermal preference and critical thermal maxima (CTmax) and minima (CTmin) of southern African anostracans and spinicaudatans found exclusively in either temporary rock-pool or pan wetland types. We hypothesized that environment of origin would be a good predictor of thermal preference and critical thermal limits. To test this, Branchiopodopsis tridens (Anostraca) and Leptestheria brevirostris (Spinicaudata) were collected from rock-pool habitats, while Streptocephalus cafer (Anostraca) and a Gondwanalimnadia sp. (Spinicaudata) were collected from pan habitats. In contrast to our hypothesis, taxonomic relatedness was a better predictor of CTmax and temperature preference than environment of origin. Spinicaudatans were significantly more tolerant of high temperatures than anostracans, with L. brevirostris and Gondwanalimnadia sp. median CTmax values of 45.1 °C and 44.1 °C, respectively, followed by S. cafer (42.8 °C) and B. tridens (41.4 °C). Neither environment or taxonomic relatedness were good predictors of CTmin trends, with B. tridens (0.9 °C) and Gondwanalimnadia sp. (2.1 °C) having the lowest median CTmin values, followed by L. brevirostris (3.4 °C) and S. cafer (3.6 °C). On the contrary, temperature preferences differed according to taxa, with spinicaudatans significantly preferring higher temperatures than anostracans. Leptestheria brevirostris and Gondwanalimnadia sp. both spent most time at temperatures 30-32 °C, S. cafer at 18-20 °C and B. tridens at 21-23 °C. Constrained thermal traits reported here suggest that the studied anostracans might be more susceptible to projected climatic warming than the spinicaudatans, irrespective of habitat type, however, these taxa may also compensate through phenotypic plasticity.
Collapse
Affiliation(s)
- Murphy Tladi
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| | - Ryan J Wasserman
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana; Department of Zoology and Entomology, Rhodes University, Makhanda, South Africa.
| | - Ross N Cuthbert
- GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel, 24105, Kiel, Germany
| | - Tatenda Dalu
- Aquatic Systems Research Group, School of Biology and Environmental Sciences, University of Mpumalanga, Nelspruit, 1200, South Africa
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, Palapye, Botswana
| |
Collapse
|
8
|
Tladi M, Nyamukondiwa C, Cuthbert RN, Wasserman RJ. Emergent effects of light and temperature on hatching success of Streptocephalus cafer
(Branchiopoda: Anostraca) resting eggs. AUSTRAL ECOL 2020. [DOI: 10.1111/aec.12934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Murphy Tladi
- Department of Biological Sciences and Biotechnology; Botswana International University of Science and Technology; Palapye Botswana
| | - Casper Nyamukondiwa
- Department of Biological Sciences and Biotechnology; Botswana International University of Science and Technology; Palapye Botswana
| | | | - Ryan J. Wasserman
- Department of Biological Sciences and Biotechnology; Botswana International University of Science and Technology; Palapye Botswana
- Department of Zoology and Entomology; Rhodes University; PO Box 94 Makhanda 6140 South Africa
| |
Collapse
|