1
|
Tarakci E, Esmkhani S, Bayramova J, Bilgin FM, Kidik K, Adiguzel S, Tufan Y, Morva Yilmaz A, Yilmaz H, Duygulu O, Harbeck S, Ercan B, Kaya F, Aktoprakligil Aksu D, Yazici H, Yazici H. New insights of cerium oxide nanoparticles in head and neck cancer treatment. Sci Rep 2025; 15:7665. [PMID: 40044797 PMCID: PMC11883070 DOI: 10.1038/s41598-025-85228-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/01/2025] [Indexed: 03/09/2025] Open
Abstract
Head and neck cancer (HNC) is a genetically complex cancer type having treatment difficulties due to affecting multiple organs in complex anatomical sites. Radiotherapy resistance, chemotoxicity, post-surgery disability makes HNC treatment more complicated. Therefore, there is need to developed new treatment approaches. Nanoparticle-based therapies especially cerium oxide nanoparticles with its anti-cancer features, high catalytic activity, anti- or pro-oxidant and radio-protective properties give a boon for HNC treatment. In the current study, two dextran-coated cerium oxide nanoparticles (Dex-CeNPs) namely SD1 and SD2 were synthesized and characterized by using two types of dextran (D1 and D2) having distinct molecular weights and branching characteristics to understand their potential as a new HNC treatment strategy while evaluating the role of dextran type. The effectivity of the SD1 and SD2 on the HNC cell lines (A253, SCC-25, FaDu) were investigated by analyzing their cytotoxicity, genotoxicity, reactive oxygen species (ROS) generation properties. Low IC50 value, high ROS generation and stability profiling of SD2 compared to SD1 indicates the distinct function of dextran type on Dex-CeNPs effectivity on HNC. To better elucidate the effectivity of SD2, flow cytometry analysis and pro-apoptotic (TP53, CASP3, BAX) and anti-apoptotic (Bcl-2) gene expression profiling were investigated in detail. The findings indicate that SD2 exhibits an influence on head and neck cancer cells via the apoptotic pathway. Our research sets the framework for the development of Dex-CeNPs as remarkable nanotherapeutic candidates for treatment of head and neck cancer.
Collapse
Affiliation(s)
- Elif Tarakci
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
- Department of Biomedical Engineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Sahra Esmkhani
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
- Department of Cancer Genetics, Oncology Institute, Istanbul University, 34295, Istanbul, Turkey
- Division of Cancer Genetics, Department of Basic Oncology, Health Science Institute, Istanbul University, 34093, İstanbul, Turkey
| | - Jamila Bayramova
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
- Department of Cancer Genetics, Oncology Institute, Istanbul University, 34295, Istanbul, Turkey
- Division of Cancer Genetics, Department of Basic Oncology, Health Science Institute, Istanbul University, 34093, İstanbul, Turkey
| | - Feride Melisa Bilgin
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Kubra Kidik
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
- Department of Biomedical Engineering, Yeditepe University, 34755, Istanbul, Turkey
| | - Sevin Adiguzel
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, 34956, Istanbul, Turkey
| | - Yigithan Tufan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Ahsen Morva Yilmaz
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Hulya Yilmaz
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, 34956, Istanbul, Turkey
| | - Ozgur Duygulu
- Materials Process Technologies, Metallic and Structural Materials Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Serpil Harbeck
- Materials Process Technologies, CBRN Defence Technologies Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800, Ankara, Turkey
| | - Filiz Kaya
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Digdem Aktoprakligil Aksu
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey
| | - Hulya Yazici
- Department of Cancer Genetics, Oncology Institute, Istanbul University, 34295, Istanbul, Turkey
- Division of Cancer Genetics, Department of Basic Oncology, Health Science Institute, Istanbul University, 34093, İstanbul, Turkey
- Department of Medical Biology and Genetics, Medical Faculty, Istanbul Health and Technology University, 34275, İstanbul, Turkey
| | - Hilal Yazici
- Climate Change and Life Sciences, Biotechnology Research Group, TUBITAK-Marmara Research Center, 41470, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Sun X, Kou B. Biocompatibility and potential anticancer activity of gadolinium oxide (Gd 2O 3) nanoparticles against nasal squamous cell carcinoma. BMC Biotechnol 2024; 24:53. [PMID: 39107760 PMCID: PMC11304937 DOI: 10.1186/s12896-024-00877-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Chemotherapy as a cornerstone of cancer treatment is slowly being edged aside owing to its severe side effects and systemic toxicity. In this case, nanomedicine has emerged as an effective tool to address these drawbacks. Herein, a biocompatible carrier based on bovine serum albumin (BSA) coated gadolinium oxide nanoparticles (Gd2O3@BSA) was fabricated for curcumin (CUR) delivery and its physicochemical features along with its potential anticancer activity against nasal squamous cell carcinoma were also investigated. It was found that the fabricated Gd2O3@BSA containing CUR (Gd2O3@BSA-CUR) had spherical morphology with hydrodynamic size of nearly 26 nm, zeta-potential of -36 mV and high drug (CUR) loading capacity. Drug release profile disclosed that the release of CUR from the prepared Gd2O3@BSA-CUR nanoparticles occurred in a sustained- and pH-dependent manner. Also, in vitro cytotoxicity analysis revealed that the fabricated Gd2O3@BSA nanoparticles possessed excellent biosafety toward HFF2 normal cells, while Gd2O3@BSA-CUR appeared to display the greatest anticancer potential against RPMI 2650 and CNE-1 cancer cell lines. The results also show that the Gd2O3@BSA nanoparticles were compatible with the blood cells with minor hemolytic effect (< 3%). The manufactured NPs were found to be completely safe for biological applications in an in vivo subacute toxicity study. Taken together, these finding substantiate the potential anticancer activity of Gd2O3@BSA-CUR nanoparticles against nasal squamous cell carcinoma, but the results obtained demand further studies to assess their full potential.
Collapse
Affiliation(s)
- Xiaopeng Sun
- Department of Otorhinolaryngology head and neck surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
- Department of Otorhinolaryngology head and neck surgery, The Second Affiliated Hospital of Xi 'an Medical University, Xi'an, 710000, Shaanxi, China
| | - Bo Kou
- Department of Otorhinolaryngology head and neck surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
3
|
Wahbi W, Korelin K, Sieviläinen M, Karihtala P, Wilkman T, Tarkkanen J, Salo T, Al-Samadi A. Evaluation of in vitro and in vivo personalized cancer treatment assays for oral squamous cell carcinoma. Transl Oncol 2023; 33:101677. [PMID: 37099957 PMCID: PMC10182324 DOI: 10.1016/j.tranon.2023.101677] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a common cancer with a high heterogeneity and few approved treatments. OSCC is one of the least explored areas for precision oncology. In this study, we aimed to test the reliability of our three established rapid cancer systemic treatment-testing assays: human tumour-derived matrix (Myogel)-coated well-plates, zebrafish xenografts, and 3D microfluidic chips. METHODS Chemo-, radio- and targeted-therapy testing in Myogel-coated wells and zebrafish xenografts was conducted nine times using five samples; two primary and three metastatic lymph node samples from three OSCC patients. Peripheral blood mononuclear cells (PBMNCs) were isolated from the patients' blood. The response of the tumour cells to radio-, chemo-, and targeted therapy was tested using Myogel-coated wells and zebrafish larvae xenografts. The tumour cells' response to immunotherapy was tested using 3D microfluidic chips. The cells' sensitivity to the treatments was compared with the patients' clinical response. Primary and metastatic lymph node tissue-derived DNA samples from two patients underwent whole exome sequencing to compare the mutational profiles of the samples. RESULTS Test results were in line with patients' responses in 7/9 (77%) zebrafish xenograft assays and 5/9 (55%) Myogel-coated wells assays. Immunotherapy testing was done using one metastatic patient sample which matched the patients' response. Differences in responses to treatments between primary and metastatic samples of the same patient were detected in 50% of the zebrafish larvae assays. CONCLUSIONS Our results show the potential of using personalized cancer treatment testing assays - specifically zebrafish xenografts that revealed promising results - in OSCC patient samples.
Collapse
Affiliation(s)
- Wafa Wahbi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland
| | - Katja Korelin
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland
| | - Meri Sieviläinen
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland
| | - Peeter Karihtala
- Department of Oncology, Helsinki University Hospital Comprehensive Cancer Center and University of Helsinki, P.O. Box 180, Helsinki 00029, Finland
| | - Tommy Wilkman
- Department of Oral and Maxillofacial Surgery, HUS Helsinki University Hospital, P.O. Box 281, Helsinki 00029, Finland
| | - Jussi Tarkkanen
- Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, P.O. Box 21, Helsinki, 00014, Finland
| | - Tuula Salo
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland; Department of Pathology, HUSLAB, University of Helsinki and Helsinki University Hospital, P.O. Box 21, Helsinki, 00014, Finland; Cancer and Translational Medicine Research Unit, Faculty of Medicine, University of Oulu, P.O. Box 5281, Oulu 90014, Finland; Medical Research Center Oulu, Oulu University Hospital and University of Oulu, P.O. Box 5281, Oulu 90014, Finland
| | - Ahmed Al-Samadi
- Department of Oral and Maxillofacial Diseases, Clinicum, Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, C223b, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland; Translational Immunology Research Program (TRIMM), Faculty of Medicine, University of Helsinki, Biomedicum Helsinki 1, Haartmaninkatu 8, P.O. Box 63, Helsinki 00014, Finland.
| |
Collapse
|
4
|
Insights into Nanomedicine for Head and Neck Cancer Diagnosis and Treatment. MATERIALS 2022; 15:ma15062086. [PMID: 35329542 PMCID: PMC8951645 DOI: 10.3390/ma15062086] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 02/04/2023]
Abstract
Head and neck cancers rank sixth among the most common cancers today, and the survival rate has remained virtually unchanged over the past 25 years, due to late diagnosis and ineffective treatments. They have two main risk factors, tobacco and alcohol, and human papillomavirus infection is a secondary risk factor. These cancers affect areas of the body that are fundamental for the five senses. Therefore, it is necessary to treat them effectively and non-invasively as early as possible, in order to do not compromise vital functions, which is not always possible with conventional treatments (chemotherapy or radiotherapy). In this sense, nanomedicine plays a key role in the treatment and diagnosis of head and neck cancers. Nanomedicine involves using nanocarriers to deliver drugs to sites of action and reducing the necessary doses and possible side effects. The main purpose of this review is to give an overview of the applications of nanocarrier systems to the diagnosis and treatment of head and neck cancer. Herein, several types of delivery strategies, radiation enhancement, inside-out hyperthermia, and theragnostic approaches are addressed.
Collapse
|
5
|
Haider M, Elsherbeny A, Jagal J, Hubatová-Vacková A, Saad Ahmed I. Optimization and Evaluation of Poly(lactide- co-glycolide) Nanoparticles for Enhanced Cellular Uptake and Efficacy of Paclitaxel in the Treatment of Head and Neck Cancer. Pharmaceutics 2020; 12:E828. [PMID: 32872639 PMCID: PMC7559439 DOI: 10.3390/pharmaceutics12090828] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/26/2020] [Indexed: 12/30/2022] Open
Abstract
The particle size (PS) and encapsulation efficiency (EE%) of drug-loaded nanoparticles (NPs) may inhibit their cellular uptake and lead to possible leakage of the drug into the systemic circulation at the tumor site. In this work, ultra-high paclitaxel-loaded poly(lactide-co-glycolide) NPs (PTX-PLGA-NPs) with ultra-small sizes were prepared and optimized by adopting the principles of quality by design (QbD) approach. The optimized PTX-PLGA-NPs showed ultra-small spherical particles of about 53 nm with EE% exceeding 90%, a relatively low polydispersity index (PDI) of 0.221, an effective surface charge of -10.1 mV, and a 10-fold increase in the in vitro drug release over 72 h relative to free drug. The cellular viability of pharynx carcinoma cells decreased by almost 50% in 24 h following treatment with optimized PTX-PLGA-NPs, compared to only 20% from the free drug. The intracellular uptake of PTX-PLGA-NPs was highly favored, and the antitumor activity of PTX was remarkably improved with a reduction in its half maximal inhibitory concentration (IC50), by almost 50% relative to free drug solution. These results suggest that the optimal critical formulation parameters, guided by QbD principles, could produce PLGA-NPs with remarkably high EE% and ultra-small PS, resulting in enhanced cellular uptake and efficacy of PTX.
Collapse
Affiliation(s)
- Mohamed Haider
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Amr Elsherbeny
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
| | - Jayalakshmi Jagal
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| | - Anna Hubatová-Vacková
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, Prague 6, 16628 Prague, Czech Republic;
| | - Iman Saad Ahmed
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, UAE; (A.E.); (I.S.A.)
- Research Institute of Medical & Health Sciences, University of Sharjah, Sharjah 27272, UAE;
| |
Collapse
|
6
|
Smith J, Kulkarni A, Birkeland AC, McHugh JB, Brenner JC. Whole-Exome Sequencing of Sinonasal Small Cell Carcinoma Arising within a Papillary Schneiderian Carcinoma In Situ. Otolaryngol Head Neck Surg 2018; 159:859-865. [PMID: 29734873 PMCID: PMC6212311 DOI: 10.1177/0194599818774004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 04/10/2018] [Indexed: 12/18/2022]
Abstract
OBJECTIVE The pathogenetic underpinnings of extrapulmonary small cell carcinomas (EPSCCs) of the head and neck are poorly understood. We sought to describe the clinical case and whole-exome DNA sequencing data of a patient with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma (SCC). STUDY DESIGN Case report and whole-exome sequencing of tumor DNA. SETTING Academic medical center. SUBJECTS AND METHODS A 52-year-old man with sinonasal Schneiderian carcinoma in situ whose tumor progressed to small cell carcinoma. We performed whole-exome genetic sequencing and copy-number variation (CNV) analysis of tumor and normal DNA extracted from flash-frozen, paraffin-embedded (FFPE) samples. RESULTS A total of 93 high-confidence, nonsynonymous somatic mutation events were identified in sinonasal SCC, including loss-of-function mutations in TP53, MAML3, a transcriptional coactivator of the Notch pathway, and GAS6, an activating ligand of the TAM family of tyrosine kinase receptors. Focal amplifications of chromosomal regions 6p25-11.1, containing SOX4 and VEGFA, and 14q32.1-32.3, containing AKT1 and the Notch inhibitory ligand DLK1, were also seen. Further CNV analysis revealed deletions in the critical cell cycle regulators CDKN2A, RB1, RBL1, and RBL2 and the chromatin modifier EP300. CONCLUSIONS Small cell carcinoma may rarely arise from sinonasal Schneiderian carcinoma in situ and exhibits similar genomic aberrations (eg, SOX amplification, Notch pathway inactivation) to pulmonary small cell carcinoma.
Collapse
Affiliation(s)
- Joshua Smith
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Aditi Kulkarni
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Andrew C Birkeland
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - Jonathan B. McHugh
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| | - J. Chad Brenner
- Department of Otolaryngology – Head and Neck Surgery, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Program in Cellular and Molecular Biology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
- Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI. University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|