1
|
Oliveira JMF, Arcanjo GS, Domingos IF, Batista JVGF, Pereira-Martins DA, Batista THC, Hatzlhofer BLD, Falcão DA, Diniz MV, Silva AP, Pires BCV, Dos Anjos AC, Costa FF, Araujo AS, Lucena-Araujo AR, Bezerra MA. A-296G variant of THBS1 gene (rs1478605) is associated with a lower frequency of stroke in a Brazilian population with sickle cell anemia. J Stroke Cerebrovasc Dis 2024; 33:107474. [PMID: 38006767 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/24/2023] [Accepted: 11/05/2023] [Indexed: 11/27/2023] Open
Abstract
OBJECTIVES Stroke is a devastating clinical outcome that significantly contributes to the morbidity and mortality of sickle cell anemia (SCA) patients. Despite its advantages in predicting stroke risk, transcranial Doppler screening has limitations that restrict its applicability, highlighting the need for emerging prognostic tools. Thrombospondin-1 plays a crucial role in endothelial injury, platelet adhesion, and nitric oxide metabolism and may be implicated in stroke pathophysiology. Here, we aimed to evaluate the association of THBS1 genetic variations with the occurrence of stroke in SCA patients MATERIALS AND METHODS: By real-time PCR, 512 SCA patients were fully genotyped for THBS1 A-296G (rs1478605) polymorphism RESULTS: THBS1 GG genotype was associated with a lower risk for stroke occurrence [odds ratio (OR): 0.30; 95% confidence interval (CI): 0.11-0.78; P = 0.011], although these findings were not consistent with multivariate logistic regression analysis (OR: 0.73, 95% CI: 0.12 - 4.37; P = 0.736). In agreement, the cumulative incidence of stroke for patients with AG/AA genotypes was higher when compared to the GG genotype (P = 0.018). However, the association was not maintained in the multivariate proportional hazards model (hazard ratio: 0.67, 95% CI: 0.12-3.61; P = 0.643) CONCLUSIONS: In summary, the present study shows that the THBS1 A-296G (rs1478605) polymorphism may be a potential modifier for stroke in SCA.
Collapse
Affiliation(s)
- Jessica M F Oliveira
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriela S Arcanjo
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Igor F Domingos
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Pronto Socorro Cardiológico de Pernambuco, University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jéssica V G F Batista
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego A Pereira-Martins
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Internal Medicine, Medical School of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Thais H C Batista
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Betânia L D Hatzlhofer
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Pharmaceutical Sciences, Health Sciences Centre, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Diego A Falcão
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Madi V Diniz
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Alexsandro P Silva
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Bárbara C V Pires
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Pernambuco, Brazil
| | - Ana C Dos Anjos
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil; Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Pernambuco, Brazil
| | - Fernando F Costa
- Hematology and Hemotherapy Center, University of Campinas, Campinas, São Paulo, Brazil
| | - Aderson S Araujo
- Department of Internal Medicine, Hematology and Hemotherapy Foundation of Pernambuco, Recife, Pernambuco, Brazil
| | | | - Marcos A Bezerra
- Genetics Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Connes P. Blood rheology and vascular function in sickle cell trait and sickle cell disease: From pathophysiological mechanisms to clinical usefulness. Clin Hemorheol Microcirc 2024; 86:9-27. [PMID: 38073384 DOI: 10.3233/ch-238122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Sickle cell disease (SCD) is an autosomal recessive disorder. Although the molecular mechanisms at the origin of SCD have been well characterized, its clinical expression is highly variable. SCD is characterized by blood rheological abnormalities, increased inflammation and oxidative stress, and vascular dysfunction. Individuals with only one copy of the mutated β-globin gene have sickle cell trait (SCT) and are usually asymptomatic. The first part of this review focuses on the biological responses of SCT carriers during exercise and on the effects of combined SCT and diabetes on vascular function, several biomarkers and clinical complications. The second part of the review focuses on SCD and shows that the magnitude of red blood cell (RBC) rheological alterations is highly variable from one patient to another, and this variability reflects the clinical and hematological variability: patients with the less deformable RBCs have high hemolytic rate and severe anemia, and are prone to develop leg ulcers, priapism, cerebral vasculopathy, glomerulopathy or pulmonary hypertension. In contrast, SCD patients characterized by the presence of more deformable RBCs (but still rigid) are less anemic and may exhibit increased blood viscosity, which increases the risk for vaso-occlusive events. Several genetic and cellular factors may modulate RBC deformability in SCD: co-existence of α-thalassemia, fetal hemoglobin level, oxidative stress, the presence of residual mitochondria into mature RBCs, the activity of various non-selective cationic ion channels, etc. The last part of this review presents the effects of hydroxyurea and exercise training on RBC rheology and other biomarkers in SCD.
Collapse
Affiliation(s)
- Philippe Connes
- Laboratory LIBM EA7424, University of Lyon 1, "Vascular Biology and Red Blood Cell" Team, Lyon, France
- Laboratory of Excellence Labex GR-Ex, Paris, France
| |
Collapse
|
3
|
D’Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Gordeuk VR, Gladwin MT. In vivo evaluation of the effect of sickle cell hemoglobin S, C and therapeutic transfusion on erythrocyte metabolism and cardiorenal dysfunction. Am J Hematol 2023; 98:1017-1028. [PMID: 36971592 PMCID: PMC10272107 DOI: 10.1002/ajh.26923] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo. The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and transfusion therapy on sickle RBC metabolism. Results show that RBCs from patients with Hb SS genotypes-compared to AA RBCs from recent transfusion events or SC RBCs-are characterized by significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Metabolomics, clinical and hematological data were collated in a novel online portal. In conclusion, we identified metabolic signatures of HbS RBCs that correlate with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality.
Collapse
Affiliation(s)
- Angelo D’Alessandro
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
- Department of Medicine – Division of Hematology, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - S. Mehdi Nouraie
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pennsylvania, USA
| | - Francesca Cendali
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Fabia Gamboni
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Julie A. Reisz
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver – Anschutz Medical Campus, Aurora, CO, USA
| | - Xu Zhang
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Kyle W. Bartsch
- Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado – Anschutz Medical Campus, Aurora, CO, USA
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Mark T Gladwin
- University of Maryland School of Medicine, University of Maryland, Baltimore, MD, USA
| |
Collapse
|
4
|
Martins GLS, Nonaka CKV, Rossi EA, de Lima AVR, Adanho CSA, Oliveira MS, Yahouedehou SCMA, de Souza CLEM, Gonçalves MDS, Paredes BD, Souza BSDF. Evaluation of 2D and 3D Erythroid Differentiation Protocols Using Sickle Cell Disease and Healthy Donor Induced Pluripotent Stem Cells. Cells 2023; 12:cells12081121. [PMID: 37190030 DOI: 10.3390/cells12081121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 03/13/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Sickle cell disease (SCD) is a highly prevalent genetic disease caused by a point mutation in the HBB gene, which can lead to chronic hemolytic anemia and vaso-occlusive events. Patient-derived induced pluripotent stem cells (iPSCs) hold promise for the development of novel predictive methods for screening drugs with anti-sickling activity. In this study, we evaluated and compared the efficiency of 2D and 3D erythroid differentiation protocols using a healthy control and SCD-iPSCs. METHODS iPSCs were subjected to hematopoietic progenitor cell (HSPC) induction, erythroid progenitor cell induction, and terminal erythroid maturation. Differentiation efficiency was confirmed by flow cytometry analysis, colony-forming unit (CFU) assay, morphological analyses, and qPCR-based gene expression analyses of HBB and HBG2. RESULTS Both 2D and 3D differentiation protocols led to the induction of CD34+/CD43+ HSPCs. The 3D protocol showed good efficiency (>50%) and high productivity (45-fold) for HSPC induction and increased the frequency of BFU-E, CFU-E, CFU-GM, and CFU-GEMM colonies. We also produced CD71+/CD235a+ cells (>65%) with a 630-fold cell expansion relative to that at the beginning of the 3D protocol. After erythroid maturation, we observed 95% CD235a+/DRAQ5- enucleated cells, orthochromatic erythroblasts, and increased expression of fetal HBG2 compared to adult HBB. CONCLUSION A robust 3D protocol for erythroid differentiation was identified using SCD-iPSCs and comparative analyses; however, the maturation step remains challenging and requires further development.
Collapse
Affiliation(s)
- Gabriele Louise Soares Martins
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Carolina Kymie Vasques Nonaka
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Erik Aranha Rossi
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Adne Vitória Rocha de Lima
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Corynne Stephanie Ahouefa Adanho
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | - Moisés Santana Oliveira
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
| | | | | | | | - Bruno Diaz Paredes
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| | - Bruno Solano de Freitas Souza
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador 40296-710, Brazil
- Center for Biotechnology and Cell Therapy (CBTC), São Rafael Hospital (HSR), Salvador 41253-190, Brazil
- D'Or Institute for Research and Education (IDOR), Salvador 41253-190, Brazil
| |
Collapse
|
5
|
D'Alessandro A, Nouraie SM, Zhang Y, Cendali F, Gamboni F, Reisz JA, Zhang X, Bartsch KW, Galbraith MD, Gordeuk VR, Gladwin MT. In vivo evaluation of the effect of sickle cell hemoglobin S, C and therapeutic transfusion on erythrocyte metabolism and cardiorenal dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528368. [PMID: 36824724 PMCID: PMC9948995 DOI: 10.1101/2023.02.13.528368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Despite a wealth of exploratory plasma metabolomics studies in sickle cell disease (SCD), no study to date has evaluate a large and well phenotyped cohort to compare the primary erythrocyte metabolome of hemoglobin SS, SC and transfused AA red blood cells (RBCs) in vivo . The current study evaluates the RBC metabolome of 587 subjects with sickle cell sickle cell disease (SCD) from the WALK-PHaSST clinical cohort. The set includes hemoglobin SS, hemoglobin SC SCD patients, with variable levels of HbA related to RBC transfusion events, and HbF related to hydroxyurea therapy. Here we explore the modulating effects of genotype, age, sex, severity of hemolysis, and hydroxyurea and transfusion therapy on sickle RBC metabolism. Data - collated in an online portal - show that the Hb SS genotype is associated with significant alterations of RBC acylcarnitines, pyruvate, sphingosine 1-phosphate, creatinine, kynurenine and urate metabolism. Surprisingly, the RBC metabolism of SC RBCs is dramatically different from SS, with all glycolytic intermediates significantly elevated in SS RBCs, with the exception of pyruvate. This result suggests a metabolic blockade at the ATP-generating phosphoenolpyruvate to pyruvate step of glycolysis, which is catalyzed by redox-sensitive pyruvate kinase. Increasing in vivo concentrations of HbA improved glycolytic flux and normalized the HbS erythrocyte metabolome. An unexpectedly limited metabolic effect of hydroxyurea and HbF was observed, possibly related to the modest induction of HbF in this cohort. The metabolic signature of HbS RBCs correlated with the degree of steady state hemolytic anemia, cardiovascular and renal dysfunction and mortality. Key points In vivo dysregulation of RBC metabolism by HbS is evaluated by metabolic profiling of 587 patients with variable HbA, HbC and HbF levels;RBC acyl-carnitines, urate, pyruvate metabolism, S1P, kynurenine relate to hemolysis and cardiorenal dysfunction, respond to transfusion.
Collapse
|
6
|
Azul M, Vital EF, Lam WA, Wood DK, Beckman JD. Microfluidic methods to advance mechanistic understanding and translational research in sickle cell disease. Transl Res 2022; 246:1-14. [PMID: 35354090 PMCID: PMC9218997 DOI: 10.1016/j.trsl.2022.03.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
Abstract
Sickle cell disease (SCD) is caused by a single point mutation in the β-globin gene of hemoglobin, which produces an altered sickle hemoglobin (HbS). The ability of HbS to polymerize under deoxygenated conditions gives rise to chronic hemolysis, oxidative stress, inflammation, and vaso-occlusion. Herein, we review recent findings using microfluidic technologies that have elucidated mechanisms of oxygen-dependent and -independent induction of HbS polymerization and how these mechanisms elicit the biophysical and inflammatory consequences in SCD pathophysiology. We also discuss how validation and use of microfluidics in SCD provides the opportunity to advance development of numerous therapeutic strategies, including curative gene therapies.
Collapse
Affiliation(s)
- Melissa Azul
- Department of Pediatrics, Mayo Clinic, Rochester, Minnesota
| | - Eudorah F Vital
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Wilbur A Lam
- Wallace H. Coulter Department of Biomedical Engineering and Institute for Electronics and Nanotechnology, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, Minnesota
| | - Joan D Beckman
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
7
|
Sadaf A, Seu KG, Thaman E, Fessler R, Konstantinidis DG, Bonar HA, Korpik J, Ware RE, McGann PT, Quinn CT, Kalfa TA. Automated Oxygen Gradient Ektacytometry: A Novel Biomarker in Sickle Cell Anemia. Front Physiol 2021; 12:636609. [PMID: 33841173 PMCID: PMC8027356 DOI: 10.3389/fphys.2021.636609] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/05/2021] [Indexed: 12/01/2022] Open
Abstract
Sickle cell anemia (SCA) is a hereditary hemoglobinopathy with a variable phenotype. There is no single biomarker that adequately predicts disease severity and can be used to monitor treatment response in patients in clinical trials and clinical care. The use of clinical outcomes, such as vaso-occlusive crises (VOC), requires long and expensive studies, sometimes with inconclusive results. To address these limitations, there are several biomarkers under study to improve the ability to predict complications and assess treatment response in both clinical and research settings. Oxygen gradient ektacytometry, also called as oxygenscan, is an assay that measures the effects of deoxygenation and reoxygenation on red blood cell (RBC) deformability and is gaining popularity in SCA research, because it captures the dynamic sickling capacity of a patient’s RBCs as they are subjected to an oxygen gradient under steady shear stress. We describe here the oxygenscan methodology and evaluate the correlation between oxygenscan parameters and more well-known biomarkers of SCA such as fetal hemoglobin (HbF), F-cells, and dense red blood cells (DRBCs). Our data indicate that the oxygenscan curve is affected by all these parameters and the result incorporates the effects of %HbF, %F-cells, RBC hydration, and RBC membrane deformability.
Collapse
Affiliation(s)
- Alina Sadaf
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Katie G Seu
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Elizabeth Thaman
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Rose Fessler
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Diamantis G Konstantinidis
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Holly A Bonar
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Immunopathology Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Jennifer Korpik
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Erythrocyte Diagnostic Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| | - Russell E Ware
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Patrick T McGann
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Charles T Quinn
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Erythrocyte Diagnostic Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Theodosia A Kalfa
- Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Division of Hematology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Erythrocyte Diagnostic Laboratory, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|