1
|
Martinez A, Tovar L, Irigoyen Amparan C, Gonzalez K, Edayath P, Pennathur P, Pennathur A. Heuristic Evaluations of Back-Support, Shoulder-Support, Handgrip-Strength Support, and Sit-Stand-Support Exoskeletons Using Universal Design Principles. IISE Trans Occup Ergon Hum Factors 2025:1-14. [PMID: 40083264 DOI: 10.1080/24725838.2025.2476438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 02/15/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Occupational ApplicationsOur study evaluated four occupational exoskeletons using universal design principles, and we found that the exoskeleton design needs improvement to achieve equitable use by diverse worker sets (including disabled, older, and women workers). Assembling exoskeletons for use, donning and doffing wearable devices, and disassembling them can all be difficult because of the strength, dexterity, reach, and balance requirements of users. Workers with disabilities are likely to require additional support from another person to assemble or use these devices. Exoskeleton design can be improved to provide feedback on user actions, error prevention, and recovery. Factors such as assembly and storage space demands, training needs, additional personnel to assist users, and personalization costs could pose substantial barriers in industrial adoption.
Collapse
Affiliation(s)
- Alejandra Martinez
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| | - Laura Tovar
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| | - Carla Irigoyen Amparan
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| | - Karen Gonzalez
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| | - Prajina Edayath
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| | - Priyadarshini Pennathur
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| | - Arunkumar Pennathur
- Physical, Information and Cognitive Human Factors Engineering Research Laboratory Industrial, Manufacturing and Systems Engineering Department, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
2
|
Xia T, Torkinejad-Ziarati P, Kudernatsch S, Peterson DR. The effects of exoskeleton use on human response to simulated overhead tasks with vibration. ERGONOMICS 2024; 67:2112-2125. [PMID: 38963600 DOI: 10.1080/00140139.2024.2372003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The use of occupational exoskeletons has grown fast in manufacturing industries in recent years. One major scenario of exoskeleton use in manufacturing is to assist overhead, power hand tool operations. This preliminary work aimed to determine the effects of arm-supporting exoskeletons on shoulder muscle activity and human-hand tool coupling in simulated overhead tasks with axially applied vibration. An electromagnetic shaker capable of producing the random vibration spectrum specified in ISO 10819 was hung overhead to deliver vibrations. Two passive, arm-supporting exoskeletons, with one (ExoVest) transferring load to both the shoulder and pelvic region while the second one (ExoStrap) transferring load primarily to the pelvic region, were used in testing. Testing was also done with the shaker placed in front of the body to better understand the posture and exoskeleton engagement effects. The results collected from 6 healthy male subjects demonstrate the dominating effects of the overhead working posture on increased shoulder muscle activities. Vibration led to higher muscle activities in both agonist and antagonist shoulder muscles to a less extent. Exoskeleton use reduced the anterior deltoid and serratus anterior activities by 27% to 43%. However, wearing the ExoStrap increased the upper trapezius activities by 23% to 38% in the overhead posture. Furthermore, an increased human-shaker handle coupling was observed in the OH posture when wearing the ExoVest, indicating a more demanding neuromuscular control.
Collapse
Affiliation(s)
- Ting Xia
- Department of Mechanical Engineering, College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL, USA
| | - Parisa Torkinejad-Ziarati
- Department of Mechanical Engineering, College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL, USA
| | - Simon Kudernatsch
- Department of Mechanical Engineering, College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL, USA
| | - Donald R Peterson
- Department of Mechanical Engineering, College of Engineering and Engineering Technology, Northern Illinois University, DeKalb, IL, USA
| |
Collapse
|
3
|
Cousins D, Porto R, Bigelo A, Fox R, Libs B, Holmes M, Cort J. Effects of the IronHand ® Soft Exoskeleton on Forearm Muscle Activity During in Field Automotive Assembly Tasks. IISE Trans Occup Ergon Hum Factors 2024; 12:224-232. [PMID: 39509276 DOI: 10.1080/24725838.2024.2421930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
OCCUPATIONAL APPLICATIONSWhen compared to not using a soft-hand exoskeleton, the IronHand® caused both increases and decreases in forearm muscle activity while completing automotive assembly tasks. Surprisingly, although there were reductions in muscle activity when wearing the IronHand®, only a few of these decreases resulted in muscle activity changing such that they fell to below recommended ergonomic thresholds. Despite this, some individuals in our study clearly benefited from the device, and this suggests that there is potential for widespread use of such a device if fine tuned to the individual and task demands. Much work is still required for a design that will allow for optimal physical benefit.
Collapse
Affiliation(s)
- Daniel Cousins
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Canada
| | | | | | | | - Bradley Libs
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI, USA
| | - Michael Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, Canada
| | - Joel Cort
- Department of Kinesiology, University of Windsor, Windsor, Canada
| |
Collapse
|
4
|
Ramella G, Grazi L, Giovacchini F, Trigili E, Vitiello N, Crea S. Evaluation of antigravitational support levels provided by a passive upper-limb occupational exoskeleton in repetitive arm movements. APPLIED ERGONOMICS 2024; 117:104226. [PMID: 38219374 DOI: 10.1016/j.apergo.2024.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/24/2023] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Upper-limb occupational exoskeletons to support the workers' upper arms are typically designed to provide antigravitational support. Although typical work activities require workers to perform static and dynamic actions, the majority of the studies in literature investigated the effects of upper-limb occupational exoskeletons in static and quasi-static activities, while only a few works focused on dynamic tasks. This article presents a systematic evaluation of the effects of different levels of antigravitational support (from about 60% to 100% of the arm gravitational load) provided by a passive upper-limb occupational exoskeleton on muscles' activity during repetitive arm movements. The effect of the exoskeleton on muscle activity was evaluated by the comparison of muscle activations with and without the exoskeleton. The average muscle activation was computed considering shoulder full flexion-extension cycles, and sub-movements, namely the arm-lifting (i.e., flexion) and arm-lowering (i.e., extension) movements. Results showed a quasi-linear correlation between antigravitational support and muscle activity reductions, both when considering the full flexion-extension cycle and in the arm-lifting movement (reductions were up to 64 and 61% compared to not wearing the exoskeleton, respectively). When considering the arm-lowering movement, providing antigravitational support close to or higher than 100% of the arm gravitational load led to increased muscle activations of the extensors (up to 127%), suggesting that such an amount of antigravitational support may be not effective for a complete biomechanical load reduction on the shoulder district in dynamic tasks.
Collapse
Affiliation(s)
- Giulia Ramella
- Biorobotics Laboratory, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Lorenzo Grazi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy.
| | | | - Emilio Trigili
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56025 Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| |
Collapse
|
5
|
Gao PF, Zhi JY, Hu JD, Wang J, Xu YS, Zou R, Ding TC, Yang L. The factors affecting the performance of the tunnel wall drilling task and their priority. Sci Rep 2024; 14:9564. [PMID: 38671037 PMCID: PMC11053030 DOI: 10.1038/s41598-024-60381-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 04/28/2024] Open
Abstract
Clarifying the relationship between the man-machine environment and its impact on the tunnel wall drilling task performance (TWDTP) is crucial for enhancing the task performance. Based on a questionnaire survey, indicators of the man-machine environment that affect the TWDTP were proposed in this study, and exploratory factor analysis and a structural equation model were employed to examine the potential factors influencing the task performance and their degrees of influence. By comparing the discrepancy between the perceived performance and importance, the satisfaction of potential factors was evaluated, and the priority order for optimizing these factors was determined by considering the degree of influence and dissatisfaction. The results of survey data analysis based on actual tunnel drilling operation scenarios indicated that tools had the greatest impact on the TWDTP, followed by the quality of the physical environment, while human factors had the least influence on the task performance. Convenient functional maintenance is the key to improving the TWDTP, along with enhancing the quality of the working environment. Once these main aspects are optimized, it is important to consider additional factors such as availability of spare tools, efficient personnel organization, man-tool matching, and safety and health assurance. This research approach provides significant guidance in understanding the relationships between the man-machine environmental factors affecting the performance of complex engineering tasks and identifying key influencing factors, thus providing essential insights for optimizing the TWDTP.
Collapse
Affiliation(s)
- Peng-Fei Gao
- Department of Industrial Design, School of Design, Southwest Jiaotong University, Chengdu, 610031, China.
- School of Design, Southwest Jiaotong University, Chengdu, 610500, China.
| | - Jin-Yi Zhi
- Department of Industrial Design, School of Design, Southwest Jiaotong University, Chengdu, 610031, China.
- School of Design, Southwest Jiaotong University, Chengdu, 610500, China.
| | - Ji-Dong Hu
- China Railway Eight Bureau Group Electrical Engineering Co., LTD, Chengdu, 610500, China
| | - Jin Wang
- Department of Industrial Design, School of Mechatronic Engineering, Southwest Petroleum University, Chengdu, 610500, China
| | - Yong-Sheng Xu
- Department of Industrial Design, School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| | - Rui Zou
- Department of Industrial Design, School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| | - Tie-Cheng Ding
- Department of Industrial Design, School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lin Yang
- Department of Industrial Design, School of Design, Southwest Jiaotong University, Chengdu, 610031, China
| |
Collapse
|
6
|
Brunner A, van Sluijs R, Luder T, Camichel C, Kos M, Bee D, Bartenbach V, Lambercy O. Effect of passive shoulder exoskeleton support during working with arms over shoulder level. WEARABLE TECHNOLOGIES 2023; 4:e26. [PMID: 38510589 PMCID: PMC10952051 DOI: 10.1017/wtc.2023.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/03/2023] [Accepted: 08/31/2023] [Indexed: 03/22/2024]
Abstract
Musculoskeletal disorders have the highest prevalence of work-related health problems. Due to the aging population, the prevalence of shoulder pain in workers in physically demanding occupations is increasing, thereby causing rising costs to society and underlining the need for preventive technologies. Wearable support structures are designed to reduce the physical work load during physically demanding tasks. Here, we evaluate the physiological benefit of the DeltaSuit, a novel passive shoulder exoskeleton, using an assessment framework that conforms to the approach proposed in the literature. In this study, 32 healthy volunteers performed isometric, quasi-isometric, and dynamic tasks that represent typical overhead work to evaluate the DeltaSuit performance. Muscle activity of the arm, neck, shoulder, and back muscles, as well as cardiac cost, perceived exertion, and task-related discomfort during task execution with and without the exoskeleton were compared. When working with the DeltaSuit, muscle activity was reduced up to 56% (p < 0.001) in the Trapezius Descendens and up to 64% (p < 0.001) in the Deltoideusmedius. Furthermore, we observed no additional loading on the abdomen and back muscles. The use of the exoskeleton resulted in statistically significant reductions in cardiac cost (15%, p < 0.05), perceived exertion (21.5%, p < 0.001), and task-related discomfort in the shoulder (57%, p < 0.001). These results suggest that passive exoskeletons, such as the DeltaSuit, have the potential to meaningfully support users when performing tasks in overhead postures and offer a valuable solution to relieve the critical body parts of biomechanical strains for workers at high risk of musculoskeletal disorders.
Collapse
Affiliation(s)
- Annina Brunner
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | | | - Tobias Luder
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Cherilyn Camichel
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| | - Melanie Kos
- Research and Development, Auxivo AG, Schwerzenbach, Switzerland
| | - Dario Bee
- Research and Development, Auxivo AG, Schwerzenbach, Switzerland
| | | | - Olivier Lambercy
- Department of Health Sciences and Technology, ETH, Zurich, Switzerland
| |
Collapse
|
7
|
Kong YK, Park SS, Shim JW, Choi KH, Shim HH, Kia K, Kim JH. A passive upper-limb exoskeleton reduced muscular loading during augmented reality interactions. APPLIED ERGONOMICS 2023; 109:103982. [PMID: 36739780 DOI: 10.1016/j.apergo.2023.103982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to evaluate a passive upper-limb exoskeleton as an ergonomic control to reduce the musculoskeletal load in the shoulders associated with augmented reality (AR) interactions. In a repeated-measures laboratory study, each of the 20 participants performed a series of AR tasks with and without a commercially-available upper-limb exoskeleton. During the AR tasks, muscle activity (anterior, middle, posterior deltoid, and upper trapezius), shoulder joint postures/moment, and self-reported discomfort were collected. The results showed that the exoskeleton significantly reduced muscle activity in the upper trapezius and deltoid muscle groups and self-reported discomfort. However, the shoulder postures and task performance measures were not affected by the exoskeleton during the AR interactions. Given the significant decrease in muscle activity and discomfort without compromising task performance, a passive exoskeleton can be an effective ergonomic control measure to reduce the risks of developing musculoskeletal discomfort or injuries in the shoulder regions.
Collapse
Affiliation(s)
- Yong-Ku Kong
- Department of Industrial Engineering, Sungkyunkwan University, Corvallis, OR, USA
| | - Sang-Soo Park
- Department of Industrial Engineering, Sungkyunkwan University, Corvallis, OR, USA
| | - Jin-Woo Shim
- Department of Industrial Engineering, Sungkyunkwan University, Corvallis, OR, USA
| | - Kyeong-Hee Choi
- Department of Industrial Engineering, Sungkyunkwan University, Corvallis, OR, USA
| | - Hyun-Ho Shim
- Department of Industrial Engineering, Sungkyunkwan University, Corvallis, OR, USA
| | - Kiana Kia
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | - Jeong Ho Kim
- College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
8
|
Kong YK, Kim JH, Shim HH, Shim JW, Park SS, Choi KH. Efficacy of passive upper-limb exoskeletons in reducing musculoskeletal load associated with overhead tasks. APPLIED ERGONOMICS 2023; 109:103965. [PMID: 36645995 DOI: 10.1016/j.apergo.2023.103965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 12/13/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Overhead work can pose substantial musculoskeletal stress in many industrial settings. This study aimed to evaluate the efficacy of passive upper-limb exoskeletons in reducing muscular activity and subjective discomfort ratings. In a repeated-measures laboratory experiment, 20 healthy male participants performed 10-min drilling tasks with and without two passive upper-limb exoskeletons (VEX and Airframe). During the tasks, muscle activity in eight muscles (upper limb - upper trapezius, middle deltoid, biceps brachii, triceps brachii; low back - erector spinae; lower limb - rectus femoris, biceps femoris, tibialis anterior) was collected using electromyography as a physical exertion measure. Subjective discomfort rating in six body parts was measured using the Borg's CR-10 scale. The results showed that muscle activity (especially in the upper-limb muscles) was significantly decreased by 29.3-58.1% with both exoskeletons compared to no exoskeleton condition. The subjective discomfort ratings showed limited differences between the conditions. These findings indicate that passive upper-limb exoskeletons may have potential as an effective intervention to reduce muscular loading and physical exertion during overhead work.
Collapse
Affiliation(s)
- Yong-Ku Kong
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jeong Ho Kim
- School of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvalli, OR, USA; Environmental and Occupational Health, Oregon State University, Corvalli, OR, USA
| | - Hyun-Ho Shim
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Jin-Woo Shim
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Sang-Soo Park
- Department of Industrial Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Kyeong-Hee Choi
- Digital Health Care R&D Department, Korea Institute of Industrial Technology, Cheonan, South Korea.
| |
Collapse
|
9
|
Brambilla C, Lavit Nicora M, Storm F, Reni G, Malosio M, Scano A. Biomechanical Assessments of the Upper Limb for Determining Fatigue, Strain and Effort from the Laboratory to the Industrial Working Place: A Systematic Review. Bioengineering (Basel) 2023; 10:445. [PMID: 37106632 PMCID: PMC10135542 DOI: 10.3390/bioengineering10040445] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Recent human-centered developments in the industrial field (Industry 5.0) lead companies and stakeholders to ensure the wellbeing of their workers with assessments of upper limb performance in the workplace, with the aim of reducing work-related diseases and improving awareness of the physical status of workers, by assessing motor performance, fatigue, strain and effort. Such approaches are usually developed in laboratories and only at times they are translated to on-field applications; few studies summarized common practices for the assessments. Therefore, our aim is to review the current state-of-the-art approaches used for the assessment of fatigue, strain and effort in working scenarios and to analyze in detail the differences between studies that take place in the laboratory and in the workplace, in order to give insights on future trends and directions. A systematic review of the studies aimed at evaluating the motor performance, fatigue, strain and effort of the upper limb targeting working scenarios is presented. A total of 1375 articles were found in scientific databases and 288 were analyzed. About half of the scientific articles are focused on laboratory pilot studies investigating effort and fatigue in laboratories, while the other half are set in working places. Our results showed that assessing upper limb biomechanics is quite common in the field, but it is mostly performed with instrumental assessments in laboratory studies, while questionnaires and scales are preferred in working places. Future directions may be oriented towards multi-domain approaches able to exploit the potential of combined analyses, exploitation of instrumental approaches in workplace, targeting a wider range of people and implementing more structured trials to translate pilot studies to real practice.
Collapse
Affiliation(s)
- Cristina Brambilla
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
| | - Matteo Lavit Nicora
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
- Industrial Engineering Department, University of Bologna, 40126 Bologna, Italy
| | - Fabio Storm
- Bioengineering Laboratory, Scientific Institute, IRCCS “Eugenio Medea”, 23842 Bosisio Parini, Italy
| | - Gianluigi Reni
- Informatics Department, Autonomous Province of Bolzano, 39100 Bolzano, Italy
| | - Matteo Malosio
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
| | - Alessandro Scano
- Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato (STIIMA), Consiglio Nazionale delle Ricerche (CNR), Via Previati 1/E, 23900 Lecco, Italy
| |
Collapse
|
10
|
Ding S, Reyes Francisco A, Li T, Yu H. A novel passive shoulder exoskeleton for assisting overhead work. WEARABLE TECHNOLOGIES 2023; 4:e7. [PMID: 38487772 PMCID: PMC10936402 DOI: 10.1017/wtc.2023.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 12/28/2022] [Indexed: 03/17/2024]
Abstract
Shoulder exoskeletons (SEs) can assist the shoulder joint of workers during overhead work and are usually passive for good portability. However, current passive SEs face the challenge that their torque generators are often attached to the human arm, which adds a significant amount of weight to the user's arms, resulting in additional energy consumption of the user. In this paper, we present a novel passive SE whose torque generator is attached to the user's back and assists the shoulder joint through Bowden cables. Our approach greatly reduces the weight on the user's arms and can accommodate complex shoulder joint movements with simple and lightweight mechanical structure based on Bowden cables. In addition, to match the nonlinear torque requirements of the shoulder joint, a unique spring-cam mechanism is proposed as the torque generator. To verify the effectiveness of the device, we conducted a usability test based on muscle activations of 10 healthy subjects. When assisting overhead work, the SE significantly reduced the mean and maximum electromyography signals of the shoulder-related muscles by up to 25%. The proposed SE contributes to further research on passive SE design to improve usability, especially in terms of reducing weight on human arms.
Collapse
Affiliation(s)
- Shuo Ding
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Anaya Reyes Francisco
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Tong Li
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Haoyong Yu
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
11
|
Arnoux B, Farr A, Boccara V, Vignais N. Evaluation of a Passive Upper Limb Exoskeleton in Healthcare Workers during a Surgical Instrument Cleaning Task. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3153. [PMID: 36833846 PMCID: PMC9962376 DOI: 10.3390/ijerph20043153] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
(1) Background: Healthcare workers are highly affected by work-related musculoskeletal disorders, particularly in the lower back, neck and shoulders, as their occupational tasks expose them to biomechanical constraints. One solution to prevent these musculoskeletal disorders may be the use of a passive exoskeleton as it aims to reduce muscle solicitation. However, few studies have been carried out directly in this field to assess the impact of the use of a passive upper limb exoskeleton on this population. (2) Methods: Seven healthcare workers, equipped with electromyographic sensors, performed a tool cleaning task with and without a passive upper limb exoskeleton (Hapo MS, Ergosanté Technologie, France). Six muscles of the upper limbs were analysed, i.e., anterior deltoid, biceps brachii, pectoralis major, latissimus dorsi, triceps brachii and longissimus thoracis. A subjective analysis of the usability of the equipment, the perception of effort and discomfort, was also carried out using the System Usability Scale and the Borg scale. (3) Results: The longissimus thoracis was the most used muscle during this task. We observed a significant decrease in the muscular solicitation of the anterior deltoid and latissimus dorsi when wearing the exoskeleton. Other muscles were not significantly impacted by the device. (4) Conclusions: the passive exoskeleton used in this study allowed the reduction in muscular load on the anterior deltoid and latissimus dorsi without negative effects on other muscles. Other field studies with exoskeletons are now necessary, particularly in hospitals, to increase our knowledge and improve the acceptability of this system for the prevention of musculoskeletal disorders.
Collapse
Affiliation(s)
- Bastien Arnoux
- CIAMS, Université Paris-Saclay, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Anaïs Farr
- CIAMS, Université Paris-Saclay, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45067 Orléans, France
| | - Vincent Boccara
- LIMSI CNRS, Université Paris Sud XI, CEDEX, 91403 Orsay, France
| | - Nicolas Vignais
- CIAMS, Université Paris-Saclay, 91405 Orsay, France
- CIAMS, Université d’Orléans, 45067 Orléans, France
| |
Collapse
|
12
|
Jorgensen MJ, Hakansson NA, Desai J. Influence of different passive shoulder exoskeletons on shoulder and torso muscle activation during simulated horizontal and vertical aircraft squeeze riveting tasks. APPLIED ERGONOMICS 2022; 104:103822. [PMID: 35689869 DOI: 10.1016/j.apergo.2022.103822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/22/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Aircraft manufacturing involves riveting utilizing squeeze riveting tools at heights from below elbow to overhead levels. This study assessed utilization of passive shoulder exoskeletons on shoulder and torso muscle activation during simulated squeeze riveting. Horizontal and vertical riveting tasks using squeeze riveting tools were performed by 16 aircraft workers wearing three different shoulder exoskeletons and a no-exoskeleton condition capturing electromyographic signals from shoulder and torso muscles. Exoskeletons reduced normalized EMG for the left anterior deltoid at both heights (6.6% and 15.7%), the right anterior deltoid (8.3%) and the right and left medial deltoid (9.3% and 8.9%) at the upper height for horizontal squeeze riveting. Exoskeletons reduced normalized EMG for the right and left anterior deltoids (7.0%-10.6%) and medial deltoids (1.3%-7.1%) within the upper zones during vertical squeeze riveting. Participants felt exoskeletons would be beneficial for squeeze riveting, however no preference was found among the exoskeletons used.
Collapse
Affiliation(s)
- Michael J Jorgensen
- Industrial Systems and Manufacturing Engineering Department, Wichita State University, Wichita, KS, USA.
| | - Nils A Hakansson
- Biomedical Engineering Department, Wichita State University, Wichita, KS, USA
| | - Jaydip Desai
- Biomedical Engineering Department, Wichita State University, Wichita, KS, USA
| |
Collapse
|
13
|
Gillette JC, Saadat S, Butler T. Electromyography-based fatigue assessment of an upper body exoskeleton during automotive assembly. WEARABLE TECHNOLOGIES 2022; 3:e23. [PMID: 38486890 PMCID: PMC10936263 DOI: 10.1017/wtc.2022.20] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 08/03/2022] [Accepted: 08/12/2022] [Indexed: 03/17/2024]
Abstract
The purpose of this study was to assess an upper body exoskeleton during automotive assembly processes that involve elevated arm postures. Sixteen team members at Toyota Motor Manufacturing Canada were fitted with a Levitate Airframe, and each team member performed between one and three processes with and without the exoskeleton. A total of 16 assembly processes were studied. Electromyography (EMG) data were collected on the anterior deltoid, biceps brachii, upper trapezius, and erector spinae. Team members also completed a usability survey. The exoskeleton significantly reduced anterior deltoid mean active EMG amplitude (p = .01, Δ = -3.2 %MVC, d = 0.56 medium effect) and fatigue risk value (p < .01, Δ = -5.1 %MVC, d = 0.62 medium effect) across the assembly processes, with no significant changes for the other muscles tested. A subset of nine assembly processes with a greater amount of time spent in arm elevations at or above 90° (30 vs. 24%) and at or above 135° (18 vs. 9%) appeared to benefit more from exoskeleton usage. For these processes, the exoskeleton significantly reduced anterior deltoid mean active EMG amplitude (p < .01, Δ = -5.1 %MVC, d = 0.95 large effect) and fatigue risk value (p < .01, Δ = -7.4 %MVC, d = 0.96 large effect). Team members responded positively about comfort and fatigue benefits, although there were concerns about the exoskeleton hindering certain job duties. The results support quantitative testing to match exoskeleton usage with specific job tasks and surveying team members for perceived benefits/drawbacks.
Collapse
Affiliation(s)
| | - Shekoofe Saadat
- Department of Kinesiology, Iowa State University, Ames, IA, USA
| | - Terry Butler
- Lean Steps Consulting Inc., West Des Moines, IA, USA
| |
Collapse
|
14
|
Kopp V, Holl M, Schalk M, Daub U, Bances E, García B, Schalk I, Siegert J, Schneider U. Exoworkathlon: A prospective study approach for the evaluation of industrial exoskeletons. WEARABLE TECHNOLOGIES 2022; 3:e22. [PMID: 38486909 PMCID: PMC10936367 DOI: 10.1017/wtc.2022.17] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 06/29/2022] [Accepted: 07/27/2022] [Indexed: 03/17/2024]
Abstract
Industrial exoskeletons have recently gained importance as ergonomic interventions for physically demanding work activities. The growing demand for exoskeletons is leading to a need for new knowledge on the effectiveness of these systems. The Exoworkathlon, as a prospective study approach, aims to assess exoskeletons in realistic use cases and to evaluate them neutrally in their entirety. For this purpose, a first set of four realistic Parcours was developed with experts from relevant industries, the German Social Accident Insurance, and the Federal Institute for Occupational Safety and Health. In addition, a set of ratings was defined to assess subjective user feedback, work quality, and objective physiological parameters. Exoworkathlon aims to bring together developers, researchers, and end-users, strengthen collaborative exchanges, and promote a platform for the prospective holistic data collection for exoskeleton evaluation. In this article, the focus is on the background and methodology of Exoworkathlon.
Collapse
Affiliation(s)
- Verena Kopp
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
| | - Mirjam Holl
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Marco Schalk
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Urban Daub
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
| | - Enrique Bances
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Braulio García
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Ines Schalk
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Jörg Siegert
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| | - Urs Schneider
- Fraunhofer Institute for Manufacturing Engineering and Automation IPA, Department Biomechatronic Systems, Nobelstraße 12, 70569Stuttgart, Germany
- Institute of Industrial Manufacturing and Management IFF, University of Stuttgart, Allmandring 35, 70569Stuttgart, Germany
| |
Collapse
|
15
|
Pacifico I, Parri A, Taglione S, Sabatini AM, Violante FS, Molteni F, Giovacchini F, Vitiello N, Crea S. Exoskeletons for workers: A case series study in an enclosures production line. APPLIED ERGONOMICS 2022; 101:103679. [PMID: 35066399 DOI: 10.1016/j.apergo.2022.103679] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 06/14/2023]
Abstract
This case-series study aims to investigate the effects of a passive shoulder support exoskeleton on experienced workers during their regular work shifts in an enclosures production site. Experimental activities included three sessions, two of which were conducted in-field (namely, at two workstations of the painting line, where panels were mounted and dismounted from the line; each session involved three participants), and one session was carried out in a realistic simulated environment (namely, the workstations were recreated in a laboratory; this session involved four participants). The effect of the exoskeleton was evaluated through electromyographic activity and perceived effort. After in-field sessions, device usability and user acceptance were also assessed. Data were reported individually for each participant. Results showed that the use of the exoskeleton reduced the total shoulder muscular activity compared to normal working conditions, in all subjects and experimental sessions. Similarly, the use of the exoskeleton resulted in reductions of the perceived effort in the shoulder, arm, and lower back. Overall, participants indicated high usability and acceptance of the device. This case series invites larger validation studies, also in diverse operational contexts.
Collapse
Affiliation(s)
- Ilaria Pacifico
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy.
| | - Andrea Parri
- IUVO S.r.l., via Puglie 9, 56025, Pontedera, Pisa, Italy
| | - Silverio Taglione
- ABB S.p.A. PG Breakers & Enclosures, Hub Italy, Electrification Business Area, Smart Power Division, Via Italia, 58, 23846, Garbagnate Monastero, Lecco, Italy
| | - Angelo Maria Sabatini
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Francesco Saverio Violante
- Division of Occupational Medicine, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Italy; Occupational Medicine Unit, Department of Medical and Surgical Sciences, Alma Mater Studiorum University of Bologna, Italy
| | - Franco Molteni
- Villa Beretta Rehabilitation Center, Valduce Hospital, Via N. Sauro 17, 23845, Costa Masnaga, Lecco, Italy
| | | | - Nicola Vitiello
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy
| | - Simona Crea
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy; Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, Piazza Martiri della Libertà, 33, 56127, Pisa, Italy; IRCCS Fondazione Don Carlo Gnocchi, 50143, Florence, Italy.
| |
Collapse
|
16
|
Kim S, Nussbaum MA, Smets M. Usability, User Acceptance, and Health Outcomes of Arm-Support Exoskeleton Use in Automotive Assembly: An 18-month Field Study. J Occup Environ Med 2022; 64:202-211. [PMID: 34873132 DOI: 10.1097/jom.0000000000002438] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Examine arm-support exoskeleton (ASE) user experience over time, identify factors contributing to ASE intention-to-use, and explore whether ASE use may influence the number of medical visits. METHODS An 18-month, longitudinal study with ASE (n = 65) and control groups (n = 133) completed at nine automotive manufacturing facilities. RESULTS Responses to six usability questions were rather consistent over time. ASE use perceived effective in reducing physical demands on the shoulders, neck, and back. Perceived job performance, and overall fit and comfort, appeared to be key determinants for ASE intention-to-use. Based on medical visits among both groups, ASE use may decrease the likelihood of such visits. CONCLUSIONS These field results support the potential of ASEs as a beneficial ergonomic intervention, but also highlight needs for further research on ASE designs, factors driving intention-to-use, and health outcomes.
Collapse
Affiliation(s)
- Sunwook Kim
- Department of Industrial & Systems Engineering, Virginia Tech, Blacksburg, Virginia (Dr Kim, Dr Nussbaum); Manufacturing Technology Development, Ford Motor Company, Glendale, Michigan (Mr Smets)
| | | | | |
Collapse
|
17
|
Hoffmann N, Prokop G, Weidner R. Methodologies for evaluating exoskeletons with industrial applications. ERGONOMICS 2022; 65:276-295. [PMID: 34415823 DOI: 10.1080/00140139.2021.1970823] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Industrial exoskeletons are globally developed, explored, and increasingly implemented in industrial workplaces. Multiple technical, physical, and psychological aspects should be assessed prior to their daily application in various occupational environments. The methodology for evaluating these aspects is not standardised and differs in terms of focussed research objectives, used types of analyses, applied testing procedures, and use cases. The aim of this paper is to provide a matrix comparing the prevalence of different types of analyses combined with their respective research objective(s). A systematic review in the database 'Web of Science' identified 74 studies, mainly in laboratory settings, with a focus on short-term effects as well as with male-dominated samples being low representative for industrial workforces. The conducted evaluation methodologies are further discussed and compared in terms of testing procedure, sample, and research objectives. Finally, relevant aspects for prospectively evaluating industrial exoskeletons in a more harmonised and comprehensive way are suggested. Practitioner summary: Industrial exoskeletons are still inconsistently and insufficiently evaluated in scientific studies, which might hamper the comparability of systems, threaten the human health, and block an iterative system optimisation. Thus, a comprehensive evaluation methodology is needed with harmonised and multicriteria types of analyses.
Collapse
Affiliation(s)
- Niclas Hoffmann
- Department of Production Technologies, Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
- Laboratory of Manufacturing Technology, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
| | - Gilbert Prokop
- Department of Production Technologies, Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
| | - Robert Weidner
- Department of Production Technologies, Institute of Mechatronics, University of Innsbruck, Innsbruck, Austria
- Laboratory of Manufacturing Technology, Helmut-Schmidt-University/University of the Federal Armed Forces Hamburg, Hamburg, Germany
| |
Collapse
|
18
|
De Bock S, Ghillebert J, Govaerts R, Tassignon B, Rodriguez-Guerrero C, Crea S, Veneman J, Geeroms J, Meeusen R, De Pauw K. Benchmarking occupational exoskeletons: An evidence mapping systematic review. APPLIED ERGONOMICS 2022; 98:103582. [PMID: 34600307 DOI: 10.1016/j.apergo.2021.103582] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES To provide an overview of protocols assessing the effect of occupational exoskeletons on users and to formulate recommendations towards a literature-based assessment framework to benchmark the effect of occupational exoskeletons on the user. METHODS PubMed (MEDLINE), Web of Science database and Scopus were searched (March 2, 2021). Studies were included if they investigated the effect of one or more occupational exoskeletons on the user. RESULTS In total, 139 eligible studies were identified, encompassing 33, 25 and 18 unique back, shoulder and other exoskeletons, respectively. Device validation was most frequently conducted using controlled tasks while collecting muscle activity and biomechanical data. As the exoskeleton concept matures, tasks became more applied and the experimental design more representative. With that change towards realistic testing environments came a trade-off with experimental control, and user experience data became more valuable. DISCUSSION This evidence mapping systematic review reveals that the assessment of occupational exoskeletons is a dynamic process, and provides literature-based assessment recommendations. The homogeneity and repeatability of future exoskeleton assessment experiments will increase following these recommendations. The current review recognises the value of variability in evaluation protocols in order to obtain an overall overview of the effect of exoskeletons on the users, but the presented framework strives to facilitate benchmarking the effect of occupational exoskeletons on the users across this variety of assessment protocols.
Collapse
Affiliation(s)
- Sander De Bock
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium.
| | - Jo Ghillebert
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Renée Govaerts
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Bruno Tassignon
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Carlos Rodriguez-Guerrero
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Department of Mechanical Engineering, Faculty of Applied Sciences, Vrije Universiteit Brussel and Flanders Make, 1050, Brussels, Belgium; COST (European Cooperation in Science and Technology) Action 16116, Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions, Belgium
| | - Simona Crea
- COST (European Cooperation in Science and Technology) Action 16116, Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions, Belgium; The BioRobotics Institute, Scuola Superiore Sant'Anna, Pontedera, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Jan Veneman
- COST (European Cooperation in Science and Technology) Action 16116, Wearable Robots for Augmentation, Assistance or Substitution of Human Motor Functions, Belgium; Hocoma AG, Volketswil, Switzerland
| | - Joost Geeroms
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Department of Mechanical Engineering, Faculty of Applied Sciences, Vrije Universiteit Brussel and Flanders Make, 1050, Brussels, Belgium
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Strategic Research Program 'Exercise and the Brain in Health and Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, 1050, Brussels, Belgium; Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, 1050, Brussels, Belgium; Strategic Research Program 'Exercise and the Brain in Health and Disease: The Added Value of Human-Centered Robotics', Vrije Universiteit Brussel, 1050, Brussels, Belgium
| |
Collapse
|
19
|
Bhat P, Senft E, Zinn M, Gleicher M, Mutlu B, Cook R, Radwin RG. Assessing limited visibility feedback for overhead manufacturing assembly tasks. APPLIED ERGONOMICS 2021; 97:103531. [PMID: 34273816 DOI: 10.1016/j.apergo.2021.103531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Worker posture, task time and performance are often affected when one-handed manual dexterous tasks are performed in small overhead spaces under an obscured view. A common method used for supplementing visual feedback in these cases is a hand-held telescopic mirror, but that involves working with both arms extended overhead, and is often accompanied by awkward neck and shoulder postures. A video camera was considered as an alternative to using a mirror for visual feedback and reducing overhead reach. A mirror, a borescope and an omnidirectional camera were evaluated while laboratory participants performed three one-handed simulated manufacturing tasks in a small overhead enclosure. Videos were recorded for quantifying the time that postures were assumed while performing the tasks. The average time that both arms were above mid-shoulder height for the omnidirectional camera was more than 2.5 times less than for the mirror and borescope. The average proportion of neck strain time was 0.01% (or less) for both the omnidirectional camera and the borescope, compared to 83.68% for the mirror. No significant differences were observed in task completion times between the three modalities. Hence, an omnidirectional camera can provide visibility while reducing straining postures for manufacturing operations involving overhead work.
Collapse
Affiliation(s)
- Prajna Bhat
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Emmanuel Senft
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Zinn
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Michael Gleicher
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Bilge Mutlu
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Rebecca Cook
- Boeing Research and Technology, The Boeing Company, North Charleston, SC, USA
| | - Robert G Radwin
- Department of Industrial and Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
20
|
Ciullo AS, Catalano MG, Bicchi A, Ajoudani A. A Supernumerary Soft Robotic Limb for Reducing Hand-Arm Vibration Syndromes Risks. Front Robot AI 2021; 8:650613. [PMID: 34490355 PMCID: PMC8418115 DOI: 10.3389/frobt.2021.650613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
The most common causes of the risk of work-related musculoskeletal disorders (WMSD) have been identified as joint overloading, bad postures, and vibrations. In the last two decades, various solutions ranging from human-robot collaborative systems to robotic exoskeletons have been proposed to mitigate them. More recently, a new approach has been proposed with a high potential in this direction: the supernumerary robotic limbs SRLs are additional robotic body parts (e.g., fingers, legs, and arms) that can be worn by the workers, augmenting their natural ability and reducing the risks of injuries. These systems are generally proposed in the literature for their potentiality of augmenting the user's ability, but here we would like to explore this kind of technology as a new generation of (personal) protective equipment. A supernumerary robotic upper limb, for example, allows for indirectly interacting with hazardous objects like chemical products or vibrating tools. In particular, in this work, we present a supernumerary robotic limbs system to reduce the vibration transmitted along the arms and minimize the load on the upper limb joints. For this purpose, an off-the-shelf wearable gravity compensation system is integrated with a soft robotic hand and a custom damping wrist, designed starting from theoretical considerations on a mass-spring-damper model. The real efficacy of the system was experimentally tested within a simulated industrial work environment, where seven subjects performed a drilling task on two different materials. Experimental analysis was conducted according to the ISO-5349. Results showed a reduction from 40 to 60% of vibration transmission with respect to the traditional hand drilling using the presented SRL system without compromising the time performance.
Collapse
Affiliation(s)
- Andrea S Ciullo
- Soft Robotics for Human Cooperation and Rehabilitation, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Manuel G Catalano
- Soft Robotics for Human Cooperation and Rehabilitation, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Antonio Bicchi
- Soft Robotics for Human Cooperation and Rehabilitation, Istituto Italiano di Tecnologia, Genoa, Italy.,Bioengineering and Robotics Research Center "E. Piaggio", University of Pisa, Pisa, Italy
| | - Arash Ajoudani
- Human-Robot Interfaces and Physical Interaction, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
21
|
Evaluation of two upper-limb exoskeletons during overhead work: influence of exoskeleton design and load on muscular adaptations and balance regulation. Eur J Appl Physiol 2021; 121:2811-2823. [PMID: 34173059 DOI: 10.1007/s00421-021-04747-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 06/12/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE Overhead works (OHW) are identified as a major risk factor for shoulder musculoskeletal disorders. The use of upper-limb exoskeletons (EXOUL) is emerging to address these challenges. This research tested the influence of EXOUL design and load on the upper-limb and postural muscles activity, and on the balance control, during OHW. METHODS This study compared two passive EXOUL, notably differing by the level of assistive torque delivered. Both EXOUL was examined in two load conditions (2 vs. 8 kg). Twenty-nine volunteers performed a static OHW for each condition. RESULTS Both EXOUL led to similar reductions in shoulder flexor muscle activity (12.3 ± 7.8% of RMSREF), compared to without equipment (29.0 ± 14.2% RMSREF). Both EXOUL resulted in a reduction in the activity of shoulder (3.6 ± 3.2% RMSREF) and wrist (2.4 ± 1.7% RMSREF) extensor muscles (4.9 ± 3.9 and 5.9 ± 6.1% RMSREF, respectively). The use of EXOUL led to reductions in back muscle activity, depending on the exoskeleton design (in % RMSREF, 12.9 ± 9.4 for EXO1, 22.8 ± 12.6 for EXO2 and 32.0 ± 18.4 without equipment). Wearing EXOUL induced changes in balance regulation, depending on both exoskeleton design and load condition. CONCLUSION The increase of assistive torque was not associated with an increase in EXOUL performance. However, the exoskeleton design (mass, balance, and assistive torque) has to be suitable for the load handled during static OHW to optimize the effects of using an EXOUL on the postural muscles.
Collapse
|
22
|
Hefferle M, Snell M, Kluth K. Influence of Two Industrial Overhead Exoskeletons on Perceived Strain – A Field Study in the Automotive Industry. ADVANCES IN INTELLIGENT SYSTEMS AND COMPUTING 2021. [DOI: 10.1007/978-3-030-51758-8_13] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Nussbaum MA, Lowe BD, de Looze M, Harris-Adamson C, Smets M. An Introduction to the Special Issue on Occupational Exoskeletons. IISE Trans Occup Ergon Hum Factors 2020. [DOI: 10.1080/24725838.2019.1709695] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Maury A. Nussbaum
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Brian D. Lowe
- National Institute for Occupational Safety and Health, Cincinnati, OH, USA
| | | | - Carisa Harris-Adamson
- Occupational and Environmental Medicine, University of California, San Francisco, CA, USA
| | - Marty Smets
- Advanced Manufacturing, Ford Motor Company, Glendale, MI, USA
| |
Collapse
|
24
|
de Vries A, Murphy M, Könemann R, Kingma I, de Looze M. The Amount of Support Provided by a Passive Arm Support Exoskeleton in a Range of Elevated Arm Postures. IISE Trans Occup Ergon Hum Factors 2019. [DOI: 10.1080/24725838.2019.1669736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Aijse de Vries
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, The Netherlands
| | - Molly Murphy
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, The Netherlands
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Reinier Könemann
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, The Netherlands
| | - Idsart Kingma
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| | - Michiel de Looze
- Sustainable Productivity and Employability, Healthy Living, TNO, Leiden, The Netherlands
- Faculty of Behavioral and Movement Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Gillette JC, Stephenson ML. Electromyographic Assessment of a Shoulder Support Exoskeleton During on-Site Job Tasks. IISE Trans Occup Ergon Hum Factors 2019. [DOI: 10.1080/24725838.2019.1665596] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|