1
|
Alagia M, Bengoechea C, La Ferla B, Peri F, Guerrero A. Effects of the green cross-linking agent tannic acid and its oxidation on the properties of porcine plasma protein superabsorbent materials. Int J Biol Macromol 2025; 304:140584. [PMID: 39922358 DOI: 10.1016/j.ijbiomac.2025.140584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
Tannic acid is a natural polyphenol capable of strongly interacting with proteins, with good antioxidant and antibacterial properties. Thus, tannic acid (TA) or oxidized tannic acid (oxTA) may be used as cross-linking agents in the development of reinforced and fully protein-based superabsorbent materials (SAMs). oxTA was produced so that reactive quinone groups were generated, which are expected to increase its reactivity. In this study, porcine plasma protein (PPP) and glycerol (gly) were used in a 50/50 PPP/gly ratio to obtain SAMs through twin screw mixing and injection molding. The results showed that both TA and oxTA increased the storage modulus and the loss tangent of blends and bioplastics due to the physical interactions established between TA or oxTA and PPP. The mechanical properties, particularly the Young's modulus and tensile strength, were generally enhanced as well. Water absorption was strongly influenced by the addition of TA, resulting in a decrease in the amount of water absorbed. However, samples containing oxTA resulted in a greater water absorption capacity, retaining a higher proportion of the superabsorbent properties of the reference composition. Moreover, systems containing oxTA generally possess better mechanical properties than those of equivalent TA formulations, especially those containing 5 % and 10 % oxTA.
Collapse
Affiliation(s)
- Massimo Alagia
- Department of Materials Sciences, University of Milano-Bicocca, Via R. Cozzi 55, 20125 Milano, Italy
| | - Carlos Bengoechea
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, 41011 Sevilla, Spain.
| | - Barbara La Ferla
- Department of Earth and Environmental Sciences DISAT, Università degli Studi di Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy
| | - Antonio Guerrero
- Departamento de Ingeniería Química, Universidad de Sevilla, Escuela Politécnica Superior, 41011 Sevilla, Spain
| |
Collapse
|
2
|
Tang T, Fei J, Wu S, He H, Ma M, Shi Y, Zhu Y, Chen S, Wang X. Biodegradable sodium lignosulfonate-based superabsorbent hydrogels for disposable hygiene products based on hyperbranched polyetherpolyol crosslinkers. Int J Biol Macromol 2025; 287:138038. [PMID: 39643175 DOI: 10.1016/j.ijbiomac.2024.138038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/20/2024] [Accepted: 11/22/2024] [Indexed: 12/09/2024]
Abstract
Full bio-degradation of super absorbent hydrogels (SAHs), which possess excellent water uptake capacity, is still challenging. Based on Flory theory, this paper first analyzes that the high swelling property and gel strength of SHAs are attributed to the length of effective chain of crosslinker. Firstly, a series of hyperbranched crosslinker (HBC) with different molecular weights were designed and synthesized by anionic polymerization and sodium lignosulfonate (SL), which owns a hydrophilic network and remarkable biodegradation properties, was selected as a monomer. Compared with the shorter chain formaldehyde-urea crosslinker (SL-FU), the swelling performance of the gel is improved by about 22 % when long chain polyethylene glycol is used as crosslinker (SL-PEGDA400). Furthermore, SL crosslinked with HBC (PSLH) showed the highest water absorption properties of 664.3 g/g in deionized water and 69.8 g/g in normal saline water when the adding amount of HBE was 11.25 % (ratio to mass of SL, Mn = 5600 g/mol), which is about 16 times and 14 times higher than that of SL-Fu and SL-PEGDA400, respectively. The rate of natural degradation was over 96 %, which was buried in the soil for 270 days. In addition, PSLH as a substitute for petroleum-based products was applied in diapers, showing high adaptability, which indicated promising applicability for producing commercial hygiene productions.
Collapse
Affiliation(s)
- Tao Tang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China; Pinghu Institute of Advanced Materials, Zhejiang University of Technology, China
| | - Junhao Fei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China; College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, China
| | - Shuai Wu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China; Pinghu Institute of Advanced Materials, Zhejiang University of Technology, China
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Yulu Zhu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
3
|
Ham YM, Kang Y, Kang SJ, Lee S, Lee J, Rhee WJ. Advanced Enrichment and Separation of Extracellular Vesicles through the Super Absorbent Polymer Nanosieves. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65863-65876. [PMID: 39560656 DOI: 10.1021/acsami.4c14542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Extracellular vesicles (EVs) are promising therapeutic biomaterials capable of transferring their cargo molecules and external drugs to other cells in vivo and contain various biomarkers that can be used in liquid biopsies. The clinical application of EVs requires an efficient EV enrichment system for the large-scale production or high-throughput isolation of EVs from liquid samples, such as culture media, plant juices, and body fluids. However, current EV enrichment methods, such as ultrafiltration and ultracentrifugation, have limited applicability owing to their associated costs, inefficiency, scalability, and centrifugation time. Herein, we describe the development of a nanosieve based on a superabsorbent polymer for selective EV enrichment. The nanosieve absorbs small molecules while expelling large molecules, such as EVs, through the nanosized channels. We successfully concentrated EVs from clinical samples, such as serum and plasma, with superior cost and time efficiencies. The nanosieves did not interact with the EVs during enrichment, allowing the retention of their therapeutic functions. In addition, the nanosieve surface was specifically engineered to provide multifunctionality to effectively promote EV capture from bulk solutions. Overall, our nanosieve-based EV enrichment method is effective, time- and cost-saving, versatile, scalable, and modulable, and is an excellent option for EV production.
Collapse
Affiliation(s)
- Yoo Min Ham
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Yubin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Su Jin Kang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Soobin Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Jiyoon Lee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Research Center for Bio Materials & Process Development, Incheon National University, Incheon 22012, Republic of Korea
| |
Collapse
|
4
|
Cheng X, Yang J, Tang T, Zhang C, Zhao X, Ye Q. Impact of superabsorbent hydrogels on microbial community and atrazine fate in soils by 14C-labeling techniques. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124822. [PMID: 39197643 DOI: 10.1016/j.envpol.2024.124822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/22/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
The accumulation of atrazine in soils can create environmental challenges, potentially posing risks to human health. Superabsorbent hydrogel (SH)-based formulations offer an eco-friendly approach to accelerate herbicide degradation. However, the impact of SHs on soil microbial community structure, and thus on the fate of atrazine, remains uncertain. In this study, a radioactive tracer was employed to investigate the influence of SHs on microbial communities and atrazine transformation in soils. The results revealed that the mineralization of atrazine in active soils was considerably greater than that in sterilized soils. Atrazine degradation proceeded rapidly under SH treatment, indicating the potential of SH to accelerate atrazine degradation. Furthermore, SH addition did not alter the atrazine degradation pathway in soils, which included dealkylation, dechlorination and hydroxylation. The relative abundance of dominant microbial population was influenced by the presence of SHs in the soil. Additionally, SH application led to an increased relative abundance of Lysobacter, suggesting its potential involvement in atrazine degradation. These findings reveal the significance of soil microorganisms and SH in atrazine degradation, offering crucial insights for the development of effective strategies for atrazine remediation and environmental sustainability.
Collapse
Affiliation(s)
- Xi Cheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Jingying Yang
- Radiolabeled DMPK & BA Laboratory, Pharmaron (Ningbo) Technology Development Co. Ltd., Ningbo, 315336, PR China.
| | - Tao Tang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Chunrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory for Pesticide Residue Detection of Ministry of Agriculture and Rural Affairs, Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, PR China.
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
5
|
Boulogne I, Mirande‐Ney C, Bernard S, Bardor M, Mollet J, Lerouge P, Driouich A. Glycomolecules: from "sweet immunity" to "sweet biostimulation"? PHYSIOLOGIA PLANTARUM 2024; 176:e14640. [PMID: 39618250 PMCID: PMC11609761 DOI: 10.1111/ppl.14640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
Climate changes and environmental contaminants are daunting challenges that require an urgent change from current agricultural practices to sustainable agriculture. Biostimulants are natural solutions that adhere to the principles of organic farming and are believed to have low impacts on the environment and human health. Further, they may contribute to reducing the use of chemical inputs while maintaining productivity in adverse environments. Biostimulants are generally defined as formulated substances and microorganisms showing benefits for plant growth, yield, rhizosphere function, nutrient-use efficiency, quality of harvested products, or abiotic stress tolerance. These biosolutions are categorized in different subclasses. Several of them are enriched in glycomolecules and their oligomers. However, very few studies have considered them as active molecules in biostimulation and as a subclass on their own. Herein, we describe the structure and the functions of complex polysaccharides, glycoproteins, and glycolipids in relation to plant defense or biostimulation. We also discuss the parallels between sugar-enhanced plant defense and biostimulation with glycomolecules and introduce the concept of sweet biostimulation or glycostimulation.
Collapse
Affiliation(s)
- I. Boulogne
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
- ECOTERCA ‐ ÉCOlogie TERrestre CAribéenneUniversité des Antilles, Faculté des Sciences Exactes et NaturellesPointe‐à‐Pitre CedexFrance
| | - C. Mirande‐Ney
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - S. Bernard
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - M. Bardor
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - J.‐C. Mollet
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - P. Lerouge
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| | - A. Driouich
- Université de Rouen Normandie, Normandie Univ, GlycoMEV UR 4358SFR Normandie Végétal FED 4277, Fédération NORSEVE (Normandie‐Québec), Innovation Chimie Carnot, IRIB, GDR CNRS Chemobiologie, RMT BESTIMRouenFrance
| |
Collapse
|
6
|
Yan L, Peng Y. Enhanced treatment of acute organophosphorus pesticide poisoning using activated charcoal-embedded sodium alginate-polyvinyl alcohol hydrogel. Biomed Mater Eng 2024; 35:489-498. [PMID: 38607746 DOI: 10.3233/bme-240007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
BACKGROUND The adsorption of activated charcoal is currently a major clinical treatment for acute organophosphorus pesticide poisoning (AOPP). However, the adsorption duration and efficiency of this method is unstable. OBJECTIVE In this study, a hydrogel embedding activated charcoal was prepared and its alleviating effects on AOPP were investigated. METHODS A composite hydrogel using sodium alginate and polyvinyl alcohol (SA-PVA) hydrogel was prepared in this study. The structural properties of the SA-PVA hydrogel were characterized via multiple analysis including FTIR, TGA, XRD, SEM, tensile strength and expansion rate. Based on these, activated charcoal (AC) was embedded within the SA-PVA hydrogel (SA-PVA-AC) and it was used for the treatment of AOPP. RESULTS Structural characterization indicated SA-PVA hydrogel possesses excellent mechanical properties and biocompatibility. The in vivo study demonstrated that SA-PVA-AC significantly alleviated the inflammation and oxidative damage in the liver, as evidenced by reduced levels of IL-6, TNF-α, and, IL-1β, SOD, and MDA. Furthermore, SA-PVA-AC treatment effectively re-regulated the activities of serum AST and ALT, exhibiting an improved effect on liver function. CONCLUSION The findings suggest that activated charcoal embedded within SA-PVA hydrogel has significant potential as a therapeutic agent in treating AOPP, and offering a novel approach to managing pesticide-induced toxicity.
Collapse
Affiliation(s)
- Li Yan
- Department of Occupational Disease and Pooning Medicine, The First Affiliated Hospital of Chongqing Medical and Pharaceutical College, Chongqing, China
| | - Ying Peng
- Department of Occupational Disease and Pooning Medicine, The First Affiliated Hospital of Chongqing Medical and Pharaceutical College, Chongqing, China
| |
Collapse
|
7
|
Akbarzadeh M, Olad A, Salari D, Mirmohseni A. Gelatin-carboxymethyl cellulose/iron-based metal-organic framework nanocomposite hydrogel as a promising biodegradable fertilizer release system: Synthesis, characterization, and fertilizer release studies. Int J Biol Macromol 2024; 279:135316. [PMID: 39236953 DOI: 10.1016/j.ijbiomac.2024.135316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Application of fertilizers is a routine method in agriculture to increase the fertility of plants However, conventional fertilizers have raised serious health and environmental problems in recent years. Therefore, the development of biodegradable superabsorbent hydrogels based on natural polymers with the capability for fertilizer controlled release has attracted much interest. In the current research, a novel nanocomposite hydrogel based on gelatin and carboxymethyl cellulose polymers enriched with an iron based metal- organic framework (MIL-53 (Iron)) was prepared. The prepared nanocomposite hydrogel was loaded with NPK fertilizer to obtain a slow release fertilizer system. The structural properties of the nanocomposite hydrogel were investigated using FTIR, XRD, and SEM techniques. The swelling and fertilizer release behavior of the nanocomposite hydrogel were evaluated in conditions. Results showed that by adding iron-based metal organic framework to the hydrogel matrix, the water absorption capacity of the hydrogel system was increased to 345.8 (g/g). Fertilizer release studies revealed that the release of fertilizer from the nanocomposite matrix has a slow and continuous release pattern. Therefore, the synthesized nanocomposite has an appropriate strength and high potential to be used as a slow-release fertilizer system.
Collapse
Affiliation(s)
- Mina Akbarzadeh
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Ali Olad
- Polymer Composite Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| | - Dariush Salari
- Laboratory of Petroleum Technology, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Abdolreza Mirmohseni
- Polymer Research Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
8
|
Campanile A, Liguori B, Lama GC, Recupido F, Donatiello S, Gagliardi M, Morone A, Verdolotti L. The Role of Superabsorbent Polymers and Polymer Composites in Water Resource Treatment and Management. Polymers (Basel) 2024; 16:2337. [PMID: 39204557 PMCID: PMC11358950 DOI: 10.3390/polym16162337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/01/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
In the last century, the issue of "water reserves" has become a remarkably strategic topic in modern science and technology. In this context, water resource treatment and management systems are being developed in both agricultural and urban area scenarios. This can be achieved using superabsorbent polymers (SAPs), highly cross-linked hydrogels with three-dimensional, hydrophilic polymer structures capable of absorbing, swelling and retaining huge amounts of aqueous solutions. SAPs are able to respond to several external stimuli, such as temperature, pH, electric field, and solution composition and concentration. They can be used in many areas, from sensor technology to drug delivery, agriculture, firefighting applications, food, and the biomedical industry. In addition, new categories of functional SAP-based materials, mainly superabsorbent polymer composites, can also encapsulate fertilizers to efficiently provide the controlled release of both water and active compounds. Moreover, SAPs have great potential in wastewater treatment for the removal of harmful elements. In this respect, in the following review, the most promising and recent advances in the use of SAPs and composite SAPs as tools for the sustainable management and remediation of water resource are reviewed and discussed by identifying opportunities and drawbacks and highlighting new challenges and aims to inspire the research community.
Collapse
Affiliation(s)
- Assunta Campanile
- Applied Chemistry Labs-Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, 80138 Naples, Italy;
| | - Barbara Liguori
- Applied Chemistry Labs-Department of Chemical, Materials and Industrial Engineering, University of Naples Federico II, 80138 Naples, Italy;
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Giuseppe Cesare Lama
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Federica Recupido
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| | - Silvana Donatiello
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Mariarita Gagliardi
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Alfonso Morone
- Department of Architecture (DIARC), University of Naples Federico II, 80134 Naples, Italy; (S.D.); (M.G.); (A.M.)
| | - Letizia Verdolotti
- Institute for Polymers, Composites and Biomaterials (IPCB-CNR), 80055 Portici, Italy; (G.C.L.); (F.R.)
| |
Collapse
|
9
|
Talaviya H, Singh A, Singh N, Manna S, Banerjee T. Development and validation of LC-MS/MS method for trace analysis of acrylamide, acrylic acid and N, N-methylene bis acrylamide in sandy loam soil. J Chromatogr A 2024; 1729:465012. [PMID: 38852264 DOI: 10.1016/j.chroma.2024.465012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 06/11/2024]
Abstract
Acrylamide and N, N-methylene bis acrylamide are most commonly used monomer and crosslinker compounds employed in synthesis of super absorbent hydrogels. When applied as soil conditioners, there are apprehensions that these hydrogels degrade over time and thus may release the toxic monomers in the soil. A method was thus developed using Liquid Chromatography tandem mass spectrometry (LC-MS/MS) for the trace level quantification of acrylamide (AD), acrylic acid (AA) and N,N-methylene-bis-acrylamide (MBA) in sandy loam soil amended by two test hydrogels the Pusa Hydrogel and SPG 1118 hydrogel prepared using AD and MBA. The MRM (multiple reaction monitoring) transitions were optimized for both the compounds. Soil samples were extracted using dispersive solid-phase extraction (dSPE) with a modified QuEChERS (quick, easy, cheap, effective, rugged, and safe) technique, employing acetonitrile. All analytes were quantified at trace levels within a five-minute run using UHPLC equipped with a C-18 column. Single laboratory validation of the developed method in soil matrix was conducted based on specificity, linearity, sensitivity, accuracy, precision, matrix effect and measurement of uncertainty. LC-MS/MS exhibited a linear response in the concentration range of 0.001 to 1 µg mL-1, with correlation coefficient >+0.99. Acceptable recovery (within 70-120 %) with repeatability (%RSD ≤20 %) was obtained at 0.01 to 1 µg g-1 fortification levels. LOQ (Limit of quantification) of the method for AD, AA and MBA in soil matrix were 0.05, 1 and 0.01 µg g-1, respectively. Both intra-laboratory repeatability and intermediate precision at LOQ suggested well acceptable precise (HorRat≈ 0.3) method for quantification. Matrix enhancement effect was observed in the order: AA>AD>MBA. The Expanded Uncertainty (EU) in soil matrix at LOQ was 21.64 %, 28 % and 19 % for AD, AA and MBA respectively. Groundnut and wheat grown with application of the hydrogels showed no detectable residues of monomers in soil samples (total n = 60) near the root zone at the time of crop harvesting.
Collapse
Affiliation(s)
- Harshang Talaviya
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India; Division of Natural Resources Management, ICAR-Central Islands Agricultural Research Institute, Port Blair, 744105, India
| | - Anupama Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Neera Singh
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Suman Manna
- ICAR-Central Institute of Fisheries Education, Kolkata Centre, Sector -V, Salt Lake City, Kolkata, 700091, India
| | - Tirthankar Banerjee
- Division of Agricultural Chemicals, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| |
Collapse
|
10
|
Wu J, Sheng X, Li L, Liang J, Li Y, Zhao Z, Cui F. Rational Design of a Multifunctional Hydrogel Trap for Water and Fertilizer Capture: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17176-17190. [PMID: 39067070 DOI: 10.1021/acs.jafc.4c03207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Water scarcity and land infertility pose significant challenges to agricultural development, particularly in arid and semiarid regions. Improving soil-water-retention capacity and fertilizer utilization efficiency through the application of soil additives has become a pivotal approach in agricultural practices. Hydrogels exhibit exceptional water absorption and fertilizer retention capabilities, making them extensively utilized in the fields of agriculture, forestry, and desert control. Currently, most reviews primarily focus on the raw materials, classification, synthesis methods, and application prospects of hydrogels, with limited attention given to strategies for enhancing water-retention performance, mechanisms underlying fertilizer absorption, and environmental risks. This review covers the commonly used cross-linking methods in hydrogel synthesis and the structure-activity relationship between hydrogels and water as well as fertilizer. Additionally, a thorough analysis of the ecological benefits and risks associated with hydrogels is presented. Finally, future prospects and challenges are delineated from the perspectives of material design and engineering applications.
Collapse
Affiliation(s)
- Jinxiang Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Xin Sheng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Li Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| | - Zhiwei Zhao
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
| | - Fuyi Cui
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, People's Republic of China
| |
Collapse
|
11
|
Saleem S, Sharma K, Sharma V, Kumar V, Sehgal R, Kumar V. Polysaccharide-based super moisture-absorbent hydrogels for sustainable agriculture applications. POLYSACCHARIDES-BASED HYDROGELS 2024:515-559. [DOI: 10.1016/b978-0-323-99341-8.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
12
|
Saraswathy M, Komath M, Ragini DD, SomanPillai SarojiniAmma P, Lathikumari SS, Akhandanandan MN. Bactericidal Activity of Superabsorbent Polymer Granules for Their Applications in Respiratory Fluid Solidification Systems. ACS OMEGA 2023; 8:25114-25121. [PMID: 37483248 PMCID: PMC10357423 DOI: 10.1021/acsomega.3c01994] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/01/2023] [Indexed: 07/25/2023]
Abstract
Disposal of respiratory secretions from patients having contagious diseases (e.g., COVID-19 and tuberculosis) poses a high risk of infection for healthcare workers. AcryloSorb canister liner bags are highly efficient for the safe handling of contagious respiratory secretions via solidification and disinfection processes. The canister liner bags are lined with disinfectant-impregnated superabsorbent polymer (DSAP) granules. The liner structure in the bag has a patented design that has upward progressive absorbent availability (Indian Patent application # 202041019872). AcryloSorb canister liner bags can decontaminate the fluid secretions absorbed in the bag and solidify within 10 min. The present study focused on the bactericidal effect of DSAP using Gram-negative bacteria, Klebsiella pneumoniae, and Gram-positive bacteria, methicillin-resistantStaphylococcus aureus (MRSA). Disinfectants such as peracetic acid (ethaneperoxic acid), sodium dichloroisocyanurate (sodium 3,5-dichloro-2,4,6-trioxo-1,3,5-triazinan-1-ide), rose bengal (disodium; 2,3,4,5-tetrachloro-6-(2,4,5,7-tetraiodo-3-oxido-6-oxoxanthen-9-yl) benzoate), and N,N-dimethyl-N-[3-(triethoxysilyl)propyl]octadecan-1-aminium chloride at different weight ratios were impregnated in superabsorbent polymer (SAP) granules. The bactericidal activities of DSAP were studied along with its solidification capacity. Disinfectants showed different bactericidal activities when impregnated with SAP granules. For example, peracetic acid-impregnated SAP granules (DSAP-P) showed 100% bactericidal activity for both Klebsiella pneumoniae and MRSA at 0.5 wt % peracetic acid. Sodium dichloroisocyanurate-impregnated SAP granules showed 100% bactericidal activity only at 5 wt % sodium dichloroisocyanurate (DSAP-S5). Even though peracetic acid was highly effective, SAP granules collapsed when impregnated with peracetic acid. The ease of handling, disinfection efficacy, and preserving the morphology of SAP granules make DSAP-S5, a suitable candidate for AcryloSorb canister liner bags.
Collapse
Affiliation(s)
- Manju Saraswathy
- Department
of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695012, India
| | - Manoj Komath
- Divisin
of Bioceramics, Department of Biomaterial Science and Technology,
Biomedical Technology Wing, Sree Chitra
Tirunal Institute for Medical Sciences and Technology, Trivandrum 695012, India
| | - Deepu Damodharan Ragini
- Department
of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695012, India
| | - Pradeepkumar SomanPillai SarojiniAmma
- Division
of Microbial Technology, Department of Applied Biology, Biomedical
Technology Wing, Sree Chitra Tirunal Institute
for Medical Sciences and Technology, Trivandrum 695012, India
| | - Sreejith Sasidharan Lathikumari
- Department
of Biomaterial Science and Technology, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences
and Technology, Trivandrum 695012, India
| | - Maya Nandkumar Akhandanandan
- Division
of Microbial Technology, Department of Applied Biology, Biomedical
Technology Wing, Sree Chitra Tirunal Institute
for Medical Sciences and Technology, Trivandrum 695012, India
| |
Collapse
|
13
|
Kwon YR, Kim HC, Kim JS, Chang YW, Kim DH. Surface-crosslinking of itaconic acid-based superabsorbent polymer using a novel bio-based surface-crosslinker based on succinic acid. POLYM-PLAST TECH MAT 2023. [DOI: 10.1080/25740881.2023.2189450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Affiliation(s)
- Yong Rok Kwon
- Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si, Gyeonggi-do, Republic of Korea
- Department of Material Chemical Engineering, Hanyang University, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Hae Chan Kim
- Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si, Gyeonggi-do, Republic of Korea
- Department of Material Chemical Engineering, Hanyang University, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Jung Soo Kim
- Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si, Gyeonggi-do, Republic of Korea
| | - Young-Wook Chang
- Department of Material Chemical Engineering, Hanyang University, Ansan-si, Gyeonggi-do, Republic of Korea
| | - Dong Hyun Kim
- Materials & Component Convergence R&D Department, Korea Institute of Industrial Technology (KITECH), Ansan-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Zhao C, Liu G, Tan Q, Gao M, Chen G, Huang X, Xu X, Li L, Wang J, Zhang Y, Xu D. Polysaccharide-based biopolymer hydrogels for heavy metal detection and adsorption. J Adv Res 2023; 44:53-70. [PMID: 36725194 PMCID: PMC9936414 DOI: 10.1016/j.jare.2022.04.005] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/14/2022] [Accepted: 04/09/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND With rapid development in agriculture and industry, water polluted with heavy metallic ions has come to be a serious problem. Adsorption-based methods are simple, efficient, and broadly used to eliminate heavy metals. Conventional adsorption materials have the problems of secondary environmental contamination. Hydrogels are considered effective adsorbents, and those prepared from biopolymers are biocompatible, biodegradable, non-toxic, safe to handle, and increasingly used to adsorb heavy metal ions. AIM OF REVIEW The natural origin and easy degradability of biopolymer hydrogels make them potential for development in environmental remediation. Its water absorption capacity enables it to efficiently adsorb various pollutants in the aqueous environment, and its internal pore channels increase the specific surface area for adsorption, which can provide abundant active binding sites for heavy metal ions through chemical modification. KEY SCIENTIFIC CONCEPT OF REVIEW As the most representative of biopolymer hydrogels, polysaccharide-based hydrogels are diverse, physically and chemically stable, and can undergo complex chemical modifications to enhance their performance, thus exhibiting superior ability to remove contaminants. This review summarizes the preparation methods of hydrogels, followed by a discussion of the main categories and applications of polysaccharide-based biopolymer hydrogels.
Collapse
Affiliation(s)
- Chenxi Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Guangyang Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| | - Qiyue Tan
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China; College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Mingkun Gao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Ge Chen
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaodong Huang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Xiaomin Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Lingyun Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro Products, Chinese Academy of Agricultural Sciences, Key Laboratory of Agrifood Safety and Quality, Ministry of Agriculture of China, Beijing 100081, People's Republic of China
| | - Yaowei Zhang
- College of Horticulture, Northeast Agricultural University, Harbin 150030, People's Republic of China.
| | - Donghui Xu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Key Laboratory of Vegetables Quality and Safety Control, Ministry of Agriculture of China, Beijing 100081, People's Republic of China.
| |
Collapse
|
15
|
Sun Y, Song W, Wu H, Zhan Y, Wu Z, Yin J. Investigation on Performances and Functions of Asphalt Mixtures Modified with Super Absorbent Polymer (SAP). MATERIALS (BASEL, SWITZERLAND) 2023; 16:1082. [PMID: 36770089 PMCID: PMC9919901 DOI: 10.3390/ma16031082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
The super absorbent polymer (SAP) has been attracting extensive concerns due to its strong capacity in water absorption and retention. The amorphous hydrogels formed by the post-absorbent SAP have the potential of clogging the micro-cracks in asphalt materials and refraining the rainwater from infiltrating. This provides the possibility of applying SAP in asphalt pavements to seal or fill the cracks and relieve the distresses caused by rainwater infiltration in the underlying layers. Before exploring the cracking sealing mechanism of SAPs in asphalt pavements, a series of experiments were performed to evaluate the feasibility and influences of SAPs in asphalt mastics and asphalt mixtures on their mechanical performances and functionalities. Firstly, the basic properties of SAPs were analyzed, and then the rheological properties of the asphalt mastics using SAP replacing mineral powder (10%, 20%, 30%, and 40% by volume) were explored. The water stability and infiltration reduction effect of the asphalt mixtures incorporated with SAP were evaluated by the Marshall stability test, immersion Marshall stability test, freeze-thaw splitting strength test, Cantabro test, and permeability test. The test results indicated that SAPs could be used in the asphalt mixtures to partially substitute mineral powder with desirable mechanical performances. When less than 10% of the mineral powder was replaced by the SAP, the high-temperature performance and fatigue life of the asphalt mastics could be improved to some extent, but both declined after the content of the SAP was larger than 10%. Due to the hydrogels formed by SAPs after water absorption, the water stability of the asphalt mixtures deteriorated with the increased content of SAPs. Moreover, the results from the permeability tests implied that the SAP hydrogels could fill the seepage channels in the material, thus improving the migration and infiltration resistances of the asphalt mixtures. With the increased contents of SAPs, the permeability coefficients of the asphalt mixtures could be reduced up to 55%. Based on the research findings in this study, when an appropriate amount of SAP was added in the asphalt materials, desirable temperature stability, water stability, and fatigue resistance could be achieved regarding actual requirements from applications. At the same time, the addition of SAPs could effectively refrain the infiltration and migration of rainwater in asphalt pavements, thus potentially mitigating the effect of water erosion on the underlying layers.
Collapse
Affiliation(s)
- Yuxuan Sun
- School of Civil Engineering, Central South University, Changsha 410017, China
| | - Weimin Song
- School of Civil Engineering, Central South University, Changsha 410017, China
| | - Hao Wu
- School of Civil Engineering, Central South University, Changsha 410017, China
| | - Yiqun Zhan
- School of Civil Engineering, Central South University, Changsha 410017, China
| | - Zhezheng Wu
- School of Civil Engineering, Central South University, Changsha 410017, China
| | - Jian Yin
- School of Civil Engineering & Mechanics, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
16
|
Zhang Z, Abidi N, Lucia L, Chabi S, Denny CT, Parajuli P, Rumi SS. Cellulose/nanocellulose superabsorbent hydrogels as a sustainable platform for materials applications: A mini-review and perspective. Carbohydr Polym 2023; 299:120140. [PMID: 36876763 DOI: 10.1016/j.carbpol.2022.120140] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 10/14/2022]
Abstract
Superabsorbent hydrogels (SAH) are crosslinked three-dimensional networks distinguished by their super capacity to stabilize a large quantity of water without dissolving. Such behavior enables them to engage in various applications. Cellulose and its derived nanocellulose can become SAHs as an appealing, versatile, and sustainable platform because of abundance, biodegradability, and renewability compared to petroleum-based materials. In this review, a synthetic strategy that reflects starting cellulosic resources to their associated synthons, crosslinking types, and synthetic controlling factors was highlighted. Representative examples of cellulose and nanocellulose SAH and an in-depth discussion of structure-absorption relationships were listed. Finally, various applications of cellulose and nanocellulose SAH, challenges and existing problems, and proposed future research pathways were listed.
Collapse
Affiliation(s)
- Zhen Zhang
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, USA; Department of Forest Biomaterials, NC State University, Raleigh, NC, USA.
| | - Noureddine Abidi
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA.
| | - Lucian Lucia
- Department of Forest Biomaterials, NC State University, Raleigh, NC, USA; Department of Chemistry, NC State University, Raleigh, NC, USA; Joint Department of Biomedical Engineering, NC State University and University of North Carolina at Chapel Hill, Raleigh, NC, USA.
| | - Sakineh Chabi
- Department of Mechanical Engineering, The University of New Mexico, Albuquerque, NM, USA
| | - Christian T Denny
- Department of Chemical and Biological Engineering, The University of New Mexico, Albuquerque, NM, USA
| | - Prakash Parajuli
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| | - Shaida Sultana Rumi
- Fiber and Biopolymer Research Institute, Department of Soil and Plant Science, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
17
|
Karipçin MZ. Hydrogels improved parsley ( Petroselinium crispum(Mill.) Nyman) growth and development under water deficit stress. PeerJ 2023; 11:e15105. [PMID: 36987451 PMCID: PMC10040180 DOI: 10.7717/peerj.15105] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/28/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity is one of the most pressing problems facing countries in the semi-arid and arid regions of the world. Data predicts that by 2030, global water consumption will increase by 50%, leading to severe water shortages. Today, agricultural production consumes more than 70% of fresh water in many parts of the world, increasing the pressure on water scarcity. For these reasons, agricultural production models and approaches should be developed to reduce water consumption. One developed approach is the use of hydrogel to reduce water consumption and have a positive effect on plant growth. This study investigated the use of hydrogels as chemical components that can be used in water shortage conditions and against the expected water scarcity. Parsley was used as the model organism. The method used was as follows: two different water treatments (50% and 100%) and four different hydrogel concentrations (0%, 50%, 75%, and 100%) were applied, and root width and length, leaf width and length, main stem length, and the number of tillers were measured. According to the results, while no improvement was observed in the plants with 100% hydrogel concentration, the best results were obtained from 50% hydrogel application. The results obtained from 75% hydrogel application were found to be higher than those of 100% hydrogel but lower than 0% hydrogel application. With 50% hydrogel (water-restricted), all plant growth parameters were higher compared to the plants with 100% (full irrigation) water application. It was determined that the average value of the I1 (50%) irrigation was the highest (3.6), and the average value of the I2 (100%) irrigation (2.4) was the lowest. It was determined that the highest average value (6.2) in all measured traits was the average value of the H1 (50%) application, and the lowest average value (0.0) was in the H3 hydrogel applications (100%). In conclusion, this study suggested that hydrogel application is beneficial on a large scale, can optimize water resource management for higher yields in agriculture, and has a positive effect on agricultural yield under water deficit stress.
Collapse
|
18
|
Smagin AV, Sadovnikova NB, Belyaeva EA, Krivtsova VN, Shoba SA, Smagina MV. Gel-Forming Soil Conditioners of Combined Action: Field Trials in Agriculture and Urban Landscaping. Polymers (Basel) 2022; 14:polym14235131. [PMID: 36501525 PMCID: PMC9739259 DOI: 10.3390/polym14235131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
The article summarizes multivariate field trials of gel-forming soil conditioners for agriculture and urban landscaping in various climatic conditions from arid (O.A.E., Uzbekistan) to humid (Moscow region, Russia). The field test program included environmental monitoring of weather data, temperature, water-air regimes, salinity, alkalinity, and biological activity of various soils (sandy and loamy sandy Arenosols, Retisols, loamy Serozems), productivity and yield of plants (lawns, vegetables) and their quality, including pathogen infestation. The evolutionary line of polymer superabsorbents from radiation-crosslinked polyacrylamide (1995) to the patented "Aquapastus" material (2014-2020) with amphiphilic fillers and biocidal additives demonstrated not only success, but also the main problems of using hydrogels in soils (biodegradation, osmotic collapse, etc.), as well as their technological solutions. Along with innovative materials, our know-how consisted in the intelligent soil design of capillary barriers for water accumulation and antipathogenic and antielectrolyte protection of the rhizosphere. Gel-forming polymer conditioners and new technologies of their application increase the productivity of plant crops and the quality of biomass by 30-50%, with a 1.3-2-fold saving of water resources and reliable protection of the topsoil from pathogens and secondary salinization. The results can be useful to a wide range of specialists from chemical technologists to agronomists and landscapers.
Collapse
Affiliation(s)
- Andrey V. Smagin
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
- Correspondence: ; Tel.: +7-(495)-916-917-79-48
| | - Nadezhda B. Sadovnikova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Elena A. Belyaeva
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
| | - Victoria N. Krivtsova
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Sergey A. Shoba
- Soil Science Department and Eurasian Center for Food Security, Lomonosov Moscow State University, GSP-1, Leninskie Gory, 119991 Moscow, Russia
| | - Marina V. Smagina
- Institute of Forest Science, Russian Academy of Sciences (ILAN), 21, Sovetskaya, Moscow Region, 143030 Uspenskoe, Russia
| |
Collapse
|
19
|
Adjuik TA, Nokes SE, Montross MD, Wendroth O. The Impacts of Bio-Based and Synthetic Hydrogels on Soil Hydraulic Properties: A Review. Polymers (Basel) 2022; 14:polym14214721. [PMID: 36365717 PMCID: PMC9656743 DOI: 10.3390/polym14214721] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/30/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Soil hydraulic properties are important for the movement and distribution of water in agricultural soils. The ability of plants to easily extract water from soil can be limited by the texture and structure of the soil, and types of soil amendments applied to the soil. Superabsorbent polymers (hydrogels) have been researched as potential soil amendments that could help improve soil hydraulic properties and make water more available to crops, especially in their critical growing stages. However, a lack of a comprehensive literature review on the impacts of hydrogels on soil hydraulic properties makes it difficult to recommend specific types of hydrogels that positively impact soil hydraulic properties. In addition, findings from previous research suggest contrasting effects of hydrogels on soil hydraulic properties. This review surveys the published literature from 2000 to 2020 and: (i) synthesizes the impacts of bio-based and synthetic hydrogels on soil hydraulic properties (i.e., water retention, soil hydraulic conductivity, soil water infiltration, and evaporation); (ii) critically discusses the link between the source of the bio-based and synthetic hydrogels and their impacts as soil amendments; and (iii) identifies potential research directions. Both synthetic and bio-based hydrogels increased water retention in soil compared to unamended soil with decreasing soil water pressure head. The application of bio-based and synthetic hydrogels both decreased saturated hydraulic conductivity, reduced infiltration, and decreased soil evaporation. Hybrid hydrogels (i.e., a blend of bio-based and synthetic backbone materials) may be needed to prolong the benefit of repeated water absorption in soil for the duration of the crop growing season.
Collapse
Affiliation(s)
- Toby A. Adjuik
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
- Correspondence:
| | - Sue E. Nokes
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Michael D. Montross
- Department of Biosystems and Agricultural Engineering, University of Kentucky, Lexington, KY 40503, USA
| | - Ole Wendroth
- Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY 40503, USA
| |
Collapse
|
20
|
Gel-Forming Soil Conditioners of Combined Action: Laboratory Tests for Functionality and Stability. Polymers (Basel) 2022; 14:polym14214665. [PMID: 36365658 PMCID: PMC9657216 DOI: 10.3390/polym14214665] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/06/2022] Open
Abstract
The research analyzes technological properties and stability of innovative gel-forming polymeric materials for complex soil conditioning. These materials combine improvements in the water retention, dispersity, hydraulic properties, anti-erosion and anti-pathogenic protection of the soil along with a high resistance to negative environmental factors (osmotic stress, compression in the pores, microbial biodegradation). Laboratory analysis was based on an original system of instrumental methods, new mathematical models, and the criteria and gradations of the quality of gels and their compositions with mineral soil substrates. The new materials have a technologically optimal degree of swelling (200−600 kg/kg in pure water and saline solutions with 1−3 g/L TDS), high values of surface energy (>130 kJ/kg), specific surface area (>600 m2/g), threshold of gel collapse (>80 mmol/L), half-life (>5 years), and a powerful fungicidal effect (EC50 biocides doses of 10−60 ppm). Due to these properties, the new gel-forming materials, in small doses of 0.1−0.3% increased the water retention and dispersity of sandy substrates to the level of loams, reduced the saturated hydraulic conductivity 20−140 times, suppressed the evaporation 2−4 times, and formed a windproof soil crust (strength up to 100 kPa). These new methodological developments and recommendations are useful for the complex laboratory testing of hydrogels in small (5−10 g) soil samples.
Collapse
|
21
|
Rojas-Padilla J, de-Bashan LE, Parra-Cota FI, Rocha-Estrada J, de los Santos-Villalobos S. Microencapsulation of Bacillus Strains for Improving Wheat ( Triticum turgidum Subsp. durum) Growth and Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212920. [PMID: 36365373 PMCID: PMC9657316 DOI: 10.3390/plants11212920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/23/2022] [Accepted: 10/26/2022] [Indexed: 05/14/2023]
Abstract
Bio-formulation technologies have a limited impact on agricultural productivity in developing countries, especially those based on plant growth-promoting rhizobacteria. Thus, calcium alginate microbeads were synthesized and used for the protection and delivery of three beneficial Bacillus strains for agricultural applications. The process of encapsulation had a high yield per gram for all bacteria and the microbeads protected the Bacillus strains, allowing their survival, after 12 months of storage at room temperature. Microbead analysis was carried out by observing the rate of swelling and biodegradation of the beads and the released-establishment of bacteria in the soil. These results showed that there is an increase of around 75% in bead swelling on average, which allows for larger pores, and the effective release and subsequent establishment of the bacteria in the soil. Biodegradation of microbeads in the soil was gradual: in the first week, they increased their weight (75%), which consistently results in the swelling ratio. The co-inoculation of the encapsulated strain TRQ8 with the other two encapsulated strains showed plant growth promotion. TRQ8 + TRQ65 and TRQ8 + TE3T bacteria showed increases in different biometric parameters of wheat plants, such as stem height, root length, dry weight, and chlorophyll content. Thus, here we demonstrated that the application of alginate microbeads containing the studied strains showed a positive effect on wheat plants.
Collapse
Affiliation(s)
- Jonathan Rojas-Padilla
- Instituto Tecnológico de Sonora, 5 de Febrero 818 sur, Ciudad Obregon 85000, Sonora, Mexico
| | - Luz Estela de-Bashan
- The Bashan Institute of Science, 1730 Post Oak Court, Auburn, AL 36830, USA
- Environmental Microbiology Group, Northwestern Center for Biological Research (CIBNOR), Av. IPN 195, La Paz 23096, Baja California Sur, Mexico
- Department of Entomology and Plant Pathology, Auburn University, 301 Funches Hall, Auburn, AL 36849, USA
| | - Fannie Isela Parra-Cota
- Campo Experimental Norman E. Borlaug, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Ciudad Obregon 85000, Sonora, Mexico
| | - Jorge Rocha-Estrada
- CONACyT Unidad Regional Hidalgo, Centro de Investigación en Alimentación y Desarrollo, Pachuca Ciudad del Conocimiento y la Cultura, San Agustín Tlaxiaca 42163, Hidalgo, Mexico
| | | |
Collapse
|
22
|
Xia B, Liu B, Wang N, Liao C, Long G, Zhao C, Liao Z, Lyu D. Polyelectrolyte/Graphene Oxide Nano-Film Integrated Fiber-Optic Sensors for High-Sensitive and Rapid-Response Humidity Measurement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:41379-41388. [PMID: 36064308 DOI: 10.1021/acsami.2c08228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Optical fiber humidity sensors have sparked enormous interests in many fields because of their excellent features. However, it remains a great challenge to balance sensitivity, humidity response, temperature crosstalk, and wet hysteresis for real-world application. To overcome this trade-off, an optical fiber humidity sensor is developed here by coating functional graphene oxide (GO)/polyelectrolyte nanocomposite film on the excessively tilted fiber grating (ex-TFG), in which GO/polyelectrolyte nanocomposite film is employed for enhancing the hydrophilicity and accelerating the adsorption/desorption of water molecule, while the ex-TFG is utilized for improving the sensitivity of refractive index and eliminating the crosstalk of temperature. By this design, optical fiber humidity sensors achieve high sensitivity, rapid response and recovery, low hysteresis, and temperature crosstalk as well as excellent repeatability and stability in large relative humidity (RH) range. Our work provides a promising platform for effective RH monitoring systems that can be widely applied in rapid diagnostics, pharmacy, precision medicine, and so forth.
Collapse
Affiliation(s)
- Binyun Xia
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Bonan Liu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Wang
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Changrui Liao
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Long
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Chao Zhao
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan 430070, China
| | - Zhaolong Liao
- Yangtze Optical Fibre and Cable Joint Stock Limited Company, Wuhan 430073, China
| | - Dajuan Lyu
- Yangtze Optical Fibre and Cable Joint Stock Limited Company, Wuhan 430073, China
| |
Collapse
|
23
|
El boumlasy S, La Spada F, Pane A, Licciardello A, Debdoubi A, Tuccitto N, Cacciola SO. A super absorbent polymer containing copper to control Plenodomus tracheiphilus the causative agent of mal secco disease of lemon. Front Microbiol 2022; 13:987056. [PMID: 36160225 PMCID: PMC9493267 DOI: 10.3389/fmicb.2022.987056] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/22/2022] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to determine the effectiveness of a Super absorbent polymer (SAP) containing copper (SAP-Cu) in controlling mal secco disease (MSD) of lemon caused by the fungus Plenodomus tracheiphilus. Super absorbent polymer containing copper was characterized by atomic absorption spectrometry (AAS) and UV-VIS spectroscopy. In vitro tests were performed to determine the inhibitory effects of SAP-Cu against the pathogen on both potato-dextrose-agar medium and naturally infected lemon cuttings. Super absorbent polymer was able to absorb up to about 200 and 30 times its weight of ionized water and copper (II) sulfate solution (Cu2+ ions at the concentration 236 mM), respectively. The distribution of copper released on twigs after 24 h of contact with SAP-Cu was determined by secondary ion mass spectrometry with time-of-flight analyzer (ToF-SIMS). Super absorbent polymer containing copper significantly inhibited the viability of P. tracheiphilus in lemon twigs. Overall, the results of this study showed that the SAP could be a suitable carrier of antifungal compounds.
Collapse
Affiliation(s)
- Soumia El boumlasy
- Laboratory of Materials-Catalysis, Department of Chemistry, Faculty of Science, Université Abdelmalek Essaadi, Tetouan, Morocco
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Federico La Spada
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | - Antonella Pane
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
| | | | - Abderrahmane Debdoubi
- Laboratory of Materials-Catalysis, Department of Chemistry, Faculty of Science, Université Abdelmalek Essaadi, Tetouan, Morocco
| | - Nunzio Tuccitto
- Consorzio per lo Sviluppo dei Sistemi a Grande Interfase, Catania, Italy
- Department of Chemical Sciences, University of Catania, Catania, Italy
| | - Santa Olga Cacciola
- Department of Agriculture, Food and Environment, University of Catania, Catania, Italy
- *Correspondence: Santa Olga Cacciola,
| |
Collapse
|
24
|
Synthesis of cellulose-g-poly(acrylic acid) with high water absorbency using pineapple-leaf extracted cellulose fibers. Carbohydr Polym 2022; 288:119421. [DOI: 10.1016/j.carbpol.2022.119421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
25
|
Menceloğlu Y, Menceloğlu YZ, Seven SA. Triblock Superabsorbent Polymer Nanocomposites with Enhanced Water Retention Capacities and Rheological Characteristics. ACS OMEGA 2022; 7:20486-20494. [PMID: 35755356 PMCID: PMC9219046 DOI: 10.1021/acsomega.1c06961] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Superabsorbent polymers (SAPs) are useful polymers in a wide range of application fields ranging from the hygiene industry to construction and agriculture. As versatility and high water absorption capacity are their important merits, SAPs usually suffer from low water retention capacity (fast release) and weak mechanical properties. To address these drawbacks, a set of new superabsorbent polymer-Halloysite nanotube (HNT) nanocomposites was synthesized via free radical polymerization of acrylamide, 2-acrylamido-2-methylpropane-1-sulfonic acid, and acrylic acid in the presence of vinyltrimethoxysilane (VTMS) as the crosslinker. FTIR and TGA characterizations confirm the polymerization of SAP and successful incorporation of HNTs into the SAP polymer matrix. The effect of the HNT nanofiller amount in the nanocomposite polymer matrix was investigated with swelling-release performance tests, crosslink density calculations, and rheology measurements. It was found that equilibrium swelling ratios are correlated and therefore can be tuned via the crosslink densities of nanocomposites, while water retention capacities are governed by storage moduli. A maximum swelling of 537 g/g was observed when 5 wt % HNT was incorporated, in which the crosslink density is the lowest. Among the SAP nanocomposites prepared, the highest storage modulus was observed when 1 wt % of nanofiller was incorporated, which coincides with the nanocomposite with the longest water retention. The water release duration of SAPs was prolonged up to 27 days with 1% HNT addition in parallel with the achieved maximum storage modulus. Finally, three different incorporation mechanisms of the HNT nanofiller into the SAP nanocomposite structure were proposed and confirmed with rheology measurements. This study provides a rapid synthesis method for SAP nanocomposites with enhanced water retention capacities and explains the relationship between swelling and crosslink density and water retention and mechanical properties of SAP nanocomposites.
Collapse
Affiliation(s)
- Yeşim Menceloğlu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, 34956 Istanbul, Turkey
| | - Yusuf Ziya Menceloğlu
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, 34956 Istanbul, Turkey
- Sabanci
University Integrated Manufacturing Technologies Research and Application
Center & Composite Technologies Center of Excellence, Teknopark, Pendik, 34906 Istanbul, Turkey
- Sabanci
University Nanotechnology Research and Application Center, SUNUM, 34956 Istanbul, Turkey
| | - Senem Avaz Seven
- Faculty
of Engineering and Natural Sciences, Sabanci
University, Tuzla, 34956 Istanbul, Turkey
| |
Collapse
|
26
|
Liu W, Price S, Bennett G, Maxwell TMR, Zhao C, Walker G, Bunt C. A landscape review of controlled release urea products: Patent objective, formulation and technology. J Control Release 2022; 348:612-630. [PMID: 35709877 DOI: 10.1016/j.jconrel.2022.06.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022]
Abstract
Fertiliser has been a vital part of agriculture due to it boosting crop productivity and preventing starvation throughout the world. Despite this huge contribution, the application of nitrogen (N) fertilisers results in N leaching and the formation of greenhouse gases, which threaten the environment and human health. To minimise the impacts, slow/controlled release fertilisers (S/CRFs) have been being developed since the beginning of the 20th century. Despite the efforts made over a century, the basic terminological and classification information of these fertilisers remains vague. The scientific knowledge published in S/CRF patents has also been overlooked since the beginning. This review focused on the information gaps, clarified the definitions, differentiation and classification methods that have been randomly used in previous literature. The objectives, formulations and technologies of 109 controlled release urea patents involving sulphur coated urea, polymer coated urea and urea matrix fertilisers published in the years since these products emerged were also reviewed to 1) highlight the overlooked scientific knowledge in the patents; 2) understand the evolutionary processes and current research states of the products; 3) clarify research preferences and challenges to date; 4) identify remaining gaps for the future direction. It is expected that the organised basic information and the patent knowledge highlighted in this paper can be new resources and foster the development of S/CRFs in the future.
Collapse
Affiliation(s)
- Weiyi Liu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Sally Price
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Grant Bennett
- Department of Applied Sciences and Social Practice, Ara Institute of Canterbury, Christchurch 8011, New Zealand.
| | - Thomas M R Maxwell
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Cunyi Zhao
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, USA.
| | - Greg Walker
- School of Pharmacy, University of Otago, Dunedin 9054, New Zealand.
| | - Craig Bunt
- Department of Food Science, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
27
|
Hossain L, Ledesma RMB, Tanner J, Garnier G. Effect of crosslinking on nanocellulose superabsorbent biodegradability. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Study of Condensate Absorption Capacity in Exposed Soil when Water Recedes at the Bottom of Hoh Xil Lake, Qinghai. WATER 2022. [DOI: 10.3390/w14091433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In order to investigate the characteristics of the condensate absorption capacity in an exposed sandy bottom when water recedes, the characteristics of condensate variation, condensate formation time, condensate volume, and its absorption capacity were investigated in July 2021, using a micro-osmometer. The research area was the artificial water-retention layer and bare ground of the exposed sandy bottom, formed under the influence of the warming-wetting trend that occurs when water recedes in the salt-lake area of the Qinghai-Tibet Plateau, as well as two conditions: underpass and under sealed. According to the results, the time of condensation generation during the observation period in the salt-lake area of Hoh Xil begins at about 0:00 and ends at about 10:00 The artificial water-retention layer had little influence on the condensation generation time, and the trend of the condensation rate is the same. The unidirectional condensation of water in near-surface air is significantly better under artificial water-retention layer conditions than under bare ground conditions, with condensation occurring three times more frequently than under bare ground conditions. The amount of water condensation in the lower part of the soil under artificial aquifer conditions is 2.588 times greater than that in the near-ground air, while the amount of water condensation in the lower part of the soil under bare ground conditions is 1.783 times greater than that in the near-ground air. The total amount of bi-directional condensation under artificial water-retention layer conditions is slightly less than that in bare ground conditions, while the total amount of unidirectional condensation under artificial water-retention layer conditions is significantly higher, indicating that the artificial water-retention layer contributes to the absorption of water from near-surface air. Due to the presence of permafrost in the Qinghai-Tibet Plateau region, the zero-flux surface transport of evanescent heat in the salt-lake area of Hoh Xil lies approximately within 30 cm from the surface to the ground. The analogous humidity coefficient characterizes the condensate absorption capacity coefficient as the storage capacity of condensate in the surface layer of the soil in a certain area, providing strong evidence that the condensate absorption capacity is higher under the artificial water-retention layer conditions than in bare ground, regardless of whether the condensation is bi-directional or unidirectional. The results of this study can provide a theoretical basis for condensate absorption capacity and vegetation restoration in the bare ecologically degraded areas of the lake bottom.
Collapse
|
29
|
Ali F, Khan I, Chen J, Akhtar K, Bakhsh EM, Khan SB. Emerging Fabrication Strategies of Hydrogels and Its Applications. Gels 2022; 8:gels8040205. [PMID: 35448106 PMCID: PMC9024659 DOI: 10.3390/gels8040205] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 12/19/2022] Open
Abstract
Recently, hydrogels have been investigated for the controlled release of bioactive molecules, such as for living cell encapsulation and matrices. Due to their remote controllability and quick response, hydrogels are widely used for various applications, including drug delivery. The rate and extent to which the drugs reach their targets are highly dependent on the carriers used in drug delivery systems; therefore the demand for biodegradable and intelligent carriers is progressively increasing. The biodegradable nature of hydrogel has created much interest for its use in drug delivery systems. The first part of this review focuses on emerging fabrication strategies of hydrogel, including physical and chemical cross-linking, as well as radiation cross-linking. The second part describes the applications of hydrogels in various fields, including drug delivery systems. In the end, an overview of the application of hydrogels prepared from several natural polymers in drug delivery is presented.
Collapse
Affiliation(s)
- Fayaz Ali
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science & Technology Avenida Wai Long, Taipa, Macau 999078, China;
| | - Jianmin Chen
- School of Pharmacy and Medical Technology, Putian University, No. 1133 Xueyuan Zhong Jie, Putian 351100, China
- Correspondence: (J.C.); (S.B.K.)
| | - Kalsoom Akhtar
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Esraa M. Bakhsh
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
| | - Sher Bahadar Khan
- Department of Chemistry, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; (F.A.); (K.A.); (E.M.B.)
- Centre of Excellence for Advance Materials Research, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Correspondence: (J.C.); (S.B.K.)
| |
Collapse
|
30
|
Vu TT, Gulfam M, Jo SH, Park SH, Lim KT. Injectable and biocompatible alginate-derived porous hydrogels cross-linked by IEDDA click chemistry for reduction-responsive drug release application. Carbohydr Polym 2022; 278:118964. [PMID: 34973779 DOI: 10.1016/j.carbpol.2021.118964] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/11/2021] [Accepted: 11/29/2021] [Indexed: 12/20/2022]
Abstract
In this work, novel injectable and reduction-responsive hydrogels were successfully prepared via inverse electron demand Diels-Alder reaction between alginate-norbornene and a water-soluble PEG based disulfide cross-linker. The reduction-responsive cross-linker was designed to contain a PEG chain within two disulfide linkages, and two terminal tetrazine groups. The resulting hydrogels possessed high swelling ratios, porous morphology, excellent drug loading efficiency (~92%), and suitable mechanical properties. The drug release experiments demonstrated that the hydrogels released more than 90% of the encapsulated doxorubicin (DOX) in the presence of 10 mM glutathione while a minimal DOX release (<25%) was measured in physiological buffer (PBS, pH = 7.4) after 11 d. The cross-linker and hydrogels did not exhibit any apparent cytotoxicity to fibroblast cells. In contrast, DOX-loaded hydrogels induced anti-tumor activity against cancer cells. The injectable and reduction-responsive hydrogels hold great potential as a biomaterial for stimuli responsive drug delivery applications.
Collapse
Affiliation(s)
- Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| | - Muhammad Gulfam
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, South Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, South Korea; Department of Display Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
31
|
Wireko C, Abichou T, Tian K, Zainab B, Zhang Z. Effect of incineration ash leachates on the hydraulic conductivity of bentonite-polymer composite geosynthetic clay liners. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 139:25-38. [PMID: 34929416 DOI: 10.1016/j.wasman.2021.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/07/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
A study was conducted to evaluate the hydraulic conductivity (k) of six bentonite-polymer composite (BPC) geosynthetic clay liners (GCLs) using five synthetic municipal solid waste incineration ash (IA) leachates with ionic strength (I) ranging from 174 to1978 mM. The BPC GCLs contained a dry blend of bentonite and proprietary polymers and had polymer loading ranging from 0.5 to 5.5%. The polymers used in the BPC GCLs were classified as linear polymer (LP) or crosslinked polymer (CP) based on the swelling characteristics of specimens extracted from the GCLs. Comparable hydraulic conductivity tests were also performed on two conventional bentonite (CB) GCLs as controls. The BPC GCLs had k of 2.6 - 6.7 × 10-11 m/s when permeated with IA leachate with I = 174 mM, whereas the CB GCLs had k > 5.0 × 10-8 m/s when permeated with the same leachate. However, k of the BPC GCLs ranged from the order of 10-10 to 10-7 m/s when permeated with IA leachates with I > 600 mM. BPC GCLs with high polymer loading generally had lower k compared to those with lower polymer loading when permeated with the same IA leachate, regardless of the polymer type. Polymer eluted from the BPC GCLs containing LP during permeation with DI water or IA leachate. Unlike CPs, LPs are water-soluble, therefore, they seem to easily migrate during permeation. There was no correlation between the percentage of polymer retained and the final hydraulic conductivity of the LPB GCLs used in this study.
Collapse
Affiliation(s)
- Christian Wireko
- Geosyntec Consultants Inc, 1200 Riverplace Blvd STE 710, Jacksonville, FL 32207, USA.
| | - Tarek Abichou
- Department of Civil and Environmental Engineering, Florida A&M University- Florida State University College of Engineering, 2525 Pottsdamer St., Tallahassee, FL, 32310-6064, USA.
| | - Kuo Tian
- Department of Civil, Environmental and Infrastructure Engineering, George Mason University, Fairfax, VA 22030, USA.
| | | | - Zhiming Zhang
- Department of Civil and Environmental Engineering, Florida A&M University- Florida State University College of Engineering, 2525 Pottsdamer St., Tallahassee, FL, 32310-6064, USA.
| |
Collapse
|
32
|
Braun O, Coquery C, Kieffer J, Blondel F, Favero C, Besset C, Mesnager J, Voelker F, Delorme C, Matioszek D. Spotlight on the Life Cycle of Acrylamide-Based Polymers Supporting Reductions in Environmental Footprint: Review and Recent Advances. Molecules 2021; 27:42. [PMID: 35011281 PMCID: PMC8746853 DOI: 10.3390/molecules27010042] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 11/18/2022] Open
Abstract
Humankind is facing a climate and energy crisis which demands global and prompt actions to minimize the negative impacts on the environment and on the lives of millions of people. Among all the disciplines which have an important role to play, chemistry has a chance to rethink the way molecules are made and find innovations to decrease the overall anthropic footprint on the environment. In this paper, we will provide a review of the existing knowledge but also recent advances on the manufacturing and end uses of acrylamide-based polymers following the "green chemistry" concept and 100 years after the revolutionary publication of Staudinger on macromolecules. After a review of raw material sourcing options (fossil derivatives vs. biobased), we will discuss the improvements in monomer manufacturing followed by a second part dealing with polymer manufacturing processes and the paths followed to reduce energy consumption and CO2 emissions. In the following section, we will see how the polyacrylamides help reduce the environmental footprint of end users in various fields such as agriculture or wastewater treatment and discuss in more detail the fate of these molecules in the environment by looking at the existing literature, the regulations in place and the procedures used to assess the overall biodegradability. In the last section, we will review macromolecular engineering principles which could help enhance the degradability of said polymers when they reach the end of their life cycle.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Dimitri Matioszek
- SNF SA, ZAC de Milieux, 42160 Andrézieux-Bouthéon, France; (O.B.); (C.C.); (J.K.); (F.B.); (C.F.); (C.B.); (J.M.); (F.V.); (C.D.)
| |
Collapse
|
33
|
Barajas‐Ledesma RM, Wong VNL, Little K, Patti AF, Garnier G. Carboxylated nanocellulose superabsorbent: Biodegradation and soil water retention properties. J Appl Polym Sci 2021. [DOI: 10.1002/app.51495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ruth M. Barajas‐Ledesma
- Bioresource Processing Research Institute of Australia (BioPRIA) and Department of Chemical Engineering Monash University Clayton Victoria Australia
| | - Vanessa N. L. Wong
- School of Earth, Atmosphere and Environment Monash University Clayton Victoria Australia
| | - Karen Little
- School of Chemistry Monash University Clayton Victoria Australia
| | - Antonio F. Patti
- School of Chemistry Monash University Clayton Victoria Australia
| | - Gil Garnier
- Bioresource Processing Research Institute of Australia (BioPRIA) and Department of Chemical Engineering Monash University Clayton Victoria Australia
| |
Collapse
|
34
|
Venkatachalam D, Kaliappa S. Superabsorbent polymers: A state-of-art review on their classification, synthesis, physicochemical properties, and applications. REV CHEM ENG 2021. [DOI: 10.1515/revce-2020-0102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Superabsorbent polymers (SAP) and modified natural polymer hydrogels are widely and increasingly used in agriculture, health care textiles, effluent treatment, drug delivery, tissue engineering, civil concrete structure, etc. However, not many comprehensive reviews are available on this class of novel polymers. A review covering all the viable applications of SAP will be highly useful for researchers, industry persons, and medical, healthcare, and agricultural purposes. Hence, an attempt has been made to review SAPs with reference to their classifications, synthesis, modification by crosslinking, and physicochemical characterization such as morphology, swellability, thermal and mechanical properties, lifetime prediction, thermodynamics of swelling, absorption, release and transport kinetics, quantification of hydrophilic groups, etc. Besides, the possible methods of fine-tuning their structures for improving their absorption capacity, fast absorption kinetics, mechanical strength, controlled release features, etc. were also addressed to widen their uses. This review has also highlighted the biodegradability, commercial viability and market potential of SAPs, SAP composites, the feasibility of using biomass as raw materials for SAP production, etc. The challenges and future prospects of SAP, their safety, and environmental issues are also discussed.
Collapse
Affiliation(s)
- Dhanapal Venkatachalam
- Department of Chemistry , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| | - Subramanian Kaliappa
- Biopolymer and Biomaterial Synthesis and Analytical Testing Lab, Department of Biotechnology , Bannari Amman Institute of Technology , Sathyamangalam , 638 401 , Erode Dt , Tamil Nadu , India
| |
Collapse
|
35
|
Álvarez-Castillo E, Felix M, Bengoechea C, Guerrero A. Proteins from Agri-Food Industrial Biowastes or Co-Products and Their Applications as Green Materials. Foods 2021; 10:981. [PMID: 33947093 PMCID: PMC8145534 DOI: 10.3390/foods10050981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
A great amount of biowastes, comprising byproducts and biomass wastes, is originated yearly from the agri-food industry. These biowastes are commonly rich in proteins and polysaccharides and are mainly discarded or used for animal feeding. As regulations aim to shift from a fossil-based to a bio-based circular economy model, biowastes are also being employed for producing bio-based materials. This may involve their use in high-value applications and therefore a remarkable revalorization of those resources. The present review summarizes the main sources of protein from biowastes and co-products of the agri-food industry (i.e., wheat gluten, potato, zein, soy, rapeseed, sunflower, protein, casein, whey, blood, gelatin, collagen, keratin, and algae protein concentrates), assessing the bioplastic application (i.e., food packaging and coating, controlled release of active agents, absorbent and superabsorbent materials, agriculture, and scaffolds) for which they have been more extensively produced. The most common wet and dry processes to produce protein-based materials are also described (i.e., compression molding, injection molding, extrusion, 3D-printing, casting, and electrospinning), as well as the main characterization techniques (i.e., mechanical and rheological properties, tensile strength tests, rheological tests, thermal characterization, and optical properties). In this sense, the strategy of producing materials from biowastes to be used in agricultural applications, which converge with the zero-waste approach, seems to be remarkably attractive from a sustainability prospect (including environmental, economic, and social angles). This approach allows envisioning a reduction of some of the impacts along the product life cycle, contributing to tackling the transition toward a circular economy.
Collapse
Affiliation(s)
| | | | - Carlos Bengoechea
- Departamento de Ingeniería Química, Escuela Politécnica Superior, 41011 Sevilla, Spain; (E.Á.-C.); (M.F.); (A.G.)
| | | |
Collapse
|
36
|
Improving the Hydrophilicity of Flexible Polyurethane Foams with Sodium Acrylate Polymer. MATERIALS 2021; 14:ma14092197. [PMID: 33922943 PMCID: PMC8123336 DOI: 10.3390/ma14092197] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/14/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022]
Abstract
Hydrophilic, flexible polyurethane (FPU) foams made from Hypol prepolymers are capable of retaining large amounts of water and saline solutions. The addition of different catalysts and surfactant agents to Hypol JM 5008 prepolymer was assayed to obtain a foam with good structural stability and elasticity. The combination of three catalysts, stannous octoate and two amine-based ones (Tegoamin 33 and Tegoamin BDE), and the surfactant Niax silicone L-620LV allowed to synthesize a foam with a homogeneous cell size distribution, exhibiting the highest saline absorption capacity (2.4 g/gram of foam) and almost complete shape recovery, with up to a 20% of remaining deformation. Then, superabsorbent sodium acrylate polymer (PNaA) was added to the FPU foam up to 8 pph. The urine absorption capacity of the foam was increased about 24.8% by incorporating 6 pph of PNaA, absorbing 17.46 g of saline solution per foam gram, without any negative impact on the rest of the foam properties. All these properties make the synthesized foams suitable for corporal fluids absorption applications in which elasticity and low-density are required.
Collapse
|
37
|
Impact of Superabsorbent Polymers and Variety on Yield, Quality and Physiological Parameters of the Sugar Beet ( Beta vulgaris prov. Altissima Doell). PLANTS 2021; 10:plants10040757. [PMID: 33924309 PMCID: PMC8070668 DOI: 10.3390/plants10040757] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/30/2021] [Accepted: 04/08/2021] [Indexed: 11/16/2022]
Abstract
In this study, we focus on the mitigation of the negative impact of drought using the application of superabsorbent polymers (SAPs) to seed. One way to monitor drought and quantify its impact on crops in field conditions is the nondestructive measurement of physiological processes of the crops using spectral indexes LAI and PRI during vegetation. Therefore, during 2018 and 2019, the increase in biomass and intensity of photosynthetic activity was monitored, and the effect of the SAPs application on the yield parameters of the sugar beet was evaluated in the trial conditions (control, SAPs) at the end of the vegetation period. Through statistical analysis, the significant impact (α ≤ 0.01) of SAPs application on the values of spectral indexes LAI and PRI as well as root and white sugar yields was found. Although the sugar content difference between SAPs and control conditions was not statistically significant, SAPs had a positive influence on the value of this parameter. It was found through periodic monitoring of spectral indexes during the growing period that the crop in the SAPs condition showed higher values of PRI at the beginning of vegetation, which was caused by the accumulation of moisture in the vicinity of the seed and subsequent faster growth of roots and photosynthetic apparatus. Moreover, the values of LAI were significantly higher (α ≤ 0.01) in the SAPs condition throughout the vegetation period. In the interaction evaluation, we confirmed that in both years the values of LAI were higher in the condition with SAPs compared with the control. In contrast, the PRI values were significantly different across conditions. The interaction of conditions with variety showed that the variety Brian obtained higher values of LAI and PRI in the SAPs condition. The correlation analysis found a positive correlation between spectral indexes LAI:PRI (r = 0.6184**), and between LAI:RY (r = 0.6715**), LAI:WSY (r = 0.5760**), and PRI:RY (r = 0.5038*), which confirms the close relationship between physiological processes in the plant and the size of its yield.
Collapse
|
38
|
Ihlenburg RBJ, Mai T, Thünemann AF, Baerenwald R, Saalwächter K, Koetz J, Taubert A. Sulfobetaine Hydrogels with a Complex Multilength-Scale Hierarchical Structure. J Phys Chem B 2021; 125:3398-3408. [PMID: 33769825 DOI: 10.1021/acs.jpcb.0c10601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogels with a hierarchical structure were prepared from a new highly water-soluble crosslinker N,N,N',N'-tetramethyl-N,N'-bis(2-ethylmethacrylate)-propyl-1,3-diammonium dibromide and from the sulfobetaine monomer 2-(N-3-sulfopropyl-N,N-dimethyl ammonium)ethyl methacrylate. The free radical polymerization of the two compounds is rapid and yields near-transparent hydrogels with sizes up to 5 cm in diameter. Rheology shows a clear correlation between the monomer-to-crosslinker ratio and the storage and loss moduli of the hydrogels. Cryo-scanning electron microscopy, low-field nuclear magnetic resonance (NMR) spectroscopy, and small-angle X-ray scattering show that the gels have a hierarchical structure with features spanning the nanometer to the sub-millimeter scale. The NMR study is challenged by the marked inhomogeneity of the gels and the complex chemical structure of the sulfobetaine monomer. NMR spectroscopy shows how these complications can be addressed via a novel fitting approach that considers the mobility gradient along the side chain of methacrylate-based monomers.
Collapse
Affiliation(s)
- Ramona B J Ihlenburg
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Tobias Mai
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Andreas F Thünemann
- Bundesanstalt für Materialforschung und -prüfung (BAM), Unter den Eichen 87, D-12205 Berlin, Germany
| | - Ruth Baerenwald
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle, Germany
| | - Kay Saalwächter
- Institut für Physik-NMR, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, D-06120 Halle, Germany
| | - Joachim Koetz
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| | - Andreas Taubert
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476 Golm, Germany
| |
Collapse
|
39
|
Smagin A, Panova I, Ilyasov L, Ogawa K, Adachi Y, Yaroslavov A. Water retention in sandy substrates modified by cross‐linked polymeric microgels and their complexes with a linear cationic polymer. J Appl Polym Sci 2021. [DOI: 10.1002/app.50754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Andrey Smagin
- Department of Soil Science M.V. Lomonosov Moscow State University Moscow Russian Federation
| | - Irina Panova
- Department of Chemistry M.V. Lomonosov Moscow State University Moscow Russian Federation
| | - Leonid Ilyasov
- Department of Chemistry M.V. Lomonosov Moscow State University Moscow Russian Federation
| | - Kazuyoshi Ogawa
- Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba Ibaraki Japan
| | - Yasuhisa Adachi
- Faculty of Life and Environmental Sciences University of Tsukuba Tsukuba Ibaraki Japan
| | - Alexander Yaroslavov
- Department of Chemistry M.V. Lomonosov Moscow State University Moscow Russian Federation
| |
Collapse
|
40
|
Alsohaimi I, Hafez IH, Berber MR. Mechanically stable membranes of polyacrylic acid‐grafted chitosan‐functionalized carbon nanotubes with remarkable water storage capacity in sandy soils. J Appl Polym Sci 2021. [DOI: 10.1002/app.49915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ibrahim Alsohaimi
- Chemistry Department College of Science, Jouf University Saudi Arabia
| | - Inas H. Hafez
- Department of Natural Resources and Agricultural Engineering, Faculty of Agriculture Damanhour University Damanhour Egypt
| | - Mohamed R. Berber
- Chemistry Department College of Science, Jouf University Saudi Arabia
- Department of Chemistry, Faculty of Science Tanta University Tanta Egypt
| |
Collapse
|
41
|
Yang HC, Ham YM, Kim JA, Rhee WJ. Single-step equipment-free extracellular vesicle concentration using super absorbent polymer beads. J Extracell Vesicles 2021; 10:e12074. [PMID: 33664938 PMCID: PMC7902527 DOI: 10.1002/jev2.12074] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/21/2022] Open
Abstract
Extracellular vesicles (EVs) contain useful biomarkers for disease diagnosis and are promising biomaterials for the delivery of therapeutic molecules in vivo. Accordingly, an efficient concentration method is necessary for large-scale production or high-throughput isolation of EVs from bulk liquid samples, including culture medium and body fluids, to achieve their clinical application. However, current EV concentration methods, including ultrafiltration, are limited with respect to cost, efficiency, and centrifugation time. In this study, we developed the first single-step, equipment-free EV concentration method using super absorbent polymer (SAP) beads. SAP beads absorb small molecules, including water, via nano-sized channels but expel and thereby concentrate EVs. Consequently, the beads drastically enrich EVs by reducing the solution volume in a single step, without affecting EV characteristics. Moreover, the purity of the concentrated EV solution was high due to the absorption of protein impurities by SAP beads. To further demonstrate the versatility of the method, we showed that SAP beads successfully enrich EVs in human urine samples and culture medium, enabling better isolation performance than conventional ultrafiltration. We believe the newly developed approach and insight gained in this study will facilitate the use of EVs as prominent biomaterials for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Hee Cheol Yang
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Yoo Min Ham
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
| | - Jeong Ah Kim
- Center for Scientific InstrumentationKorea Basic Science InstituteChungbukRepublic of Korea
- Department of Bio‐Analytical ScienceUniversity of Science and TechnologyDaejeonRepublic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano‐BioengineeringIncheon National UniversityIncheonRepublic of Korea
- Division of BioengineeringIncheon National UniversityIncheonRepublic of Korea
| |
Collapse
|
42
|
Lopatkina E, Rebrov A. The use of polymer super absorbent in the adaptation of revitalized grape plants to non-sterile conditions. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20213904002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The article discusses the effect of a cross-linked copolymer of potassium and ammonium salts of acrylic acid “Aquasin” on in vitro revitalized grape plants when adapting to non-sterile conditions and growing completion before planting in open ground. The research was carried out on the basis of VNIIViV named after Ya.I. Potapenko on the indigenous Don variety Krasnostop Zolotovsky and the indigenous Crimean variety Kandavasta. The aim of the study was to study the usage effectiveness of super absorbents (hydrogels) for the post vitro stage. As a result, the positive effect of adding the water-retaining agent Aquasin to the substrate on the growth and development of plants was noted. This was especially reflected in such indicators as ripening and the shoots’ diameter. In addition, the possibility of preliminary saturation of the super absorbent with immunostimulants or fertilizers is of interest.
Collapse
|
43
|
Dispat N, Poompradub S, Kiatkamjornwong S. Synthesis of ZnO/SiO 2-modified starch-graft-polyacrylate superabsorbent polymer for agricultural application. Carbohydr Polym 2020; 249:116862. [PMID: 32933689 DOI: 10.1016/j.carbpol.2020.116862] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 11/17/2022]
Abstract
A bio-based superabsorbent polymer (SAP) for agricultural application was synthesized from modified starch (MS) to enhance its antibacterial property and biodegradability. The starch was modified by zinc oxide and tetraethyl orthosilicate via a sol-gel reaction under an acidic condition. Structural and morphological examinations were used to confirm the modification. The MS showed a good antibacterial activity against Staphylococcus aureus and Escherichia coli with 61.9 % and 99.9 % reduction in viable cells, respectively, after a 1 h exposure. The MS was then graft copolymerized with potassium acrylate monomer to synthesize a new MS-g-polyacrylate (PA) SAP. The grafting reaction was confirmed and the main factors for agricultural applications along with its biodegradation and antibacterial properties were achieved. The MS-g-PA SAP exhibited an excellent reusability and biodegradation. Importantly, the MS-g-PA SAP did not impose growth inhibition of mung bean (Vigna radiata), but provided some transient drought relief.
Collapse
Affiliation(s)
- Nonpan Dispat
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sirilux Poompradub
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand; Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand; Green Materials for Industrial Application Research Unit, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| | - Suda Kiatkamjornwong
- Office of Research Affairs, Chulalongkorn University, Bangkok 10330, Thailand; FRS (T), The Royal Society of Thailand, Sanam Suepa, Dusit, Bangkok 10300, Thailand
| |
Collapse
|
44
|
Application of Super Absorbent Polymer and Plant Mucilage Improved Essential Oil Quantity and Quality of Ocimum basilicum var. Keshkeni Luvelou. Molecules 2020; 25:molecules25112503. [PMID: 32481510 PMCID: PMC7321180 DOI: 10.3390/molecules25112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/11/2020] [Accepted: 05/23/2020] [Indexed: 11/16/2022] Open
Abstract
One of the major factors limiting the production of medicinal plants in arid and semi-arid areas is water deficit or drought stress. One-third of the land in the world is arid and semi-arid and is inhabited by nearly 4 × 108 people. Ocimum basilicum (sweet basil) is a valuable medicinal plant that is sensitive to water deficit, and water shortage negatively affects sweet basil yield and quality. Water availability in the root zone of basil could ameliorate the negative effects of water shortage. To the best of our knowledge, although the effects of hydrophilic polymers (HPs) have been studied in different agricultural crops, the effects of HP application in medicinal plants have not been previously investigated. This investigation was conducted to explore the effects on water use efficiency when using Stockosorb® (STS) and psyllium seed mucilage (PSM) as hydrophilic polymers (HPs) and the effects of these HPs on essential oil quality, quantity, and yield. The research was set up in a factorial experiment on the basis of completely randomized block design with three replications. We used two HPs, STS (industrial) and PSM (herbal), with two methods of application (mixed with soil, mixed with soil + root) at four concentrations (0%, 0.1%, 0.2%, and 0.3% (w/w)). Results showed that the STS and PSM significantly increased the dry herb yield (both shoot and root) in comparison to the control, and the improving effect was higher when these HPs were mixed with soil + root. The highest dry herb yield (6.74 and 3.68 g/plant for shoot and root, respectively) was detected in the PSM at 0.1% mixed with soil + root. There was not any significant difference in dry herb yield among PSM (0.1%), PSM (0.2%), and STS (0.2%) when mixed with soil + root. Soil application of PSM and soil + root application of STS at a concentration of 0.3% increased the Essential Oil (EO) content almost three-fold in comparison to the control (0.5% and 0.52% to 0.18% v/w, respectively). The maximum essential oil yield was recorded in plants treated with STS (0.2% in) or PSM (0.1%) by soil + root application (0.21 and 0.19 mL/plant, respectively). PSM at concentrations of 0.1% and 0.2% (mixed with soil + root) showed the highest water use efficiency (1.91 and 1.82 g dry weight (DW)/L H2O, respectively). STS mixed with soil also significantly improved water use efficiency (WUE) in comparison to the control. The application of these HPs improved the quality of sweet basil essential oil by increasing the linalool and decreasing the eugenol, epi-α-cadinol, and trans-α-bergamotene content.
Collapse
|
45
|
Kausar A. Nanocarbon in Polymeric Nanocomposite Hydrogel—Design and Multi-Functional Tendencies. POLYM-PLAST TECH MAT 2020. [DOI: 10.1080/25740881.2020.1757106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ayesha Kausar
- Nanosciences Division, National Center for Physics, Quaid-i-Azam University Campus, Islamabad, Pakistan
| |
Collapse
|