1
|
Ma J, Huang R, Zhang H, Liu D, Dong X, Xiong Y, Xiong X, Lan D, Fu W, He H, Li J, Yin S. The Protective Effect of Quercetin against the Cytotoxicity Induced by Fumonisin B1 in Sertoli Cells. Int J Mol Sci 2024; 25:8764. [PMID: 39201451 PMCID: PMC11355056 DOI: 10.3390/ijms25168764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/05/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024] Open
Abstract
Fumonisin B1 (FB1), a mycotoxin produced by Fusarium species, is prevalent in crops and animal feed, posing significant health risks to livestock and humans. FB1 induces oxidative stress in Sertoli cells, destroys testicular structure, and affects spermatogenesis. However, methods to mitigate the reproductive toxicity of FB1 in testes remain unknown. Quercetin, a natural flavonoid antioxidant, may offer protective benefits. This study investigated the protective effects and mechanisms of quercetin against FB1-induced reproductive toxicity in TM4 cells (a Sertoli cell line). The results indicated that 40 μM quercetin improved cell viability, reduced apoptosis, and preserved cell functions. Quercetin also decreased reactive oxygen species (ROS) levels in TM4 cells exposed to FB1, enhanced the expression of antioxidant genes, and improved mitochondrial membrane potential. Compared with FB1 alone, the combination of quercetin and FB1 increased ATP levels, as well as pyruvate and lactic acid, the key glycolysis products. Furthermore, this combination elevated the mRNA and protein expression of glycolysis-related genes, including glucose-6-phosphate isomerase 1 (Gpi1), hexokinase 2 (Hk2), aldolase (Aldoa), pyruvate kinase, muscle (Pkm), lactate dehydrogenase A (Ldha) and phosphofructokinase, liver, B-type (Pfkl). Quercetin also boosted the activity of PKM and LDHA, two crucial glycolytic enzymes. In summary, quercetin mitigates FB1-induced toxicity in TM4 cells by reducing ROS levels and enhancing glycolysis. This study offers new insights into preventing and treating FB1-induced toxic damage to the male reproductive system and highlights the potential application of quercetin.
Collapse
Affiliation(s)
- Jun Ma
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Ruixue Huang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Huai Zhang
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Dongju Liu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xiaodong Dong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Yan Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Xianrong Xiong
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Daoliang Lan
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Wei Fu
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Honghong He
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Jian Li
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| | - Shi Yin
- Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Southwest Minzu University, Chengdu 610041, China; (J.M.); (R.H.); (H.Z.); (D.L.); (X.D.); (Y.X.); (X.X.); (D.L.); (W.F.); (H.H.); (J.L.)
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education, Southwest Minzu University, Chengdu 610041, China
- College of Animal & Veterinary Sciences, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|
2
|
Ali O, Szabó A. Fumonisin distorts the cellular membrane lipid profile: A mechanistic insight. Toxicology 2024; 506:153860. [PMID: 38871209 DOI: 10.1016/j.tox.2024.153860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Monitoring modifications in membrane lipids in association with external stimuli/agents, including fumonisins (FUMs), is a widely employed approach to assess cellular metabolic response/status. FUMs are prevalent fusariotoxins worldwide that have diverse structures with varying toxicity across species; nevertheless, they can induce metabolic disturbances and disease, including cancer. The capacity of FUMs to disrupt membrane lipids, demonstrated across numerous species and organs/tissues, is ascribed to a multitude of factors/events, which range from direct to indirect effects. Certain events are well established, whereas the potential consequences of others remain speculative. The most notable effect is their resemblance to sphingoid bases, which impacts the synthesis of ceramides leading to numerous changes in lipids' composition that are not limited to sphingolipids' composition of the membranes. The next plausible scenario involves the induction of oxidative stress, which is considered an indirect/secondary effect of FUMs. Additional modes of action include modifications of enzyme activities and nuclear signals related to lipid metabolism, although these are likely not yet fully comprehended. This review provides in-depth insight into the current state of these events and their potential mechanistic actions in modifying membrane lipids, with a focus on long-chain fatty acids. This paper also presents a detailed description of the reported modifications to membrane lipids by FUMs.
Collapse
Affiliation(s)
- Omeralfaroug Ali
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary.
| | - András Szabó
- Agribiotechnology and Precision Breeding for Food Security National Laboratory, Institute of Physiology and Animal Nutrition, Department of Animal Physiology and Health, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary; HUN-REN-MATE Mycotoxins in the Food Chain Research Group, Hungarian University of Agriculture and Life Sciences, Guba Sándor Str. 40, Kaposvár 7400, Hungary
| |
Collapse
|
3
|
Das S, Chaudhari AK. Encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer for protection of stored rice against Fusarium verticillioides and fumonisins contamination. Heliyon 2024; 10:e29954. [PMID: 38694117 PMCID: PMC11061702 DOI: 10.1016/j.heliyon.2024.e29954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/10/2024] [Accepted: 04/17/2024] [Indexed: 05/03/2024] Open
Abstract
The present investigation entails the encapsulation of Apium graveolens essential oil into chitosan nanobiopolymer (AGEO-Ne) and assessment of its efficacy against Fusarium verticillioides contamination and fumonisins biosynthesis in stored rice (Oryza sativa L.) samples. The AGEO was encapsulated through ionic gelation process and characterized by scanning electron microscopy (SEM), Dynamic light scattering (DLS), X-ray diffractometry (XRD), and Fourier transform infrared spectroscopy (FTIR) analyses. The AGEO exhibited bi-phasic delivery pattern from chitosan matrix. The AGEO caused complete inhibition of F. verticillioides growth at 1.2 μL/mL, while fumonisin B1 (FB1) and B2 (FB2) biosynthesis at 1.2 and 1.0 μL/mL, respectively. On the other hand, nanoencapsulated AGEO (AGEO-Ne) exhibited improved efficacy, caused complete inhibition of fungal growth at 0.8 μL/mL, and FB1 and FB2 production at 0.8 and 0.6 μL/mL, respectively. AGEO-Ne caused 100 % inhibition of ergosterol synthesis at 0.8 μL/mL and exhibited greater efflux of Ca2+, Mg2+, K+ ions (18.99, 21.63, and 25.38 mg/L) as well as 260 and 280 nm absorbing materials from exposed fungal cells. The in silico interaction of granyl acetate and linalyl acetate with FUM 21 protein validated the molecular mechanism for inhibition of FB1 and FB2 biosynthesis. Further, improvement in antioxidant activity of AGEO-Ne was observed after encapsulation with IC50 values of 12.08 and 6.40 μL/mL against DPPH and ABTS radicals, respectively. During in situ investigation, AGEO caused 82.09 and 86.32 % protection of rice against F. verticillioides contamination in inoculated and uninoculated rice samples, respectively, while AGEO-Ne exhibited 100 % protection of fumigated rice samples against F. verticillioides proliferation as well as FB1 and FB2 contamination. The AGEO-Ne also caused better retardation of lipid peroxidation (41.35 and 37.52 μM/g FW malondialdehyde in inoculated and uninoculated treatment) and acceptable organoleptic properties in rice samples, which strengthen its application as plant based novel preservative in food and agricultural industries.
Collapse
Affiliation(s)
- Somenath Das
- Department of Botany, Burdwan Raj College, Purba Bardhaman, 713104, West Bengal, India
| | - Anand Kumar Chaudhari
- Department of Botany, Rajkiya Mahila Snatkottar Mahavidyalaya, Ghazipur, Uttar Pradesh, 233001, India
| |
Collapse
|
4
|
Guerre P, Matard-Mann M, Nyvall Collén P. Targeted sphingolipid analysis in chickens suggests different mechanisms of fumonisin toxicity in kidney, lung, and brain. Food Chem Toxicol 2022; 170:113467. [DOI: 10.1016/j.fct.2022.113467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/16/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
5
|
Guerre P, Gilleron C, Matard-Mann M, Nyvall Collén P. Targeted Sphingolipid Analysis in Heart, Gizzard, and Breast Muscle in Chickens Reveals Possible New Target Organs of Fumonisins. Toxins (Basel) 2022; 14:toxins14120828. [PMID: 36548725 PMCID: PMC9783176 DOI: 10.3390/toxins14120828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/25/2022] Open
Abstract
Alteration of sphingolipid synthesis is a key event in fumonisins toxicity, but only limited data have been reported regarding the effects of fumonisins on the sphingolipidome. Recent studies in chickens found that the changes in sphingolipids in liver, kidney, lung, and brain differed greatly. This study aimed to determine the effects of fumonisins on sphingolipids in heart, gizzard, and breast muscle in chickens fed 20.8 mg FB1 + FB2/kg for 9 days. A significant increase in the sphinganine:sphingosine ratio due to an increase in sphinganine was observed in heart and gizzard. Dihydroceramides and ceramides increased in the hearts of chickens fed fumonisins, but decreased in the gizzard. The dihydrosphingomyelin, sphingomyelin, and glycosylceramide concentrations paralleled those of ceramides, although the effects were less pronounced. In the heart, sphingolipids with fatty acid chain lengths of 20 to 26 carbons were more affected than those with 14-16 carbons; this difference was not observed in the gizzard. Partial least squares-discriminant analysis on sphingolipids in the heart allowed chickens to be divided into two distinct groups according to their diet. The same was the case for the gizzard. Pearson coefficients of correlation among all the sphingolipids assayed revealed strong positive correlations in the hearts of chickens fed fumonisins compared to chickens fed a control diet, as well as compared to gizzard, irrespective of the diet fed. By contrast, no effect of fumonisins was observed on sphingolipids in breast muscle.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
- Correspondence:
| | | | | | | |
Collapse
|
6
|
Bryła M, Pierzgalski A, Zapaśnik A, Uwineza PA, Ksieniewicz-Woźniak E, Modrzewska M, Waśkiewicz A. Recent Research on Fusarium Mycotoxins in Maize-A Review. Foods 2022; 11:3465. [PMID: 36360078 PMCID: PMC9659149 DOI: 10.3390/foods11213465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
Maize (Zea mays L.) is one of the most susceptible crops to pathogenic fungal infections, and in particular to the Fusarium species. Secondary metabolites of Fusarium spp.-mycotoxins are not only phytotoxic, but also harmful to humans and animals. They can cause acute or chronic diseases with various toxic effects. The European Union member states apply standards and legal regulations on the permissible levels of mycotoxins in food and feed. This review summarises the most recent knowledge on the occurrence of toxic secondary metabolites of Fusarium in maize, taking into account modified forms of mycotoxins, the progress in research related to the health effects of consuming food or feed contaminated with mycotoxins, and also the development of biological methods for limiting and/or eliminating the presence of the same in the food chain and in compound feed.
Collapse
Affiliation(s)
- Marcin Bryła
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Adam Pierzgalski
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Zapaśnik
- Department of Microbiology, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Pascaline Aimee Uwineza
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| | - Edyta Ksieniewicz-Woźniak
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Marta Modrzewska
- Department of Food Safety and Chemical Analysis, Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, 02-532 Warsaw, Poland
| | - Agnieszka Waśkiewicz
- Department of Chemistry, Poznań University of Life Sciences, Wojska Polskiego 75, 60-625 Poznań, Poland
| |
Collapse
|
7
|
Yang D, Ye Y, Sun J, Wang JS, Huang C, Sun X. Occurrence, transformation, and toxicity of fumonisins and their covert products during food processing. Crit Rev Food Sci Nutr 2022; 64:3660-3673. [PMID: 36239314 DOI: 10.1080/10408398.2022.2134290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Fumonisins comprise structurally related metabolites mainly produced by Fusarium verticillioides and Fusarium proliferatum. Contamination with fumonisins causes incalculable damage to the economy and poses a great risk to animal and human health. Fumonisins and their covert products are found in cereals and cereal products. Food processing significantly affects the degradation of toxins and the formation of covert toxins. However, studies on fumonisins and their covert mycotoxins remain inadequate. This review aims to summarize changes in fumonisins and the generation of covert fumonisins during processing. It also investigates the toxicity and determination methods of fumonisins and covert fumonisins, and elucidates the factors affecting fumonisins and their covert forms during processing. In addition to the metabolic production by plants and fungi, covert fumonisins are mainly produced by covalent or noncovalent binding, complexation, or physical entrapment of fumonisins with other substances. The toxicity of covert fumonisins is similar to that of free fumonisins and is a non-negligible hazard. Covert fumonisins are commonly found in food matrices, and methods to analyze them have yet to be improved. Food processing significantly affects the conversion of fumonisins to their covert toxins.
Collapse
Affiliation(s)
- Diaodiao Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongli Ye
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jiadi Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, Georgia, USA
| | - Caihong Huang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| | - Xiulan Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
8
|
Hua Y, Ahmadi Y, Sonne C, Kim KH. Progress and challenges in sensing of mycotoxins using molecularly imprinted polymers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119218. [PMID: 35364185 DOI: 10.1016/j.envpol.2022.119218] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/27/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Mycotoxin is toxic secondary metabolite formed by certain filamentous fungi. This toxic compound can enter the food chain through contamination of food (e.g., by colonization of toxigenic fungi on food). In light of the growing concerns on the health hazards posed by mycotoxins, it is desirable to develop reliable analytical tools for their detection in food products in both sensitive and efficient manner. For this purpose, the potential utility of molecularly imprinted polymers (MIPs) has been explored due to their meritful properties (e.g., large number of tailor-made binding sites, sensitive template molecules, high recognition specificity, and structure predictability). This review addresses the recent advances in the application of MIPs toward the sensing of various mycotoxins (e.g., aflatoxins and patulin) along with their fabrication strategies. Then, performance evaluation is made for various types of MIP- and non-MIP-based sensing platforms built for the listed target mycotoxins in terms of quality assurance such as limit of detection (LOD). Further, the present challenges in the MIP-based sensing application of mycotoxins are discussed along with the future outlook in this research field.
Collapse
Affiliation(s)
- Yongbiao Hua
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Christian Sonne
- Department of Ecoscience, Aarhus University, Frederiksborgvej 399, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
9
|
Guerre P, Travel A, Tardieu D. Targeted Analysis of Sphingolipids in Turkeys Fed Fusariotoxins: First Evidence of Key Changes That Could Help Explain Their Relative Resistance to Fumonisin Toxicity. Int J Mol Sci 2022; 23:2512. [PMID: 35269655 PMCID: PMC8910753 DOI: 10.3390/ijms23052512] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of fumonisins on sphingolipids in turkeys are unknown, except for the increased sphinganine to sphingosine ratio (Sa:So) used as a biomarker. Fumonisins fed at 20.2 mg/kg for 14 days were responsible for a 4.4 fold increase in the Sa:So ratio and a decrease of 33% and 36% in C14-C16 ceramides and C14-C16 sphingomyelins, respectively, whereas C18-C26 ceramides and C18-C26 sphingomyelins remained unaffected or were increased. Glucosyl- and lactosyl-ceramides paralleled the concentrations of ceramides. Fumonisins also increased dihydroceramides but had no effect on deoxysphinganine. A partial least squfares discriminant analysis revealed that all changes in sphingolipids were important in explaining the effect of fumonisins. Because deoxynivalenol and zearalenone are often found in feed, their effects on sphingolipids alone and in combination with fumonisins were investigated. Feeding 5.12 mg deoxynivalenol/kg reduced dihydroceramides in the liver. Zearalenone fed at 0.47 mg/kg had no effect on sphingolipids. When fusariotoxins were fed simultaneously, the effects on sphingolipids were similar to those observed in turkeys fed fumonisins alone. The concentration of fumonisin B1 in the liver of turkeys fed fumonisins was 0.06 µmol/kg. Changes in sphingolipid concentrations differed but were consistent with the IC50 of fumonisin B1 measured in mammals; these changes could explain the relative resistance of turkeys to fumonisins.
Collapse
Affiliation(s)
- Philippe Guerre
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| | | | - Didier Tardieu
- National Veterinary School of Toulouse, ENVT, Université de Toulouse, F-31076 Toulouse, France
| |
Collapse
|
10
|
Detecting fumonisin B1 in black beans (Phaseolus vulgaris L.) by near-infrared spectroscopy (NIRS). Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108335] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|