1
|
Dos Santos DM, Rubira RJG, Salzedas GP, Kobal MB, Moreira LG, Toledo KA, Aoki PHB, DeWolf C, Camacho SA. Elucidating the toxicity of methyl parathion, imazapic, isoxaflutole, and chlorantraniliprole on human hepatocarcinoma cells and bioinspired membranes. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137712. [PMID: 40020292 DOI: 10.1016/j.jhazmat.2025.137712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/22/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
Pesticides have boosted agricultural productivity but pose significant risks to environmental and human health. The intensification of agriculture has driven widespread pesticide use, with 66 % of global consumption allocated to sugarcane, soybean and corn. Sugarcane, a major monoculture in Brazil, India, and China, has driven a 700 % increase in pesticide use in Brazil over the past 40 years. Commonly used pesticides in Brazilian sugarcane farming include methyl parathion (PM), imazapic (IM), isoxaflutole (IS), and chlorantraniliprole (CL). Despite regulatory efforts by governmental agencies worldwide, the long-term toxicity of these substances on human health remains insufficiently studied. This study evaluates the cytotoxicity of PM, IM, IS, and CL at concentrations regulated by governmental agencies in human hepatocarcinoma (HepG2) cells. Given the liver's role in metabolizing xenobiotics, it is especially vulnerable to pesticide-toxicity. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) and LDH (lactate dehydrogenase release) assays, alongside confocal microscopy, showed reduced cell viability and impaired membrane integrity, with progressive toxicity (from 24 to 96 h), primarily impacting mitochondrial activity. Surface pressure-area (π-A) isotherms, compressibility (CS⁻¹), and atomic force microscopy (AFM) revealed distinct pesticide incorporation mechanisms into Langmuir monolayers of HepG2 lipid extracts, used as membrane models. The findings underscore the hepatotoxicity of PM, IM, IS, and CL, even at concentrations regulated by governmental agencies, emphasizing their potential human health hazards.
Collapse
Affiliation(s)
- Daniela Mayra Dos Santos
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Rafael J G Rubira
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP 19060-900, Brazil; São Paulo State University (UNESP), Institute of Geosciences and Exact Sciences, Rio Claro, SP 13506-900, Brazil
| | - Gabriela P Salzedas
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Mirella B Kobal
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Lucas G Moreira
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Karina A Toledo
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | - Pedro H B Aoki
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil
| | | | - Sabrina A Camacho
- São Paulo State University (UNESP), School of Sciences, Humanities and Languages, Assis, SP 19806-900, Brazil.
| |
Collapse
|
2
|
Li Y, Li X, Wu Q, Puig M, Moulin F, Choudhuri S, Gingrich J, Guo L, Chen S. 7-Hydroxycannabidiol and 7-carboxycannabidiol induced cytotoxicity via apoptosis and endoplasmic reticulum stress in human hepatic cells. Arch Toxicol 2025:10.1007/s00204-025-04001-7. [PMID: 40029368 DOI: 10.1007/s00204-025-04001-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Cannabidiol (CBD), a major component of extract from the plant Cannabis sativa L., has demonstrated efficacy in treating childhood-onset epilepsy; however, animal studies and clinical trials have reported elevated liver enzymes after CBD use, suggesting potential liver toxicity. In a previous study, we demonstrated that CBD caused cytotoxicity with apoptosis and endoplasmic reticulum (ER) stress in human hepatic cells. In the present study, we investigated the toxicity profile of the two main metabolites of CBD, 7-hydroxy-CBD and 7-carboxy-CBD, in primary human hepatocytes and HepG2 cells. Our findings indicated that both metabolites induced cellular damage similar to the parent drug in these cells. 7-Hydroxy-CBD and 7-carboxy-CBD also caused cell cycle disturbances, apoptosis, and ER stress in HepG2 cells. Additionally, we explored the role of cytochrome P450 (CYP) in the metabolism of 7-hydroxy-CBD and 7-carboxy-CBD using HepG2 cell lines expressing 14 individual CYPs. We determined that 7-hydroxy-CBD is metabolized by CYP2D6, and CYP2D6-mediated metabolism attenuated the cytotoxicity, apoptosis, and ER stress induced by 7-hydroxy-CBD. The CYPs did not metabolize 7-carboxy-CBD. In summary, our findings highlight the mechanisms underlying cytotoxicity induced by 7-hydroxy-CBD and 7-carboxy-CBD in hepatic cells.
Collapse
Affiliation(s)
- Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, NCTR, U.S. FDA, Jefferson, AR, 72079, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, 20993, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, MD, 20993, USA
| | - Supratim Choudhuri
- Division of Food Ingredients, Office of Pre-Market and Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U.S. FDA, College Park, MD, 20740, USA
| | - Jeremy Gingrich
- Division of Food Ingredients, Office of Pre-Market and Additive Safety, Office of Food Chemical Safety, Dietary Supplements, and Innovation, Human Foods Program, U.S. FDA, College Park, MD, 20740, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research (NCTR), U.S. Food and Drug Administration (FDA), 3900 NCTR Road, Jefferson, AR, 72079, USA.
| |
Collapse
|
3
|
Ahrens JJ, Denison M, Garcia S, Gupta S, Kocarek TA, Sevrioukova IF, Turro C, Kodanko JJ. Mixed Ru(II)-Ir(III) Complexes as Photoactive Inhibitors of the Major Human Drug Metabolizing Enzyme CYP3A4. Inorg Chem 2024; 63:18509-18518. [PMID: 39283981 PMCID: PMC11458343 DOI: 10.1021/acs.inorgchem.4c02633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Cytochrome P450 3A4 (CYP3A4) is a crucial enzyme in human drug metabolism. To garner photochemical control over the inhibition of CYP3A4, a potent Ir(III)-based inhibitor of CYP3A4 was complexed with two Ru(II)-based photocaging groups. Chemical, photochemical, and biological properties of the photocaged inhibitors were characterized. Importantly, mixed Ru(II)-Ir(III) complexes strongly absorb green light, which facilitates the photochemical release of the Ir(III) inhibitor from the Ru(II) caging fragment [Ru(tpy)(Me2bpy)]2+, where tpy = 2,2':6',2″-terpyridine and Me2bpy = 6,6'-dimethyl-2,2'-bipyridine. Emission turn on, type II heme binding, and more potent inhibition under light vs dark conditions were observed. The study also demonstrated that a Ru(II)-Ir(III) conjugate can be photoactivated to exert cytotoxic effects on MCF-7 breast cancer cells upon green light exposure. Additionally, a synthesized analogue with one [Ru(TPA)]2+ fragment (TPA = tris(pyridin-2-ylmethyl)amine) and two Ir(III) centers, although resistant to photochemical release, showed strong inhibition of CYP3A4 both in purified form and in CYP3A4-overexpressing HepG2 cells, with nanomolar potency. These mixed Ru(II)-Ir(III) compounds can permeate cell membranes and inhibit CYP3A4, presenting a new class of bioactive compounds.
Collapse
Affiliation(s)
- Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Santana Garcia
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Sayak Gupta
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Wayne State University, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
4
|
de Souza Carolino A, Freitas XMS, Macalia CMA, Soares JC, Soares AC, da Costa Pinto C, Barbosa ARC, de Araújo Bezerra J, Campelo PH, da Silva Paula MM, Lalwani PJ, Inada NM, Țãlu Ș, Malheiro A, Sanches EA. Virus adsorbent systems based on Amazon holocellulose and nanomaterials. Microsc Res Tech 2024; 87:1933-1954. [PMID: 38563156 DOI: 10.1002/jemt.24566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 03/07/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
The environment preservation has been an important motivation to find alternative, functional, and biodegradable materials to replace polluting petrochemicals. The production of nonbiodegradable face masks increased the concentration of microplastics in the environment, highlighting the need for sustainable alternatives, such as the use of local by-products to create efficient and eco-friendly filtering materials. Furthermore, the use of smart materials can reduce the risk of contagion and virus transmission, especially in the face of possible mutations. The development of novel materials is necessary to ensure less risk of contagion and virus transmission, as well as to preserve the environment. Taking these factors into account, 16 systems were developed with different combinations of precursor materials (holocellulose, polyaniline [ES-PANI], graphene oxide [GO], silver nanoparticles [AgNPs], and activated carbon [AC]). Adsorption tests of the spike protein showed that the systems containing GO and AC were the most efficient in the adsorption process. Similarly, plate tests conducted using the VSV-IN strain cultured in HepG2 cells showed that the system containing all phases showed the greatest reduction in viral titer method. In agreement, the biocompatibility tests showed that the compounds extracted from the systems showed low cytotoxicity or no significant cytotoxic effect in human fibroblasts. As a result, the adsorption tests of the spike protein, viral titration, and biocompatibility tests showed that systems labeled as I and J were the most efficient. In this context, the present research has significantly contributed to the technological development of antiviral systems, with improved properties and increased adsorption efficiency, reducing the viral titer and contributing efficiently to public health. In this way, these alternative materials could be employed in sensors and devices for filtering and sanitization, thus assisting in mitigating the transmission of viruses and bacteria. RESEARCH HIGHLIGHTS: Sixteen virus adsorbent systems were developed with different combinations of precursor materials (holocellulose, polyaniline (ES-PANI), graphene oxide (GO), silver nanoparticles (AgNPs), and activated carbon (AC)). The system that included all of the nanocomposites holocellulose, PANI, GO, AgNPs, and AC showed the greatest reduction in viral titration. The biocompatibility tests revealed that all systems caused only mild or moderate cytotoxicity toward human fibroblasts.
Collapse
Affiliation(s)
- Adriano de Souza Carolino
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | | | | | - Juliana Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Andrey Coatrini Soares
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Camila da Costa Pinto
- Graduate Program in Physics (PPGFIS), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Aguyda Rayany Cavalcante Barbosa
- Laboratory of Infectious Diseases and Immunology, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane (FIOCRUZ-ILMD), Manaus, AM, Brazil
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Jaqueline de Araújo Bezerra
- Analytical Center, Federal Institute of Education, Science and Technology of Amazonas (IFAM), Manaus, AM, Brazil
| | | | | | - Pritesh Jaychand Lalwani
- Laboratory of Infectious Diseases and Immunology, Fundação Oswaldo Cruz - Instituto Leônidas e Maria Deane (FIOCRUZ-ILMD), Manaus, AM, Brazil
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| | - Natalia Mayumi Inada
- São Carlos Institute of Physics (IFSC), University of São Paulo (USP), São Carlos, SP, Brazil
| | - Ștefan Țãlu
- The Directorate of Research, Development and Innovation Management (DMCDI), Technical University of Cluj-Napoca, Cluj-Napoca, Romania
| | - Adriana Malheiro
- Graduate Program in Basic and Applied Immunology (PPGIBA), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
- Laboratory of Genomics (LABGEN), Hospital Foundation of Hematology and Hemotherapy of Amazonas (HEMOAM), Manaus, AM, Brazil
| | - Edgar Aparecido Sanches
- Laboratory of Nanostructured Polymers (NANOPOL), Federal University of Amazonas (UFAM), Manaus, AM, Brazil
| |
Collapse
|
5
|
Chen S, Li Y, Li X, Wu Q, Puig M, Moulin F, Gingrich J, Guo L. Metabolism and liver toxicity of cannabidiol. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:238-254. [PMID: 38904421 PMCID: PMC11404724 DOI: 10.1080/26896583.2024.2366741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Increasing public interest has resulted in the widespread use of non-pharmaceutical cannabidiol (CBD) products. The sales of CBD products continue to rise, accompanied by concerns regarding unsubstantiated benefits, lack of product quality control, and potential health risks. Both animal and human studies have revealed a spectrum of toxicological effects linked to the use of CBD. Adverse effects related to exposure of humans to CBD include changes in appetite, gastrointestinal discomfort, fatigue, and elevated liver aminotransferase enzymes. Animal studies reported changes in organ weight, reproduction, liver function, and the immune system. This review centers on human-derived data, including clinical studies and in vitro investigations. Animal studies are also included when human data is not available. The objective is to offer an overview of CBD-related hepatotoxicity, metabolism, and potential CBD-drug interactions, thereby providing insights into the current understanding of CBD's impact on human health. It's important to note that this review does not serve as a risk assessment but seeks to summarize available information to contribute to the broader understanding of potential toxicological effects of CBD on the liver.
Collapse
Affiliation(s)
- Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. FDA, Jefferson, Arkansas, USA
| | - Qiangen Wu
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| | - Montserrat Puig
- Division of Biotechnology Review and Research III, Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Frederic Moulin
- Division of Hepatology and Nutrition, Office of New Drugs, Center for Drug Evaluation and Research, U.S. FDA, Silver Spring, Maryland, USA
| | - Jeremy Gingrich
- Office of Food Additive Safety, Center for Food Safety and Applied Nutrition, U.S. FDA, College Park, Maryland, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration (FDA), Jefferson, Arkansas, USA
| |
Collapse
|
6
|
Guo X, Xu H, Seo JE. Application of HepaRG cells for genotoxicity assessment: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2024; 42:214-237. [PMID: 38566478 DOI: 10.1080/26896583.2024.2331956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.
Collapse
Affiliation(s)
- Xiaoqing Guo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Hannah Xu
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| | - Ji-Eun Seo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, Jefferson, AR, USA
| |
Collapse
|
7
|
Wang E, Andrade MJ, Smith Q. Vascularized liver-on-a-chip model to investigate nicotine-induced dysfunction. BIOMICROFLUIDICS 2023; 17:064108. [PMID: 38155919 PMCID: PMC10754629 DOI: 10.1063/5.0172677] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023]
Abstract
The development of physiologically relevant in vitro systems for simulating disease onset and progression and predicting drug metabolism holds tremendous value in reducing drug discovery time and cost. However, many of these platforms lack accuracy in replicating the tissue architecture and multicellular interactions. By leveraging three-dimensional cell culture, biomimetic soft hydrogels, and engineered stimuli, in vitro models have continued to progress. Nonetheless, the incorporation of the microvasculature has been met with many challenges, specifically with the addition of parenchymal cell types. Here, a systematic approach to investigating the initial seeding density of endothelial cells and its effects on interconnected networks was taken and combined with hepatic spheroids to form a liver-on-a-chip model. Leveraging this system, nicotine's effects on microvasculature and hepatic function were investigated. The findings indicated that nicotine led to interrupted adherens junctions, decreased guanosine triphosphate cyclohydrolase 1 expression, impaired angiogenesis, and lowered barrier function, all key factors in endothelial dysfunction. With the combination of the optimized microvascular networks, a vascularized liver-on-a-chip was formed, providing functional xenobiotic metabolism and synthesis of both albumin and urea. This system provides insight into potential hepatotoxicity caused by various drugs and allows for assessing vascular dysfunction in a high throughput manner.
Collapse
Affiliation(s)
- Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, USA
| | - Melisa J. Andrade
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
8
|
Ndlovu SS, Chuturgoon AA, Ghazi T. Moringa oleifera Lam Leaf Extract Stimulates NRF2 and Attenuates ARV-Induced Toxicity in Human Liver Cells (HepG2). PLANTS (BASEL, SWITZERLAND) 2023; 12:1541. [PMID: 37050167 PMCID: PMC10097004 DOI: 10.3390/plants12071541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
The World Health Organization (WHO) reported that there are 37 million individuals living with the human immunodeficiency virus (HIV) worldwide, with the majority in South Africa. This chronic disease is managed by the effective use of antiretroviral (ARV) drugs. However, with prolonged use, ARV drug-induced toxicity remains a clinically complex problem. This study investigated the toxicity of ARV drugs on mitochondria and the NRF2 antioxidant pathway and its possible amelioration using Moringa oleifera Lam (MO) leaf extracts. This medicinal plant has a range of functional bioactive compounds. Liver (HepG2) cells were treated with individual ARV drugs: Tenofovir disoproxil fumarate (TDF), Emtricitabine (FTC), and Lamivudine (3TC) for 96 h, followed by MO leaf extracts for 24 h. Intracellular ROS, cytotoxicity, lipid peroxidation, total and reduced glutathione (GSH), ATP, and mitochondrial polarisation were determined. Finally, protein (pNRF2, NRF2, SOD2, CAT, and Sirt3) and mRNA (NRF2, CAT, NQO1 SOD2, Sirt3, and PGC1α) expression were measured using Western blot and qPCR, respectively. TDF, FTC, and 3TC significantly increased intracellular ROS and extracellular levels of both MDA and LDH. ARVs also reduced the GSH and ATP levels and altered the mitochondrial polarization. Further, ARVs reduced the expression of NRF2 SOD2, Sirt3, CAT, NQO1, UCP2 and PGC1α mRNA and consequently pNRF2, NRF2, SOD2, Sirt3 and CAT protein. In contrast, there was a significant reduction in the extracellular MDA and LDH levels post-MO treatment. MO significantly reduced intracellular ROS while significantly increasing GSH, ATP, and mitochondrial membrane polarization. The addition of MO to ARV-treated cells significantly upregulated the expression of NRF2, SOD2, Sirt3, CAT, UCP2, PGC1α, and NQO1 mRNA and pNRF2, NRF2, SOD2, Sirt3 proteins. Thus, MO ameliorates ARV-induced hepatotoxicity by scavenging oxidants by inducing the NRF2 antioxidant pathway. MO shows great therapeutic potential and may be considered a potential supplement to ameliorate ARV drug toxicity.
Collapse
|
9
|
Denison M, Ahrens JJ, Dunbar MN, Warmahaye H, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Dynamic Ir(III) Photosensors for the Major Human Drug-Metabolizing Enzyme Cytochrome P450 3A4. Inorg Chem 2023; 62:3305-3320. [PMID: 36758158 PMCID: PMC10268476 DOI: 10.1021/acs.inorgchem.3c00059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Probing the activity of cytochrome P450 3A4 (CYP3A4) is critical for monitoring the metabolism of pharmaceuticals and identifying drug-drug interactions. A library of Ir(III) probes that detect occupancy of the CYP3A4 active site were synthesized and characterized. These probes show selectivity for CYP3A4 inhibition, low cellular toxicity, Kd values as low as 9 nM, and are highly emissive with lifetimes up to 3.8 μs in cell growth media under aerobic conditions. These long emission lifetimes allow for time-resolved gating to distinguish probe from background autofluorescence from growth media and live cells. X-ray crystallographic analysis revealed structure-activity relationships and the preference or indifference of CYP3A4 toward resolved stereoisomers. Ir(III)-based probes show emission quenching upon CYP3A4 binding, then emission increases following displacement with CYP3A4 inhibitors or substrates. Importantly, the lead probes inhibit the activity of CYP3A4 at concentrations as low as 300 nM in CYP3A4-overexpressing HepG2 cells that accurately mimic human hepatic drug metabolism. Thus, the Ir(III)-based agents show promise as novel chemical tools for monitoring CYP3A4 active site occupancy in a high-throughput manner to gain insight into drug metabolism and drug-drug interactions.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Justin J Ahrens
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
| | - Marilyn N Dunbar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Habon Warmahaye
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
10
|
Denison M, Steinke SJ, Majeed A, Turro C, Kocarek TA, Sevrioukova IF, Kodanko JJ. Ir(III)-Based Agents for Monitoring the Cytochrome P450 3A4 Active Site Occupancy. Inorg Chem 2022; 61:13673-13677. [PMID: 35994607 PMCID: PMC9547529 DOI: 10.1021/acs.inorgchem.2c02587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cytochromes P450 (CYPs) are a superfamily of enzymes responsible for biosynthesis and drug metabolism. Monitoring the activity of CYP3A4, the major human drug-metabolizing enzyme, is vital for assessing the metabolism of pharmaceuticals and identifying harmful drug-drug interactions. Existing probes for CYP3A4 are irreversible turn-on substrates that monitor activity at specific time points in end-point assays. To provide a more dynamic approach, we designed, synthesized, and characterized emissive Ir(III) and Ru(II) complexes that allow monitoring of the CYP3A4 active-site occupancy in real time. In the bound state, probe emission is quenched by the active-site heme. Upon displacement from the active site by CYP3A4-specific inhibitors or substrates, these probes show high emission turn-on. Direct probe binding to the CYP3A4 active site was confirmed by X-ray crystallography. The lead Ir(III)-based probe has nanomolar Kd and high selectivity for CYP3A4, efficient cellular uptake, and low toxicity in CYP3A4-overexpressing HepG2 cells.
Collapse
Affiliation(s)
- Madeline Denison
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
| | - Sean J Steinke
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Aliza Majeed
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Claudia Turro
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Thomas A Kocarek
- Institute of Environmental Health Sciences, Wayne State University, 6135 Woodward Avenue, Integrative Biosciences Center, Room 2126, Detroit, Michigan 48202, United States
| | - Irina F Sevrioukova
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Jeremy J Kodanko
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, Michigan 48202, United States
- Barbara Ann Karmanos Cancer Institute, Detroit, Michigan 48201, United States
| |
Collapse
|
11
|
Li X, He X, Le Y, Guo X, Bryant MS, Atrakchi AH, McGovern TJ, Davis-Bruno KL, Keire DA, Heflich RH, Mei N. Genotoxicity evaluation of nitrosamine impurities using human TK6 cells transduced with cytochrome P450s. Arch Toxicol 2022; 96:3077-3089. [PMID: 35882637 DOI: 10.1007/s00204-022-03347-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/14/2022] [Indexed: 12/15/2022]
Abstract
Many nitrosamines are recognized as mutagens and potent rodent carcinogens. Over the past few years, nitrosamine impurities have been detected in various drugs leading to drug recalls. Although nitrosamines are included in a 'cohort of concern' because of their potential human health risks, most of this concern is based on rodent cancer and bacterial mutagenicity data, and there are little data on their genotoxicity in human-based systems. In this study, we employed human lymphoblastoid TK6 cells transduced with human cytochrome P450 (CYP) 2A6 to evaluate the genotoxicity of six nitrosamines that have been identified as impurities in drug products: N-nitrosodiethylamine (NDEA), N-nitrosoethylisopropylamine (NEIPA), N-nitroso-N-methyl-4-aminobutanoic acid (NMBA), N-nitrosomethylphenylamine (NMPA), N-nitrosodiisopropylamine (NDIPA), and N-nitrosodibutylamine (NDBA). Using flow cytometry-based assays, we found that 24-h treatment with NDEA, NEIPA, NMBA, and NMPA caused concentration-dependent increases in the phosphorylation of histone H2A.X (γH2A.X) in CYP2A6-expressing TK6 cells. Metabolism of these four nitrosamines by CYP2A6 also caused significant increases in micronucleus frequency as well as G2/M phase cell-cycle arrest. In addition, nuclear P53 activation was found in CYP2A6-expressing TK6 cells exposed to NDEA, NEIPA, and NMPA. Overall, the genotoxic potency of the six nitrosamine impurities in our test system was NMPA > NDEA ≈ NEIPA > NMBA > NDBA ≈ NDIPA. This study provides new information on the genotoxic potential of nitrosamines in human cells, complementing test results generated from traditional assays and partially addressing the issue of the relevance of nitrosamine genotoxicity for humans. The metabolically competent human cell system reported here may be a useful model for risk assessment of nitrosamine impurities found in drugs.
Collapse
Affiliation(s)
- Xilin Li
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaobo He
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Yuan Le
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Xiaoqing Guo
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Matthew S Bryant
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Aisar H Atrakchi
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Timothy J McGovern
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Karen L Davis-Bruno
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - David A Keire
- Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Robert H Heflich
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Nan Mei
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
12
|
Negoro R, Tasaka M, Deguchi S, Takayama K, Fujita T. Generation of HepG2 Cells with High Expression of Multiple Drug-Metabolizing Enzymes for Drug Discovery Research Using a PITCh System. Cells 2022; 11:cells11101677. [PMID: 35626714 PMCID: PMC9140068 DOI: 10.3390/cells11101677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 12/10/2022] Open
Abstract
HepG2 cells are an inexpensive hepatocyte model that can be used for repeated experiments, but HepG2 cells do not express major cytochrome P450s (CYPs) and UDP glucuronosyltransferase family 1 member A1 (UGT1A1). In this study, we established CYP3A4–POR–UGT1A1–CYP1A2–CYP2C19–CYP2C9–CYP2D6 (CYPs–UGT1A1) knock-in (KI)-HepG2 cells using a PITCh system to evaluate whether they could be a new hepatocyte model for pharmaceutical studies. To evaluate whether CYPs–UGT1A1 KI-HepG2 cells express and function with CYPs and UGT1A1, gene expression levels of CYPs and UGT1A1 were analyzed by using real-time PCR, and metabolites of CYPs or UGT1A1 substrates were quantified by HPLC. The expression levels of CYPs and UGT1A1 in the CYPs–UGT1A1 KI-HepG2 cells were comparable to those in primary human hepatocytes (PHHs) cultured for 48 h. The CYPs and UGT1A1 activity levels in the CYPs–UGT1A1 KI-HepG2 cells were much higher than those in the wild-type (WT)-HepG2 cells. These results suggest that the CYPs–UGT1A1 KI-HepG2 cells expressed functional CYPs and UGT1A1. We also confirmed that the CYPs–UGT1A1 KI-HepG2 cells were more sensitive to drug-induced liver toxicity than the WT-HepG2 cells. CYPs–UGT1A1 KI-HepG2 cells could be used to predict drug metabolism and drug-induced liver toxicity, and they promise to be a helpful new hepatocyte model for drug discovery research.
Collapse
Affiliation(s)
- Ryosuke Negoro
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Correspondence: ; Tel.: +81-77-599-3353
| | - Mitsuki Tasaka
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
| | - Sayaka Deguchi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
| | - Kazuo Takayama
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto 606-8507, Japan; (S.D.); (K.T.)
- Japan Agency for Medical Research and Development-Core Research for Evolutionary Medical Science and Technology (AMED-CREST), Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Takuya Fujita
- Laboratory of Molecular Pharmacokinetics, College of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Laboratory of Molecular Pharmacokinetics, Graduate School of Pharmaceutical Sciences, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan;
- Research Center for Drug Discovery and Development, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu 525-8577, Japan
| |
Collapse
|
13
|
Li X, Li Y, Ning KG, Chen S, Guo L, Bonzo JA, Mei N. The expression of Phase II drug-metabolizing enzymes in human B-lymphoblastoid TK6 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:106-118. [PMID: 35895929 PMCID: PMC9346962 DOI: 10.1080/26896583.2022.2044242] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In vitro genotoxicity testing plays an important role in chemical risk assessment. The human B-lymphoblastoid cell line TK6 is widely used as a standard cell line for regulatory safety evaluations. Like many other mammalian cell lines, TK6 cells have limited metabolic capacity; therefore, usually require a source of exogenous metabolic activation for use in genotoxicity testing. Previously, we developed a set of TK6-derived cell lines that individually express one of fourteen cytochrome P450s (CYPs). In the present study, we surveyed a panel of major Phase II drug-metabolizing enzymes to characterize their baseline expression in TK6 cells. These results may serve as a reference enzymatic profile of this commonly used cell line.
Collapse
Affiliation(s)
- Xilin Li
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Yuxi Li
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kylie G. Ning
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
- Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lei Guo
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Jessica A. Bonzo
- Division of Pharmacology/Toxicology for Immunology and Inflammation, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Nan Mei
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
14
|
Chatuphonprasert W, Sukkasem N, Ellinger I, Jarukamjorn K. Plumbagin and Plumbago indica Differentially Modulated Cytochrome P450 and Transporter Profiles in BeWo and HepG2 Cells. Pak J Biol Sci 2021; 24:1195-1201. [PMID: 34842392 DOI: 10.3923/pjbs.2021.1195.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> The medicinal herb <i>Plumbago indica</i> (PI) and its major constituent plumbagin have reported pharmacological properties but there is a lack of information about their herb-drug interactions. The effects of methanolic (PI-MeOH) and ethanolic (PI-EtOH) crude extracts of PI and plumbagin on the expression of cytochrome P450s (<i>CYP1A2</i>, <i>CYP2E1</i> and <i>CYP3A4</i>) and transporters (<i>ABCC1</i>, <i>ABCG2</i> and <i>SLC22A11</i>) were investigated in BeWo and HepG2 cells. <b>Materials and Methods:</b> BeWo or HepG2 cells were treated with 0.5-5 μM plumbagin or 25-500 μg mL<sup>1</sup> of PI-MeOH or PI-EtOH for 24 hrs. Total RNA was extracted and mRNA expression of CYPs and transporters were determined using RT-qPCR. <b>Results:</b> PI and plumbagin affected mRNA expression differently in the two tested cell types. In BeWo cells, all concentrations of PI-MeOH induced <i>CYP2E1</i>, 100 and 500 μg Ml<sup>1</sup> PI-MeOH and PI-EtOH up-regulated <i>CYP1A2</i>, <i>CYP3A4 </i>and <i>ABCG2 </i>and 500 μg mL<sup>1</sup> PI-EtOH induced <i>ABCG2</i> expression. Plumbagin suppressed <i>CYP1A2</i> and induced <i>SLC22A11 </i>expression at the highest concentration, 5 μM. In HepG2 cells, 5 μM plumbagin and 500 μg Ml<sup>1</sup> PI-EtOH suppressed <i>CYP3A4 </i>expression and 500 μg mL<sup>1</sup> PI-MeOH and PI-EtOH up-regulated <i>CYP1A2</i> and <i>CYP2E1 </i>expression. <i>ABCC1</i> expression was induced by all treatments while <i>ABCG2</i> and <i>SLC22A11 </i>were induced only by 500 μg mL<sup>1</sup> PI-MeOH and PI-EtOH. <b>Conclusion:</b> The use of PI or plumbagin supplements in large quantities or for long periods should be carefully considered due to the risk of herbal drug interactions via modulated expression of CYPs and transporters.
Collapse
|
15
|
The Performance of HepG2 and HepaRG Systems through the Glass of Acetaminophen-Induced Toxicity. Life (Basel) 2021; 11:life11080856. [PMID: 34440600 PMCID: PMC8400973 DOI: 10.3390/life11080856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/07/2021] [Accepted: 08/18/2021] [Indexed: 12/30/2022] Open
Abstract
Investigation of drug-induced liver injuries requires appropriate in vivo and in vitro toxicological model systems. In our study, an attempt was made to compare the hepatocarcinoma HepG2 and the stem cell-derived HepaRG cell lines both in two- and three-dimensional culture conditions to find the most suitable model. Comparison of the liver-specific characteristics of these models was performed via the extent and mechanism of acetaminophen (APAP)-induced hepatotoxicity. Investigating the detailed mechanism of APAP-induced hepatotoxicity, different specific cell death inhibitors were used: the pan-caspase inhibitor zVAD-fmk and dabrafenib significantly protected both cell lines from APAP-induced cell death. However, the known specific inhibitors of necroptosis (necrostatin-1 and MDIVI) were only effective in differentiated HepaRG, which suggest a differential execution of activated pathways in the two models. By applying 3D culture methods, CYP2E1 mRNA levels could be elevated, but we failed to achieve a significant increase in hepatocyte function; hence, the 3D cultivation especially in APAP toxicity studies is not necessarily worth the complicated maintenance. Based on our findings, the hepatocyte functions of HepaRG may stand between the properties of HepG2 cells and primary hepatocytes (PHHs). However, it should be noted that in contrast to PHHs having many limitations, HepaRG cells are relatively immortal, having a stable phenotype and CYP450 expression.
Collapse
|
16
|
Li H, Wang YG, Ma ZC, Yun-Hang G, Ling S, Teng-Fei C, Guang-Ping Z, Gao Y. A high-throughput cell-based gaussia luciferase reporter assay for measurement of CYP1A1, CYP2B6, and CYP3A4 induction. Xenobiotica 2021; 51:752-763. [PMID: 33896369 DOI: 10.1080/00498254.2021.1918800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The induction of cytochrome P450s can result in reduced drug efficacy and lead to potential drug-drug interactions. The xenoreceptors-aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR)-play key roles in CYP induction by xenobiotics. In order to be able to rapidly screen for the induction of three enzymes (CYP1A1, CYP2B6, and CYP3A4), we generated a stable AhR-responsive HepG2 cell line, a stable CAR-responsive HepG2 cell line, and a stable PXR-responsive HepG2 cell line.To validate these stable xenoreceptor-responsive HepG2 cell lines, we evaluated the induction of the different Gaussia reporter activities, as well as the mRNA and protein expression levels of endogenous CYPs in response to different inducers.The induction of luciferase activity in the stable xenoreceptor-responsive HepG2 cell lines by specific inducers occurred in a concentration dependent manner. There was a positive correlation between the induction of luciferase activities and the induction endogenous CYP mRNA expression levels. These xenoreceptor-responsive HepG2 cell lines were further validated with known CYP1A1, CYP2B6, and CYP3A4 inducers.These stable xenoreceptor-responsive HepG2 cell lines may be used in preclinical research for the rapid and sensitive detection of AhR, CAR, and PXR ligands that induce CYP450 isoforms.
Collapse
Affiliation(s)
- Han Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Guang Wang
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Zeng-Chun Ma
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| | - Gao Yun-Hang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Song Ling
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chen Teng-Fei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhang Guang-Ping
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Gao
- Institute of Radiation Medicine Academy of Military Medical Sciences, Beijing, China
| |
Collapse
|