1
|
Kremer LE, McLeod AI, Aitken JB, Levina A, Lay PA. Vanadium(V) and -(IV) complexes of anionic polysaccharides: Controlled release pharmaceutical formulations and models of vanadium biotransformation products. J Inorg Biochem 2015; 147:227-34. [PMID: 25958254 DOI: 10.1016/j.jinorgbio.2015.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 03/20/2015] [Accepted: 03/28/2015] [Indexed: 02/01/2023]
Abstract
Uncontrolled reactions in biological media are a main obstacle for clinical translation of V-based anti-diabetic or anti-cancer pro-drugs. We investigated the use of controlled-release pharmaceutical formulations to ameliorate this issue with a series of V(V) and (IV) complexes of anionic polysaccharides. Carboxymethyl cellulose, xanthan gum, or alginic acid formulations were prepared by the reactions of [VO4](3-) with one or two molar equivalents of biological reductants, L-ascorbic acid (AA) or L-cysteine (Cys), in the presence of excess polysaccharide at pH~7 or pH~4. XANES studies with the use of a previously developed library of model V(V), V(IV) and V(III) complexes showed that reactions in the presence of AA led mostly to the mixtures of five- and six-coordinate V(IV) species, while the reactions in the presence of Cys led predominantly to the mixtures of five- and six-coordinate V(V) species. The XANES spectra of some of these samples closely matched those reported previously for [VO4](3-) biotransformation products in isolated blood plasma, red blood cells, or cultured adipocytes, which supports the hypothesis that modified polysaccharides are major binders of V(V) and V(IV) in biological systems. Studies by EPR spectroscopy suggested predominant V(IV)-carboxylato binding in complexes with polysaccharides. One of the isolated products (a V(IV)-alginato complex) showed selective release of low-molecular-mass V species at pH~8, but not at pH~2, which makes it a promising lead for the development of V-containing formulations for oral administration that are stable in the stomach, but release the active ingredient in the intestines.
Collapse
Affiliation(s)
- Lauren E Kremer
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew I McLeod
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Jade B Aitken
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Aviva Levina
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia
| | - Peter A Lay
- School of Chemistry The University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
2
|
Tian J, Li D, Zhai F, Wang X, Li R. Synthesis and biological evaluation of cyclopenten-1-one Mannich base oxovanadium compound. Med Chem Res 2009. [DOI: 10.1007/s00044-009-9260-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Nilsson J, Degerman E, Haukka M, Lisensky GC, Garribba E, Yoshikawa Y, Sakurai H, Enyedy EA, Kiss T, Esbak H, Rehder D, Nordlander E. Bis- and tris(pyridyl)amine-oxidovanadium complexes: characteristics and insulin-mimetic potential. Dalton Trans 2009:7902-11. [PMID: 19771353 DOI: 10.1039/b903456k] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel vanadium complexes, [V(IV)O(bp-O)(HSO4)] (1) and [V(IV)O(bp-OH)Cl2] x CH3OH (2 x CH3OH), where bp-OH is 2-{[bis(pyrid-2-yl)methyl]amine}methylphenol, were prepared and structurally characterised. EPR spectra of methanol solutions of 2 suggest exchange of Cl- for CH3OH and partial conversion to [VO(bp-OH)(CH3OH)3]2+. Speciation studies on the VO2+-bpOH system in a water/dmso mixture (4:1 v/v) revealed [VO(bp-O)(H2O)n]+ as the dominating species in the pH range 2-7. The insulin-mimetic properties of 1 and 2, [V(IV)O(SO4)tpa] (3), [V(IV)O(pic-trpMe)2] (5) and the new mixed-ligand complexes [V(V)O(pic-trpH)tpa]Cl2 (4Cl2) and [V(V)O(pic-OEt)tpa]Cl2 (6Cl2), tpa = tris(pyrid-2-yl)methylamine, picH-trpH = 2-carboxypyridine-5-(L-tryptophan)carboxamide (picH-trpMe is the respective tryptophanmethyl ester), pic-OEt = 5-carboethoxypyridine-2-carboxylic acid, were evaluated with rat adipocytes, employing two lipolysis assays (release of glycerol and free fatty acids (FFA)), respectively and a lipogenesis assay (incorporation of glucose into lipids). The IC50 values for the inhibition of lipolysis in the FFA assay vary between 0.41 (+/-0.03) (5) and 21.2 (+/-0.6) mM (2), as compared to 0.81 (+/-0.2) mM for VOSO4.
Collapse
Affiliation(s)
- Jessica Nilsson
- Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, SE-22100, Lund, Sweden
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Baran EJ. Oxovanadium(IV) complexes of carbohydrates: A brief overview. J Inorg Biochem 2009; 103:547-53. [DOI: 10.1016/j.jinorgbio.2008.10.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2008] [Revised: 09/29/2008] [Accepted: 10/03/2008] [Indexed: 10/21/2022]
|
5
|
Affiliation(s)
- Enrique J Baran
- Centro de Química Inorgánica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. Correo 962, 1900-La Plata, Argentina.
| |
Collapse
|
6
|
Barrio DA, Cattáneo ER, Apezteguía MC, Etcheverry SB. Vanadyl(IV) complexes with saccharides. Bioactivity in osteoblast-like cells in cultureThis paper is one of a selection of papers published in this Special issue, enititled Second Messengers and Phosphoproteins—12th International Conference. Can J Physiol Pharmacol 2006; 84:765-75. [PMID: 16998540 DOI: 10.1139/y06-021] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Complexes of vanadyl(IV) with 4 monosaccharides and 5 disaccharides were tested in 2 osteoblast-like cell lines (MC3T3E1 and UMR106). Many complexes caused stimulation of UMR106 proliferation (120% basal) in the range of 2.5 to 25 µmol/L. In the nontransformed osteoblasts, some vanadyl–saccharide complexes stimulated the mitogenesis (115% basal) in the same range of concentration. The glucose and sucrose complexes were the most efficient inhibitory agents (65% and 88% of inhibition vs. basal, respectively) for tumoral cells at 100 µmol/L. The galactose and turanose complexes exerted a similar effect in the nontransformed osteoblasts. On the other hand, all the complexes promoted the phosphorylation of the extracellular regulated kinases (ERKs). All together, these results indicate that the stimulation of ERKs is not the only factor that plays a role in the proliferative effects of vanadium derivatives since some compounds were inhibitory proliferating agents. Cell differentiation was evaluated by alkaline phosphatase specific activity and collagen synthesis in UMR106 cells. All the complexes inhibited alkaline phosphatase activity, with galactose complex as the most effective compound (IC50= 43 µmol/L). The complex with the trehalose TreVO was the most effective agent to stimulate collagen synthesis (142% basal) and glucose consumption (132% basal). A cytosolic tyrosine protein kinase and the kinase-3 of glycogen synthase seem to be involved in the stimulation of glucose consumption by vanadium derivatives. In this series, only TreVO gathered the characteristics of a good insulin mimetic and osteogenic drug. In addition, this complex was a good promoting agent of nontransformed osteoblast proliferation, whereas it inhibited tumoral osteoblasts. GluVO, the complex with glucose, was also more toxic for tumoral than for nontransformed cells. These 2 vanadium derivatives are good potential antitumoral drugs. All the results suggest that the biological effects of vanadium compounds are a complex phenomenon influenced by the complexation, the dose, and the nature of the ligands and the cells.
Collapse
Affiliation(s)
- Daniel A Barrio
- Cátedra de Bioquímica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (1900) La Plata, Argentina
| | | | | | | |
Collapse
|
7
|
Williams PAM, Etcheverry SB, Barrio DA, Baran EJ. Synthesis, characterization, and biological activity of oxovanadium(IV) complexes with polyalcohols. Carbohydr Res 2006; 341:717-24. [PMID: 16458276 DOI: 10.1016/j.carres.2006.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2005] [Revised: 12/27/2005] [Accepted: 01/09/2006] [Indexed: 11/25/2022]
Abstract
Oxovanadium(IV) complexes of the polyalcohols sorbitol, galactitol, and mannitol, of stoichiometry Na(2)[VO(L)(2)].H(2)O, were obtained from aqueous alkaline solutions. They were characterized by elemental analysis, infrared and UV-vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data, and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation, and glucose consumption were tested on osteoblast-like cells (MC3T3E1 osteoblastic mouse calvaria-derived cells and UMR106 rat osteosarcoma-derived cells) in culture. The three complexes exerted a biphasic effect on cell proliferation, being slight stimulating agents at low concentrations and inhibitory in the range of 25-100 microM. All the complexes inhibited cell differentiation in tumor osteoblasts. Their effects on glucose consumption were also discussed. The free ligands did not show any effect on the studied biological parameters.
Collapse
Affiliation(s)
- Patricia A M Williams
- Centro de Química Inorgánica (CEQUINOR/CONICET, UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. Correo 962, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|
8
|
Etcheverry SB, Barrio DA, Zinczuk J, Williams PAM, Baran EJ. Synthesis, characterization and biological activity of oxovanadium (IV) complexes with cyclic polyalcohols. J Inorg Biochem 2005; 99:2322-7. [PMID: 16219358 DOI: 10.1016/j.jinorgbio.2005.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2005] [Revised: 07/06/2005] [Accepted: 08/26/2005] [Indexed: 10/25/2022]
Abstract
Oxovanadium (IV) complexes of the cyclic polyols conduritol C (cond) and myo-inositol (inos) of stoichiometry Na(2)[VO(cond)(2)].2H(2)O and Na(2)[VO(inos)(2)].H(2)O were obtained in aqueous alkaline solutions. They were characterized by infrared and UV-Vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data and magnetic susceptibility measurements. The biological activities of the complexes on the proliferation, differentiation and glucose consumption were tested on osteoblast-like cells in culture. Conduritol C and myo-inositol did not produce any effect on these parameters. Normal and tumoral cell proliferation was inhibited about (ca.40-60%) by the two oxovanadium (IV) complexes in concentrations as low as 100microM. The complexes were also inhibitory on cell differentiation (ca. 70-80%) while they stimulate glucose consumption. Comparisons of these effects with those of the oxovanadium (IV) cation, under the same experimental conditions, were also performed.
Collapse
Affiliation(s)
- Susana B Etcheverry
- Centro de Química Inorgánica (CEQUINOR/CONICET,UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. Correo 962, 1900 La Plata, Argentina
| | | | | | | | | |
Collapse
|
9
|
Reactivity of bis(η6-arene) derivatives of titanium, vanadium and niobium with fulvenes bearing electron-withdrawing substituents. J Organomet Chem 2005. [DOI: 10.1016/j.jorganchem.2005.07.093] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Williams PAM, Barrio DA, Etcheverry SB, Baran EJ. Characterization of oxovanadium (IV) complexes of d-gluconic and d-saccharic acids and their bioactivity on osteoblast-like cells in culture. J Inorg Biochem 2004; 98:333-42. [PMID: 14729313 DOI: 10.1016/j.jinorgbio.2003.10.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Oxovanadium (IV) complexes of the alpha-hydroxycarboxylic ligands D-gluconic and D-saccharic acids of stoichiometry Na(2)[VO(gluconate)(2)].H(2)O, K(2)[VO(saccharate)(2)].4H(2)O, Na(4)[VO(gluconate)(2)].2H(2)O and K(5)[VO(saccharate)(2)].4H(2)O were obtained in aqueous solutions; the first two in acid, the other two in alkaline media. They were characterized by infrared and UV-Vis spectroscopies, thermoanalytical (thermogravimetric and differential thermal analysis) data and magnetic susceptibility measurements. The complexes were found to be mononuclear, possessing the VO(2+) moiety, and the thorough analysis of the spectral data allowed the determination of the characteristics of the metal-to-ligand interactions. The biological activities of these complexes on the proliferation, differentiation and glucose consumption were tested on osteoblast-like cells in culture. Comparisons of these effects and those of the oxovanadium (IV) cation and the free ligands were performed. Different behaviors could be observed for the complexes obtained at acidic or alkaline pH-values, as well as for the different cellular types. The free ligands did not show any biological effect.
Collapse
Affiliation(s)
- Patricia A M Williams
- Centro de Química Inorgánica, CONICET, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. Correo 962, 1900 La Plata, Argentina
| | | | | | | |
Collapse
|
11
|
Barrio DA, Williams PAM, Cortizo AM, Etcheverry SB. Synthesis of a new vanadyl(IV) complex with trehalose (TreVO): insulin-mimetic activities in osteoblast-like cells in culture. J Biol Inorg Chem 2003; 8:459-68. [PMID: 12761667 DOI: 10.1007/s00775-002-0438-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2002] [Accepted: 12/10/2002] [Indexed: 10/18/2022]
Abstract
Vanadium compounds show interesting biological and pharmacological properties. Some of them display insulin-mimetic effects and others produce anti-tumor actions. The bioactivity of vanadium is present in inorganic species like the vanadyl(IV) cation or vanadate(V) anion. Nevertheless, the development of new vanadium derivatives with organic ligands which improve the beneficial actions and decrease the toxic effects is of great interest. On the other hand, the mechanisms involved in vanadium bioactivity are still poorly understood. A new vanadium complex of the vanadyl(IV) cation with the disaccharide trehalose (TreVO), Na(6)[VO(Tre)(2)].4H(2)O, here reported, shows interesting insulin-mimetic properties in two osteoblast cell lines, a normal one (MC3T3E1) and a tumoral one (UMR106). The complex affected the proliferation of both cell lines in a different manner. On tumoral cells, TreVO caused a weak stimulation of growth at 5 microM but it inhibited cell proliferation in a dose-response manner between 50 and 100 microM. TreVO significantly inhibited UMR106 differentiation (15-25% of basal) in the range 5-100 microM. On normal osteoblasts, TreVO behaved as a mitogen at 5-25 microM. Different inhibitors of the MAPK pathway blocked this effect. At higher concentrations (75-100 microM), the complex was a weak inhibitor of the MC3T3E1 proliferation. Besides, TreVO enhanced glucose consumption by a mechanism independent of the PI3-kinase activation. In both cell lines, TreVO stimulated the ERK phosphorylation in a dose- and time-dependent manner. Different inhibitors (PD98059, wortmannin, vitamins C and E) partially decreased this effect, which was totally inhibited by their combination. These results suggest that TreVO could be a potential candidate for therapeutic treatments.
Collapse
Affiliation(s)
- Daniel A Barrio
- Cátedra de Bioquímica Patológica, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | | | | | | |
Collapse
|