Tsoukala E, Agelis G, Dolinsek J, Botić T, Cencic A, Komiotis D. An efficient synthesis of 3-fluoro-5-thio-xylofuranosyl nucleosides of thymine, uracil, and 5-fluorouracil as potential antitumor or/and antiviral agents.
Bioorg Med Chem 2007;
15:3241-7. [PMID:
17337193 DOI:
10.1016/j.bmc.2007.02.031]
[Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/12/2007] [Accepted: 02/16/2007] [Indexed: 11/29/2022]
Abstract
1,2:5,6-Di-O-isopropylidene-alpha-D-glucofuranose by the sequence of mild oxidation, reduction, fluorination, periodate oxidation, borohydride reduction, and sulfonylation gave 3-deoxy-3-fluoro-1,2-O-isopropylidene-5-O-p-toluenesulfonyl-alpha-D-xylofuranose (5). Tosylate 5 was converted to thioacetate derivative 6, which after acetolysis gave 1,2-di-O-acetyl-5-S-acetyl-3-deoxy-3-fluoro-5-thio-D-xylofuranose (7). Condensation of 7 with silylated thymine, uracil, and 5-fluorouracil afforded nucleosides 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) thymine (8), 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) uracil (9), and 1-(5-S-acetyl-3-deoxy-3-fluoro-5-thio-beta-D-xylofuranosyl) 5-fluorouracil (10). Compounds 8, 9, and 10 are biologically active against rotavirus infection and the growth of tumor cells.
Collapse