1
|
Ai X, Wang D, Noh I, Duan Y, Zhou Z, Mukundan N, Fang RH, Gao W, Zhang L. Glycan-modified cellular nanosponges for enhanced neutralization of botulinum toxin. Biomaterials 2023; 302:122330. [PMID: 37742508 DOI: 10.1016/j.biomaterials.2023.122330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023]
Abstract
Botulinum toxin (BoNT) is a potent neurotoxin that poses a significant threat as a biowarfare weapon and a potential bioterrorist tool. Currently, there is a lack of effective countermeasures to combat BoNT intoxication in the event of a biological attack. Here, we report on a novel solution by combining cell metabolic engineering with cell membrane coating nanotechnology, resulting in the development of glycan-modified cellular nanosponges that serve as a biomimetic and broad-spectrum BoNT detoxification strategy. Specifically, we increase the expression levels of gangliosides on THP-1 cells through metabolic engineering, and then collect the modified THP-1 cell membrane and coat it onto synthetic polymeric cores, creating cellular nanosponges that closely mimic host cells. Our findings demonstrate that higher levels of gangliosides on the cellular nanosponges result in greater binding capacities with BoNT. The glycan-modified cellular nanosponges exhibit superior efficacy in neutralizing BoNT cytotoxicity in vitro when compared to their unmodified counterparts. In a mouse model of BoNT intoxication, the glycan-modified cellular nanosponges show more pronounced survival benefits when administered both as a treatment and a preventative regimen. These results highlight the potential of cellular nanosponges, especially when modified with glycans, as a promising countermeasure platform against BoNT and related clostridial toxins.
Collapse
Affiliation(s)
- Xiangzhao Ai
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Dan Wang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ilkoo Noh
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Yaou Duan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Zhidong Zhou
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Nilesh Mukundan
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Ronnie H Fang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA
| | - Weiwei Gao
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| | - Liangfang Zhang
- Department of NanoEngineering and Chemical Engineering Program, University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
2
|
Harper CB, Papadopulos A, Martin S, Matthews DR, Morgan GP, Nguyen TH, Wang T, Nair D, Choquet D, Meunier FA. Botulinum neurotoxin type-A enters a non-recycling pool of synaptic vesicles. Sci Rep 2016; 6:19654. [PMID: 26805017 PMCID: PMC4726273 DOI: 10.1038/srep19654] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 11/20/2015] [Indexed: 02/03/2023] Open
Abstract
Neuronal communication relies on synaptic vesicles undergoing regulated exocytosis and recycling for multiple rounds of fusion. Whether all synaptic vesicles have identical protein content has been challenged, suggesting that their recycling ability may differ greatly. Botulinum neurotoxin type-A (BoNT/A) is a highly potent neurotoxin that is internalized in synaptic vesicles at motor nerve terminals and induces flaccid paralysis. Recently, BoNT/A was also shown to undergo retrograde transport, suggesting it might enter a specific pool of synaptic vesicles with a retrograde trafficking fate. Using high-resolution microscopy techniques including electron microscopy and single molecule imaging, we found that the BoNT/A binding domain is internalized within a subset of vesicles that only partially co-localize with cholera toxin B-subunit and have markedly reduced VAMP2 immunoreactivity. Synaptic vesicles loaded with pHrodo-BoNT/A-Hc exhibited a significantly reduced ability to fuse with the plasma membrane in mouse hippocampal nerve terminals when compared with pHrodo-dextran-containing synaptic vesicles and pHrodo-labeled anti-GFP nanobodies bound to VAMP2-pHluorin or vGlut-pHluorin. Similar results were also obtained at the amphibian neuromuscular junction. These results reveal that BoNT/A is internalized in a subpopulation of synaptic vesicles that are not destined to recycle, highlighting the existence of significant molecular and functional heterogeneity between synaptic vesicles.
Collapse
Affiliation(s)
- Callista B Harper
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Andreas Papadopulos
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Sally Martin
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Daniel R Matthews
- The University of Queensland, Queensland Brain Institute, Brisbane, Queensland 4072, Australia
| | - Garry P Morgan
- The University of Queensland, Centre for Microscopy and Microanalysis, Brisbane, Queensland 4072, Australia
| | - Tam H Nguyen
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Tong Wang
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| | - Deepak Nair
- Interdisciplinary Institute for Neuroscience, The University of Bordeaux, Bordeaux, 33000, France.,Centre for Neuroscience, Indian Institute of Science, Bangalore, 560012, India
| | - Daniel Choquet
- Interdisciplinary Institute for Neuroscience, The University of Bordeaux, Bordeaux, 33000, France
| | - Frederic A Meunier
- The University of Queensland, Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research, Brisbane, Queensland 4072, Australia
| |
Collapse
|
3
|
Eubanks LM, Dickerson TJ, Janda KD. Technological advancements for the detection of and protection against biological and chemical warfare agents. Chem Soc Rev 2007; 36:458-70. [PMID: 17325785 DOI: 10.1039/b615227a] [Citation(s) in RCA: 148] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There is a growing need for technological advancements to combat agents of chemical and biological warfare, particularly in the context of the deliberate use of a chemical and/or biological warfare agent by a terrorist organization. In this tutorial review, we describe methods that have been developed both for the specific detection of biological and chemical warfare agents in a field setting, as well as potential therapeutic approaches for treating exposure to these toxic species. In particular, nerve agents are described as a typical chemical warfare agent, and the two potent biothreat agents, anthrax and botulinum neurotoxin, are used as illustrative examples of potent weapons for which countermeasures are urgently needed.
Collapse
Affiliation(s)
- Lisa M Eubanks
- Department of Chemistry, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
4
|
Arndt JW, Gu J, Jaroszewski L, Schwarzenbacher R, Hanson MA, Lebeda FJ, Stevens RC. The Structure of the Neurotoxin-associated Protein HA33/A from Clostridium botulinum Suggests a Reoccurring β-Trefoil Fold in the Progenitor Toxin Complex. J Mol Biol 2005; 346:1083-93. [PMID: 15701519 DOI: 10.1016/j.jmb.2004.12.039] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2004] [Revised: 12/15/2004] [Accepted: 12/16/2004] [Indexed: 11/18/2022]
Abstract
The hemagglutinating protein HA33 from Clostridium botulinum is associated with the large botulinum neurotoxin secreted complexes and is critical in toxin protection, internalization, and possibly activation. We report the crystal structure of serotype A HA33 (HA33/A) at 1.5 A resolution that contains a unique domain organization and a carbohydrate recognition site. In addition, sequence alignments of the other toxin complex components, including the neurotoxin BoNT/A, hemagglutinating protein HA17/A, and non-toxic non-hemagglutinating protein NTNHA/A, suggests that most of the toxin complex consists of a reoccurring beta-trefoil fold.
Collapse
Affiliation(s)
- Joseph W Arndt
- Department of Molecular Biology, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|