1
|
Li H, Sun S. Protein Aggregation in the ER: Calm behind the Storm. Cells 2021; 10:cells10123337. [PMID: 34943844 PMCID: PMC8699410 DOI: 10.3390/cells10123337] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
As one of the largest organelles in eukaryotic cells, the endoplasmic reticulum (ER) plays a vital role in the synthesis, folding, and assembly of secretory and membrane proteins. To maintain its homeostasis, the ER is equipped with an elaborate network of protein folding chaperones and multiple quality control pathways whose cooperative actions safeguard the fidelity of protein biogenesis. However, due to genetic abnormalities, the error-prone nature of protein folding and assembly, and/or defects or limited capacities of the protein quality control systems, nascent proteins may become misfolded and fail to exit the ER. If not cleared efficiently, the progressive accumulation of misfolded proteins within the ER may result in the formation of toxic protein aggregates, leading to the so-called “ER storage diseases”. In this review, we first summarize our current understanding of the protein folding and quality control networks in the ER, including chaperones, unfolded protein response (UPR), ER-associated protein degradation (ERAD), and ER-selective autophagy (ER-phagy). We then survey recent research progress on a few ER storage diseases, with a focus on the role of ER quality control in the disease etiology, followed by a discussion on outstanding questions and emerging concepts in the field.
Collapse
Affiliation(s)
- Haisen Li
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI 48201, USA;
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI 48201, USA
- Correspondence:
| |
Collapse
|
2
|
Abstract
In this article, we will cover the folding of proteins in the lumen of the endoplasmic reticulum (ER), including the role of three types of covalent modifications: signal peptide removal, N-linked glycosylation, and disulfide bond formation, as well as the function and importance of resident ER folding factors. These folding factors consist of classical chaperones and their cochaperones, the carbohydrate-binding chaperones, and the folding catalysts of the PDI and proline cis-trans isomerase families. We will conclude with the perspective of the folding protein: a comparison of characteristics and folding and exit rates for proteins that travel through the ER as clients of the ER machinery.
Collapse
Affiliation(s)
- Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands.
| | | |
Collapse
|
3
|
Akl H, Bultynck G. Altered Ca(2+) signaling in cancer cells: proto-oncogenes and tumor suppressors targeting IP3 receptors. Biochim Biophys Acta Rev Cancer 2012; 1835:180-93. [PMID: 23232185 DOI: 10.1016/j.bbcan.2012.12.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/30/2012] [Accepted: 12/01/2012] [Indexed: 01/15/2023]
Abstract
Proto-oncogenes and tumor suppressors critically control cell-fate decisions like cell survival, adaptation and death. These processes are regulated by Ca(2+) signals arising from the endoplasmic reticulum, which at distinct sites is in close proximity to the mitochondria. These organelles are linked by different mechanisms, including Ca(2+)-transport mechanisms involving the inositol 1,4,5-trisphosphate receptor (IP3R) and the voltage-dependent anion channel (VDAC). The amount of Ca(2+) transfer from the endoplasmic reticulum to mitochondria determines the susceptibility of cells to apoptotic stimuli. Suppressing the transfer of Ca(2+) from the endoplasmic reticulum to the mitochondria increases the apoptotic resistance of cells and may decrease the cellular responsiveness to apoptotic signaling in response to cellular damage or alterations. This can result in the survival, growth and proliferation of cells with oncogenic features. Clearly, proper maintenance of endoplasmic reticulum Ca(2+) homeostasis and dynamics including its links with the mitochondrial network is essential to detect and eliminate altered cells with oncogenic features through the apoptotic pathway. Proto-oncogenes and tumor suppressors exploit the central role of Ca(2+) signaling by targeting the IP3R. There are an increasing number of reports showing that activation of proto-oncogenes or inactivation of tumor suppressors directly affects IP3R function and endoplasmic reticulum Ca(2+) homeostasis, thereby decreasing mitochondrial Ca(2+) uptake and mitochondrial outer membrane permeabilization. In this review, we provide an overview of the current knowledge on the proto-oncogenes and tumor suppressors identified as IP3R-regulatory proteins and how they affect endoplasmic reticulum Ca(2+) homeostasis and dynamics.
Collapse
Affiliation(s)
- Haidar Akl
- Department Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
4
|
The cytoplasmic domain of rhesus cytomegalovirus Rh178 interrupts translation of major histocompatibility class I leader peptide-containing proteins prior to translocation. J Virol 2011; 85:8766-76. [PMID: 21715474 DOI: 10.1128/jvi.05021-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Cytomegalovirus (CMV) efficiently evades many host immune defenses and encodes a number of proteins that prevent antigen presentation by major histocompatibility complex class I (MHC-I) molecules in order to evade recognition and killing of infected cells by cytotoxic CD8(+) T cells. We recently showed that rhesus CMV-specific Rh178 intercepts MHC-I protein translation before interference of MHC-I maturation by homologues of the human CMV US6 family. Here, we demonstrate that Rh178 localizes to the membrane of the endoplasmic reticulum, displaying a short luminal and large cytosolic domain, and that the membrane-proximal cytosolic portion is essential for inhibition of MHC-I expression. We further observed that Rh178 does not require synthesis of full-length MHC-I heavy chains but is capable of inhibiting the translation of short, unstable amino-terminal fragments of MHC-I. Moreover, the transfer of amino-terminal fragments containing the MHC-I signal peptide renders recipient proteins susceptible to targeting by Rh178. The cytosolic orientation of Rh178 and its ability to target protein fragments carrying the MHC-I signal peptide are consistent with Rh178 intercepting partially translated MHC-I heavy chains after signal recognition particle-dependent transfer to the endoplasmic reticulum membrane. However, interference with MHC-I translation by Rh178 seems to occur prior to SEC61-dependent protein translocation, since inhibition of MHC-I translocation by eeyarestatin 1 resulted in a full-length degradation intermediate that can be stabilized by proteasome inhibitors. These data are consistent with Rh178 blocking protein translation of MHC-I heavy chains at a step prior to the start of translocation, thereby downregulating MHC-I at a very early stage of translation.
Collapse
|
5
|
Tamura T, Cormier JH, Hebert DN. Characterization of early EDEM1 protein maturation events and their functional implications. J Biol Chem 2011; 286:24906-15. [PMID: 21632540 DOI: 10.1074/jbc.m111.243998] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The endoplasmic reticulum (ER) quality control factor EDEM1 associates with a number of ER proteins and ER-associated degradation (ERAD) substrates; however, an understanding of its role in ERAD is unclear. The early maturation events for EDEM1 including signal sequence cleavage and glycosylation were analyzed, and their relationship to the function of EDEM1 was determined. EDEM1 has five N-linked glycosylation sites with the most C-terminal site recognized poorly cotranslationally, resulting in the accumulation of EDEM1 containing four or five glycans. The fifth site was modified post-translationally when bypassed cotranslationally. Signal sequence cleavage of EDEM1 was found to be a slow and inefficient process. Signal sequence cleavage produced a soluble form of EDEM1 that efficiently associated with the oxidoreductase ERdj5 and most effectively accelerated the turnover of a soluble ERAD substrate. In contrast, a type-II membrane form of EDEM1 was generated when the signal sequence was uncleaved, creating an N-terminal transmembrane segment. The membrane form of EDEM1 efficiently associated with the ER membrane protein SEL1L and accelerated the turnover of a membrane-associated ERAD substrate. Together, these results demonstrated that signal sequence cleavage functionally regulated the association of EDEM1-soluble and membrane-integrated isoforms with distinct ERAD machinery and substrates.
Collapse
Affiliation(s)
- Taku Tamura
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
6
|
Harant H, Lettner N, Hofer L, Oberhauser B, de Vries JE, Lindley IJD. The translocation inhibitor CAM741 interferes with vascular cell adhesion molecule 1 signal peptide insertion at the translocon. J Biol Chem 2006; 281:30492-502. [PMID: 16914554 DOI: 10.1074/jbc.m607243200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cyclopeptolide CAM741 selectively inhibits cotranslational translocation of vascular cell adhesion molecule 1 (VCAM1), a process that is dependent on its signal peptide. In this study we identified the C-terminal (C-) region upstream of the cleavage site of the VCAM1 signal peptide as most critical for inhibition of translocation by CAM741, but full sensitivity to the compound also requires residues of the hydrophobic (h-) region and the first amino acid of the VCAM1 mature domain. The murine VCAM1 signal peptide, which is less susceptible to translocation inhibition by CAM741, can be converted into a fully sensitive signal peptide by two amino acid substitutions identified as critical for compound sensitivity of the human VCAM1 signal peptide. Using cysteine substitutions of non-critical residues in the human VCAM1 signal peptide and chemical cross-linking of targeted short nascent chains we show that, in the presence of CAM741, the N- and C-terminal segments of the VCAM1 signal peptide could be cross-linked to the cytoplasmic tail of Sec61beta, indicating altered positioning of the VCAM1 signal peptide relative to this translocon component. Moreover, translocation of a tag fused N-terminal to the VCAM1 signal peptide is selectively inhibited by CAM741. Our data indicate that the compound inhibits translocation of VCAM1 by interfering with correct insertion of its signal peptide into the translocon.
Collapse
Affiliation(s)
- Hanna Harant
- Novartis Institutes for BioMedical Research, A-1235 Vienna, Austria.
| | | | | | | | | | | |
Collapse
|
7
|
Wang N, Daniels R, Hebert DN. The cotranslational maturation of the type I membrane glycoprotein tyrosinase: the heat shock protein 70 system hands off to the lectin-based chaperone system. Mol Biol Cell 2005; 16:3740-52. [PMID: 15958486 PMCID: PMC1182312 DOI: 10.1091/mbc.e05-05-0381] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The maturation of eukaryotic secretory cargo initiates cotranslationally and cotranslocationally as the polypeptide chain emerges into the endoplasmic reticulum lumen. Here, we characterized the cotranslational maturation pathway for the human type I membrane glycoprotein tyrosinase. To recapitulate the cotranslational events, including glycosylation, signal sequence cleavage, chaperone binding, and oxidation, abbreviated transcripts lacking a stop codon were in vitro translated in the presence of semipermeabilized melanocyte membranes. This created a series of ribosome/translocon-arrested chains of increasing lengths, simulating intermediates in the cotranslational folding process. Initially, nascent chains were found to associate with the heat shock protein (Hsp) 70 family member BiP. As the nascent chains elongated and additional glycans were transferred, BiP binding rapidly decreased and the lectin-based chaperone system was recruited in its place. The lectin chaperone calnexin bound to the nascent chain after the addition of two glycans, and calreticulin association followed upon the addition of a third. The glycan-specific oxidoreductase ERp57 was cross-linked to tyrosinase when calnexin and calreticulin were associated. This timing coincided with the formation of disulfide bonds within tyrosinase and the cleavage of its signal sequence. Therefore, tyrosinase maturation initiates cotranslationally with the Hsp70 system and is handed off to the lectin chaperone system that first uses calnexin before calreticulin. Interestingly, divergence in the maturation pathways of wild-type and mutant albino tyrosinase can already be observed for translocon-arrested nascent chains.
Collapse
Affiliation(s)
- Ning Wang
- Department of Biochemistry and Molecular Biology, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
8
|
Abstract
To learn about the molecular mechanism of protein translocation across the membrane of the endoplasmic reticulum (ER), the environment of nascent chains during the translocation process has been characterized using a variety of crosslinking approaches. These techniques have led to the identification of several proteins that interact transiently with the newly synthesized protein in the cytosol, during its passage across the membrane of the ER and in the ER lumen. Furthermore, lipids have been found to be in contact with membrane-inserted nascent chains, suggesting that the polypeptide enters the membrane in a protein-lipid interface.
Collapse
Affiliation(s)
- B Martoglio
- ZMBH (Zentrum für Molekulare Biologie der Universität Heidelberg), Postfach 106249, 69052 Heidelberg, Germany
| | | |
Collapse
|
9
|
Nicchitta CV. Signal sequence function in the mammalian endoplasmic reticulum: A biological perspective. CURRENT TOPICS IN MEMBRANES 2002. [DOI: 10.1016/s1063-5823(02)52019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Isaac C, Pollard JW, Meier UT. Intranuclear endoplasmic reticulum induced by Nopp140 mimics the nucleolar channel system of human endometrium. J Cell Sci 2001; 114:4253-64. [PMID: 11739657 DOI: 10.1242/jcs.114.23.4253] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Exogenous expression of the characteristic repeat domain of the nucleolar chaperone Nopp140 induces the formation of intranuclear structures, termed R-rings. Here, the R-rings are identified as extensive stacks of membrane cisternae in the otherwise membrane-free nucleus. They consist of bona fide endoplasmic reticulum (ER) containing integral membrane proteins of the smooth and rough ER. Although lacking nuclear pore complexes and lamina, the R-rings derive specifically from the inner nuclear membrane. These findings are consistent with the idea that all transmembrane proteins synthesized in the ER and the outer nuclear membrane can freely diffuse through the pore membrane domain into the inner membrane. Uniquely, the soluble transfected Nopp140 is directly involved in the generation of these membrane stacks as it localizes to the electron dense matrix in which they are embedded. The only well-documented example of intranuclear membrane proliferation is the nucleolar channel system of the postovulation human endometrium. The transient emergence of the nucleolar channel system correlates precisely with the readiness of the endometrium for the implantation of the fertilized egg. The nucleolar channel system exhibits an ultrastructure that is indistinguishable from R-rings, and nuclei of human endometrium harbor Nopp140 and ER marker containing structures. Therefore, the nucleolar channel system appears to be identical to the R-rings, suggesting a role for Nopp140 in human reproduction.
Collapse
Affiliation(s)
- C Isaac
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
11
|
Legate KR, Andrews DW. Assembly strategies and GTPase regulation of the eukaryotic and Escherichia coli translocons. Biochem Cell Biol 2001. [DOI: 10.1139/o01-140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The translocation of most proteins across the endoplasmic reticulum or bacterial inner membrane occurs through an aqueous pore that spans the membrane. Substrates that are translocated co-translationally across the membrane are directed to the translocation pore via an interaction between the cytosolic signal recognition particle and its membrane-bound receptor. Together the translocation pore and the receptor are referred to as a translocon. By studying the biogenesis of the translocon a number of alternate targeting and membrane-integration pathways have been discovered that operate independently of the signal recognition particle (SRP) pathway. The novel assembly strategies of the translocon and the ways in which these components interact to ensure the fidelity and unidirectionality of the targeting and translocation process are reviewed here.Key words: protein translocation, translocon, SRP receptor, GTPases.
Collapse
|
12
|
Davidson NO, Shelness GS. APOLIPOPROTEIN B: mRNA editing, lipoprotein assembly, and presecretory degradation. Annu Rev Nutr 2001; 20:169-93. [PMID: 10940331 DOI: 10.1146/annurev.nutr.20.1.169] [Citation(s) in RCA: 223] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Apolipoprotein (apo)B circulates in two distinct forms, apoB100 and apoB48. Human liver secretes apoB100, the product of a large mRNA encoding 4536 residues. The small intestine of all mammals secretes apoB48, which arises following C-to-U deamination of a single cytidine base in the nuclear apoB transcript, introducing a translational stop codon. This process, referred to as apoB RNA editing, operates through a multicomponent enzyme complex that contains a single catalytic subunit, apobec-1, in addition to other protein factors that have yet to be cloned. ApoB RNA editing also exhibits stringent cis-acting requirements that include both structural and sequence-specific elements-specifically efficiency elements that flank the minimal cassette, an AU-rich RNA context, and an 11-nucleotide mooring sequence-located in proximity to a suitably positioned (usually upstream) cytidine. C-to-U RNA editing may become unconstrained under circumstances where apobec-1 is overexpressed, in which case multiple cytidines in apoB RNA, as well as in other transcripts, undergo C-to-U editing. ApoB RNA editing is eliminated following targeting of apobec-1, establishing that there is no genetic redundancy in this function. Under physiological circumstances, apoB RNA editing exhibits developmental, hormonal, and nutritional regulation, in some cases related to transcriptional regulation of apobec-1 mRNA. ApoB and the microsomal triglyceride transfer protein (MTP) are essential for the assembly and secretion of apoB-containing lipoproteins. MTP functions by transferring lipid to apoB during its translation and by transporting triglycerides into the endoplasmic reticulum to form apoB-free lipid droplets. These droplets fuse with nascent apoB-containing particles to form mature, very low-density lipoproteins or chylomicrons. In cultured hepatic cells, lipid availability dictates the rate of apoB production. Unlipidated or underlipidated forms of apoB are subjected to presecretory degradation, a process mediated by retrograde transport from the lumen of the endoplasmic reticulum to the cytosol, coupled with multiubquitination and proteasomal degradation. Although control of lipid secretion in vivo is primarily achieved at the level of lipoprotein particle size, regulation of apoB production by presecretory degradation may be relevant in some dyslipidemic states.
Collapse
Affiliation(s)
- N O Davidson
- Departments of Medicine and Molecular Biology and Pharmacology, Washington University Medical School, St. Louis, Missouri 63110, USA.
| | | |
Collapse
|
13
|
Ali BR, Claxton S, Field MC. Export of a misprocessed GPI-anchored protein from the endoplasmic reticulum in vitro in an ATP- and cytosol-dependent manner. FEBS Lett 2000; 483:32-36. [PMID: 11033351 DOI: 10.1016/s0014-5793(00)02073-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Strict quality control mechanisms within the mammalian endoplasmic reticulum act to prevent misfolded and unprocessed proteins from entering post-endoplasmic reticulum (ER) compartments. Following translocation into the ER lumen via the Sec61p translocon, nascent polypeptide chains fold and are modified in an environment that contains numerous chaperones and other folding mediators. Recently it has emerged that polypeptides failing to acquire the native state are re-exported from the ER to the cytosol for ultimate degradation by the proteasome ubiquitin system, apparently mediated again via Sec61p. Substrates for this degradation pathway include proteins destined to become glycosyl phosphatidylinositol (GPI)-anchored, but which fail to be processed and retain the C-terminal GPI signal peptide. In order to characterise this process we have used a model GPI-anchored mutant protein, prepro mini human placental alkaline phosphatase (PLAP) W179, which cannot be processed efficiently on account of being a poor substrate for the transamidase which cleaves the GPI signal peptide and adds the GPI anchor in a coupled reaction. In vitro transcription, translation and translocation into canine pancreatic microsomes resulted in ER-targeting signal sequence cleavage and formation of prominiPLAP in the ER lumen. We were able to show that prominiPLAPW179 could be exported from the microsomes in a time-dependent manner and that release requires both ATP and cytosol. Export was not supported by GTP, indicating a biochemical distinction from glycopeptide export which we showed recently requires GTP hydrolysis. The process was not affected by redox, unlike several other GPI-anchored model proteins. These data demonstrate that misprocessed proteins can be exported in vitro from mammalian microsomes, facilitating identification of factors involved in this process.
Collapse
Affiliation(s)
- B R Ali
- Centre for Molecular Microbiology and Infection, Wellcome Trust Laboratories for Molecular Parasitology, Department of Biochemistry, Imperial College of Science, Technology and Medicine, Exhibition Road, SW7 2AY, London, UK
| | | | | |
Collapse
|
14
|
Abstract
Cotranslational protein translocation across and integration into the membrane of the endoplasmic reticulum (ER) occur at sites termed translocons. Translocons are composed of several ER membrane proteins that associate to form an aqueous pore through which secretory proteins and lumenal domains of membrane proteins pass from the cytoplasm to the ER lumen. These sites are not passive holes in the bilayer, but instead are quite dynamic both structurally and functionally. Translocons cycle between ribosome-bound and ribosome-free states, and convert between translocation and integration modes of operation. These changes in functional state are accompanied by structural rearrangements that alter translocon conformation, composition, and interactions with ligands such as the ribosome and BiP. Recent studies have revealed that the translocon is a complex and sophisticated molecular machine that regulates the movement of polypeptides through the bilayer, apparently in both directions as well as laterally into the bilayer, all while maintaining the membrane permeability barrier.
Collapse
Affiliation(s)
- A E Johnson
- Department of Medical Biochemistry, Texas A&M University, College Station 77843, USA.
| | | |
Collapse
|
15
|
Zheng T, Nicchitta CV. Structural determinants for signal sequence function in the mammalian endoplasmic reticulum. J Biol Chem 1999; 274:36623-30. [PMID: 10593964 DOI: 10.1074/jbc.274.51.36623] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signal sequences function in protein targeting to and translocation across the endoplasmic reticulum membrane. To investigate the structural requirements for signal sequence function, chimeras of the Escherichia coli LamB signal peptide and prolactin were prepared. The LamB signal peptide was chosen by virtue of the extensive biophysical and biological characterization of its activity. In vitro, nascent prolactin chains bearing the LamB signal peptide (LamB) were targeted in a signal recognition particle (SRP)-dependent manner to rough microsomes but remained protease- and salt-sensitive and translocated at low efficiency. Full translocation activity was obtained in a gain of function mutant (LamB*) in which three hydrophobic residues in the LamB hydrophobic core were converted to leucine residues. Cross-linking studies demonstrated that the LamB* signal sequence displayed markedly enhanced interactions with SRP and integral membrane proteins. In contrast, chemically denatured LamB and LamB*-precursors bound with identical efficiencies and in a salt-resistant manner to rough microsomes, suggesting that during de novo synthesis the signal sequence of LamB-bearing precursors assumes a conformation refractory to translocation. These data indicate that a leucine-rich signal sequence is necessary for optimal interaction with SRP and suggest that SRP, by maintaining the signal sequence in a conformation suitable for membrane binding, performs a chaperone function.
Collapse
Affiliation(s)
- T Zheng
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
16
|
Huang XF, Shelness GS. Efficient glycosylation site utilization by intracellular apolipoprotein B: implications for proteasomal degradation. J Lipid Res 1999. [DOI: 10.1016/s0022-2275(20)32096-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
17
|
Affiliation(s)
- K E Matlack
- Howard Hughes Medical Institute, and Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | |
Collapse
|
18
|
Raden D, Gilmore R. Signal recognition particle-dependent targeting of ribosomes to the rough endoplasmic reticulum in the absence and presence of the nascent polypeptide-associated complex. Mol Biol Cell 1998; 9:117-30. [PMID: 9436995 PMCID: PMC25226 DOI: 10.1091/mbc.9.1.117] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/1997] [Accepted: 10/21/1997] [Indexed: 02/05/2023] Open
Abstract
Proteins with RER-specific signal sequences are cotranslationally translocated across the rough endoplasmic reticulum through a proteinaceous channel composed of oligomers of the Sec61 complex. The Sec61 complex also binds ribosomes with high affinity. The dual function of the Sec61 complex necessitates a mechanism to prevent signal sequence-independent binding of ribosomes to the translocation channel. We have examined the hypothesis that the signal recognition particle (SRP) and the nascent polypeptide-associated complex (NAC), respectively, act as positive and negative regulatory factors to mediate the signal sequence-specific attachment of the ribosome-nascent chain complex (RNC) to the translocation channel. Here, SRP-independent translocation of a nascent secretory polypeptide was shown to occur in the presence of endogenous wheat germ or rabbit reticulocyte NAC. Furthermore, SRP markedly enhanced RNC binding to the translocation channel irrespective of the presence of NAC. Binding of RNCs, but not SRP-RNCs, to the Sec61 complex is competitively inhibited by 80S ribosomes. Thus, the SRP-dependent targeting pathway provides a mechanism for delivery of RNCs to the translocation channel that is not inhibited by the nonselective interaction between the ribosome and the Sec61 complex.
Collapse
Affiliation(s)
- D Raden
- Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01655-0103, USA
| | | |
Collapse
|
19
|
Brodsky JL. Translocation of proteins across the endoplasmic reticulum membrane. INTERNATIONAL REVIEW OF CYTOLOGY 1997; 178:277-328. [PMID: 9348672 DOI: 10.1016/s0074-7696(08)62139-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Secretory protein biogenesis begins with the insertion of a preprotein into the lumen of the endoplasmic reticulum (ER). This insertion event, known as ER protein translocation, can occur either posttranslationally, in which the preprotein is completely synthesized on cytosolic ribosomes before being translocated, or cotranslationally, in which membrane-associated ribosomes direct the nascent polypeptide chain into the ER concomitant with polypeptide elongation. In either case, preproteins are targeted to the ER membrane through specific interactions with cytosolic and/or ER membrane factors. The preprotein is then transferred to a multiprotein translocation machine in the ER membrane that includes a pore through which the preprotein passes into the ER lumen. The energy required to drive protein translocation may derive either from the coupling of translation to translocation (during cotranslational translocation) or from ER lumenal molecular chaperones that may harness the preprotein or regulate the translocation machinery (during posttranslational translocation).
Collapse
Affiliation(s)
- J L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pennsylvania 15260, USA
| |
Collapse
|
20
|
Nicchitta CV, Zheng T. Regulation of the ribosome-membrane junction at early stages of presecretory protein translocation in the mammalian endoplasmic reticulum. J Cell Biol 1997; 139:1697-708. [PMID: 9412465 PMCID: PMC2132637 DOI: 10.1083/jcb.139.7.1697] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A series of fusion protein constructs were designed to investigate the contribution of secretory nascent chains to regulation of the ribosome-membrane junction in the mammalian endoplasmic reticulum. As a component of these studies, the membrane topology of the signal sequence was determined at stages of protein translocation immediately after targeting and before signal sequence cleavage. Truncated translation products were used to delimit the analysis to defined stages of translocation. In a study of secretory protein precursors, formation of a protease-resistant ribosome-membrane junction, currently thought to define the pathway of the translocating nascent chain, was observed to be precursor- and stage-dependent. Analysis of the binding of early intermediates indicated that the nascent chain was bound to the membrane independent of the ribosome, and that the binding was predominately electrostatic. The membrane topology of the signal sequence was determined as a function of the stage of translocation, and was found to be identical for all assayed intermediates. Unexpectedly, the hydrophobic core of the signal sequence was observed to be accessible to the cytosolic face of the membrane at stages of translocation immediately after targeting as well as stages before signal sequence cleavage. Removal of the ribosome from bound intermediates did not disrupt subsequent translocation, suggesting that the active state of the protein-conducting channel is maintained in the absence of the bound ribosome. A model describing a potential mode of regulation of the ribosome-membrane junction by the nascent chain is presented.
Collapse
Affiliation(s)
- C V Nicchitta
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
21
|
Abstract
The components responsible for protein translocation across the endoplasmic reticulum membrane have been identified and their functions have been clarified in vitro. The structural features of the signal peptide specify the factors and pathways of membrane translocation. Various chaperones and folding enzymes are involved in the folding and quality control of secretory proteins in the lumen.
Collapse
Affiliation(s)
- M Sakaguchi
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan.
| |
Collapse
|
22
|
|
23
|
Haynes RL, Zheng T, Nicchitta CV. Structure and folding of nascent polypeptide chains during protein translocation in the endoplasmic reticulum. J Biol Chem 1997; 272:17126-33. [PMID: 9202031 DOI: 10.1074/jbc.272.27.17126] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
To investigate the role of protein folding and chaperone-nascent chain interactions in translocation across the endoplasmic reticulum membrane, the translocation of wild type and mutant forms of preprolactin were studied in vivo and in vitro. The preprolactin mutant studied contains an 18-amino acid substitution at the amino terminus of the mature protein, eliminating a disulfide-bonded loop domain. In COS-7 cells, mutant prolactin accumulated in the endoplasmic reticulum as stable protein-protein and disulfide-bonded aggregates, whereas wild type prolactin was efficiently secreted. In vitro, wild type and mutant preprolactin translocated with equal efficiency although both translation products were recovered as heterogeneous aggregates. Studies with translocation intermediates indicated that aggregation occurred co-translationally. To evaluate the contribution of lumenal chaperones to translocation and folding, in vitro studies were performed with native and reconstituted, chaperone-deficient membranes. The absence of lumenal chaperones was associated with a decrease in translocation efficiency and pronounced aggregation of the translation products. These studies suggest that chaperone-nascent chain interactions significantly enhance translocation and indicate that in the absence of such interactions, aggregation can serve as the predominant in vitro protein folding end point. The ramifications of these observations on investigations into the mechanism of translocation are discussed.
Collapse
Affiliation(s)
- R L Haynes
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
24
|
Murphy EC, Zheng T, Nicchitta CV. Identification of a novel stage of ribosome/nascent chain association with the endoplasmic reticulum membrane. J Biophys Biochem Cytol 1997; 136:1213-26. [PMID: 9087438 PMCID: PMC2132505 DOI: 10.1083/jcb.136.6.1213] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Protein translocation in the mammalian endoplasmic reticulum (ER) occurs cotranslationally and requires the binding of translationally active ribosomes to components of the ER membrane. Three candidate ribosome receptors, p180, p34, and Sec61p, have been identified in binding studies with inactive ribosomes, suggesting that ribosome binding is mediated through a receptor-ligand interaction. To determine if the binding of nascent chain-bearing ribosomes is regulated in a manner similar to inactive ribosomes, we have investigated the ribosome/nascent chain binding event that accompanies targeting. In agreement with previous reports, indicating that Sec61p displays the majority of the ER ribosome binding activity, we observed that Sec61p is shielded from proteolytic digestion by native, bound ribosomes. The binding of active, nascent chain bearing ribosomes to the ER membrane is, however, insensitive to the ribosome occupancy state of Sec61p. To determine if additional, Sec61p independent, stages of the ribosome binding reaction could be identified, ribosome/nascent chain binding was assayed as a function of RM concentration. At limiting RM concentrations, a protease resistant ribosome-membrane junction was formed, yet the nascent chain was salt extractable and cross-linked to Sec61p with low efficiency. At nonlimiting RM concentrations, bound nascent chains were protease and salt resistant and cross-linked to Sec61p with higher efficiency. On the basis of these and other data, we propose that ribosome binding to the ER membrane is a multi-stage process comprised of an initial, Sec61p independent binding event, which precedes association of the ribosome/nascent chain complex with Sec61p.
Collapse
Affiliation(s)
- E C Murphy
- Duke University Medical Center, Department of Cell Biology, Durham, North Carolina 27710, USA
| | | | | |
Collapse
|
25
|
Laird V, High S. Discrete cross-linking products identified during membrane protein biosynthesis. J Biol Chem 1997; 272:1983-9. [PMID: 8999890 DOI: 10.1074/jbc.272.3.1983] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have investigated the molecular details of the membrane insertion of the multiple-spanning membrane protein opsin. Using heterobifunctional cross-linking reagents the endoplasmic reticulum (ER) proteins adjacent to a series of defined translocation intermediates were determined. Once the nascent opsin chain reaches a critical minimum length Sec61alpha is the major ER component adjacent to the polypeptide. Using a homobifunctional reagent, the cross-linking partners from a single cysteine residue in the nascent chain were analyzed. This approach identified chain length-dependent cross-linking products between nascent opsin and a 21-kDa ribosomal protein, followed by Sec61beta and finally with Sec61alpha. Our data support a model where the sequential transmembrane domains of a multiple-spanning membrane protein are integrated at an ER insertion site similar to that mediating the insertion of single-spanning membrane proteins.
Collapse
Affiliation(s)
- V Laird
- School of Biological Sciences, University of Manchester, 2.205 Stopford Building, Oxford Road, Manchester, M13 9PT United Kingdom
| | | |
Collapse
|
26
|
Hanein D, Matlack KE, Jungnickel B, Plath K, Kalies KU, Miller KR, Rapoport TA, Akey CW. Oligomeric rings of the Sec61p complex induced by ligands required for protein translocation. Cell 1996; 87:721-32. [PMID: 8929540 DOI: 10.1016/s0092-8674(00)81391-4] [Citation(s) in RCA: 251] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The heterotrimeric Sec61p complex is a major component of the protein-conducting channel of the endoplasmic reticulum (ER) membrane, associating with either ribosomes or the Sec62/63 complex to perform co- and posttranslational transport, respectively. We show by electron microscopy that purified mammalian and yeast Sec61p complexes in detergent form cylindrical oligomers with a diameter of approximately 85 A and a central pore of approximately 20 A. Each oligomer contains 3-4 heterotrimers. Similar ring structures are seen in reconstituted proteoliposomes and native membranes. Oligomer formation by the reconstituted Sec61p complex is stimulated by its association with ribosomes or the Sec62/63p complex. We propose that these cylindrical oligomers represent protein-conducting channels of the ER, formed by ligands specific for co- and posttranslational transport.
Collapse
Affiliation(s)
- D Hanein
- Department of Biophysics, Boston University School of Medicine, Massachusetts 02218-2394, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Do H, Falcone D, Lin J, Andrews DW, Johnson AE. The cotranslational integration of membrane proteins into the phospholipid bilayer is a multistep process. Cell 1996; 85:369-78. [PMID: 8616892 DOI: 10.1016/s0092-8674(00)81115-0] [Citation(s) in RCA: 199] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During the cotranslational integration of a nascent protein into the endoplasmic reticulum membrane, the transmembrane (TM) sequence moves out of an aqueous pore formed by Sec61alpha, TRAM, and other proteins and into the nonpolar lipid bilayer. Photocross-linking reveals that this movement involves the sequential passage of the TM domain through three different proteinaceous environments: one adjacent to Sec61alpha and TRAM and two adjacent to TRAM that place different restrictions on TM domain movement. In addition, the TM sequence is not allowed to diffuse into the bilayer from the final TRAM-proximal site until translation terminates. Cotranslational integration is therefore linked to translation and occurs via an ordered multistep pathway at an endoplasmic reticulum site that is multilayered both structurally and functionally.
Collapse
Affiliation(s)
- H Do
- Department of Medical Biochemistry & Genetics, Texas A&M University Health Science Center, College Station 77843-1114, USA
| | | | | | | | | |
Collapse
|
28
|
Finke K, Plath K, Panzner S, Prehn S, Rapoport TA, Hartmann E, Sommer T. A second trimeric complex containing homologs of the Sec61p complex functions in protein transport across the ER membrane of S. cerevisiae. EMBO J 1996; 15:1482-94. [PMID: 8612571 PMCID: PMC450055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Yeast microsomes contain a heptameric Sec complex involved in post-translational protein transport that is composed of a heterotrimeric Sec61p complex and a tetrameric Sec62-Sec63 complex. The trimeric Sec61p complex also exists as a separate entity that probably functions in co-translational protein transport, like its homolog in mammals. We have now discovered in the yeast endoplasmic reticulum membrane a second, structurally related trimeric complex, named Ssh1p complex. It consists of Ssh1p1 (Sec sixty-one homolog 1), a rather distant relative of Sec61p, of Sbh2p, a homolog of the Sbh1p subunit of the Sec61p complex, and of Sss1p, a component common to both trimeric complexes. In contrast to Sec61p, Ssh1p is not essential for cell viability but it is required for normal growth rates. Sbh1p and Sbh2p individually are also not essential, but cells lacking both proteins are impaired in their growth at elevated temperatures and accumulate precursors of secretory proteins; microsomes isolated from these cells also exhibit a reduced rate of post-translational protein transport. Like the Sec61p complex, the Ssh1p complex interacts with membrane-bound ribosomes, but it does not associate with the Sec62-Sec63p complex to form a heptameric Sec complex. We therefore propose that it functions exclusively in the co-translational pathway of protein transport.
Collapse
Affiliation(s)
- K Finke
- Max-Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | | | | | |
Collapse
|
29
|
Whitley P, Nilsson IM, von Heijne G. A nascent secretory protein may traverse the ribosome/endoplasmic reticulum translocase complex as an extended chain. J Biol Chem 1996; 271:6241-4. [PMID: 8626416 DOI: 10.1074/jbc.271.11.6241] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We have measured the minimum number of residues in a translocating polypeptide required to bridge the distance between the P-site in endoplasmic reticulum-bound ribosomes and the lumenally disposed active site of the oligosaccharyl transferase. The results suggest that a nascent chain may traverse the ribosome/translocase complex in a largely extended conformation, and that hydrophobic stop-transfer segments have a more compact, possibly alpha-helical conformation in the translocase.
Collapse
Affiliation(s)
- P Whitley
- Department of Biochemistry, Stockholm University, Sweden
| | | | | |
Collapse
|