1
|
Zhang M, Díaz-Celis C, Liu J, Tao J, Ashby PD, Bustamante C, Ren G. Angle between DNA linker and nucleosome core particle regulates array compaction revealed by individual-particle cryo-electron tomography. Nat Commun 2024; 15:4395. [PMID: 38782894 PMCID: PMC11116431 DOI: 10.1038/s41467-024-48305-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/26/2024] [Indexed: 05/25/2024] Open
Abstract
The conformational dynamics of nucleosome arrays generate a diverse spectrum of microscopic states, posing challenges to their structural determination. Leveraging cryogenic electron tomography (cryo-ET), we determine the three-dimensional (3D) structures of individual mononucleosomes and arrays comprising di-, tri-, and tetranucleosomes. By slowing the rate of condensation through a reduction in ionic strength, we probe the intra-array structural transitions that precede inter-array interactions and liquid droplet formation. Under these conditions, the arrays exhibite irregular zig-zag conformations with loose packing. Increasing the ionic strength promoted intra-array compaction, yet we do not observe the previously reported regular 30-nanometer fibers. Interestingly, the presence of H1 do not induce array compaction; instead, one-third of the arrays display nucleosomes invaded by foreign DNA, suggesting an alternative role for H1 in chromatin network construction. We also find that the crucial parameter determining the structure adopted by chromatin arrays is the angle between the entry and exit of the DNA and the corresponding tangents to the nucleosomal disc. Our results provide insights into the initial stages of intra-array compaction, a critical precursor to condensation in the regulation of chromatin organization.
Collapse
Affiliation(s)
- Meng Zhang
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - César Díaz-Celis
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jianfang Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jinhui Tao
- Physical Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Paul D Ashby
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Carlos Bustamante
- Applied Science and Technology Graduate Group, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA.
- Department of Chemistry, University of California, Berkeley, CA, USA.
- Department of Physics, University of California, Berkeley, CA, USA.
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Kavli Energy Nanoscience Institute, University of California, Berkeley, CA, USA.
| | - Gang Ren
- The Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
2
|
Li Y, Zhang H, Li X, Wu W, Zhu P. Cryo-ET study from in vitro to in vivo revealed a general folding mode of chromatin with two-start helical architecture. Cell Rep 2023; 42:113134. [PMID: 37708029 DOI: 10.1016/j.celrep.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
The organization and dynamics of chromatin fiber play crucial roles in regulating DNA accessibility for gene expression. Here we combine cryoelectron tomography (cryo-ET), sub-volume averaging, and 3D segmentation to visualize the in vitro and in vivo chromatin fibers folding by linker histone. We discover that an increased nucleosome repeat length and prolonged fiber length do not change the two-start helical architecture in reconstituted chromatin of homogeneous composition. Additionally, an isolated chromatin fiber with heterogeneous composition was observed, which includes short-range regions compatible with two-start helix. In vivo, sub-volume averaging reveals similar subunits of two-start helical architecture in transcriptionally inactive chromatin in frog erythrocyte nuclei. Strikingly, unambiguous DNA trajectories that displayed a zigzag pattern universally between alternate N/N+2 nucleosomes were further determined by cryo-ET with voltage phase plate. Therefore, these structural similarities suggest a general folding mode of chromatin induced by linker histone, and heterogeneous compositions mainly affect local conformation rather than changing the overall architecture.
Collapse
Affiliation(s)
- Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Haonan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang M, Li J, Wang Y, Fu H, Qiu H, Li Y, Li M, Lu Y, Fu YV. Single-molecule study reveals Hmo1, not Hho1, promotes chromatin assembly in budding yeast. mBio 2023; 14:e0099323. [PMID: 37432033 PMCID: PMC10470511 DOI: 10.1128/mbio.00993-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 05/25/2023] [Indexed: 07/12/2023] Open
Abstract
Linker histone H1 plays a crucial role in various biological processes, including nucleosome stabilization, high-order chromatin structure organization, gene expression, and epigenetic regulation in eukaryotic cells. Unlike higher eukaryotes, little about the linker histone in Saccharomyces cerevisiae is known. Hho1 and Hmo1 are two long-standing controversial histone H1 candidates in budding yeast. In this study, we directly observed at the single-molecule level that Hmo1, but not Hho1, is involved in chromatin assembly in the yeast nucleoplasmic extracts (YNPE), which can replicate the physiological condition of the yeast nucleus. The presence of Hmo1 facilitates the assembly of nucleosomes on DNA in YNPE, as revealed by single-molecule force spectroscopy. Further single-molecule analysis showed that the lysine-rich C-terminal domain (CTD) of Hmo1 is essential for the function of chromatin compaction, while the second globular domain at the C-terminus of Hho1 impairs its ability. In addition, Hmo1, but not Hho1, forms condensates with double-stranded DNA via reversible phase separation. The phosphorylation fluctuation of Hmo1 coincides with metazoan H1 during the cell cycle. Our data suggest that Hmo1, but not Hho1, possesses some functionality similar to that of linker histone in Saccharomyces cerevisiae, even though some properties of Hmo1 differ from those of a canonical linker histone H1. Our study provides clues for the linker histone H1 in budding yeast and provides insights into the evolution and diversity of histone H1 across eukaryotes. IMPORTANCE There has been a long-standing debate regarding the identity of linker histone H1 in budding yeast. To address this issue, we utilized YNPE, which accurately replicate the physiological conditions in yeast nuclei, in combination with total internal reflection fluorescence microscopy and magnetic tweezers. Our findings demonstrated that Hmo1, rather than Hho1, is responsible for chromatin assembly in budding yeast. Additionally, we found that Hmo1 shares certain characteristics with histone H1, including phase separation and phosphorylation fluctuations throughout the cell cycle. Furthermore, we discovered that the lysine-rich domain of Hho1 is buried by its second globular domain at the C-terminus, resulting in the loss of function that is similar to histone H1. Our study provides compelling evidence to suggest that Hmo1 shares linker histone H1 function in budding yeast and contributes to our understanding of the evolution of linker histone H1 across eukaryotes.
Collapse
Affiliation(s)
- Mengxue Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinghua Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Yong Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Fu
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Haoning Qiu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yanying Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ming Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physics, University of Chinese Academy of Sciences, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong, China
| | - Yu Vincent Fu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Li Z, Portillo-Ledesma S, Schlick T. Brownian dynamics simulations of mesoscale chromatin fibers. Biophys J 2023; 122:2884-2897. [PMID: 36116007 PMCID: PMC10397810 DOI: 10.1016/j.bpj.2022.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/02/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
The relationship between chromatin architecture and function defines a central problem in biology and medicine. Many computational chromatin models with atomic, coarse-grained, mesoscale, and polymer resolution have been used to shed light onto the mechanisms that dictate genome folding and regulation of gene expression. The associated simulation techniques range from Monte Carlo to molecular, Brownian, and Langevin dynamics. Here, we present an efficient Compute Unified Device Architecture (CUDA) implementation of Brownian dynamics (BD) to simulate chromatin fibers at the nucleosome resolution with our chromatin mesoscale model. With the CUDA implementation for computer architectures with graphic processing units (GPUs), we significantly accelerate compute-intensive hydrodynamic tensor calculations in the BD simulations by massive parallelization, boosting the performance a hundred-fold compared with central processing unit calculations. We validate our BD simulation approach by reproducing experimental trends on fiber diffusion and structure as a function of salt, linker histone binding, and histone-tail composition, as well as Monte Carlo equilibrium sampling results. Our approach proves to be physically accurate with performance that makes feasible the study of chromatin fibers in the range of kb or hundreds of nucleosomes (small gene). Such simulations are essential to advance the study of biological processes such as gene regulation and aberrant genome-structure related diseases.
Collapse
Affiliation(s)
- Zilong Li
- Department of Chemistry, New York University, New York, New York
| | | | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York; Courant Institute of Mathematical Sciences, New York University, New York, New York; New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, China; Simons Center for Computational Physical Chemistry, New York University, New York, New York.
| |
Collapse
|
5
|
Bogomolov A, Filonov S, Chadaeva I, Rasskazov D, Khandaev B, Zolotareva K, Kazachek A, Oshchepkov D, Ivanisenko VA, Demenkov P, Podkolodnyy N, Kondratyuk E, Ponomarenko P, Podkolodnaya O, Mustafin Z, Savinkova L, Kolchanov N, Tverdokhleb N, Ponomarenko M. Candidate SNP Markers Significantly Altering the Affinity of TATA-Binding Protein for the Promoters of Human Hub Genes for Atherogenesis, Atherosclerosis and Atheroprotection. Int J Mol Sci 2023; 24:ijms24109010. [PMID: 37240358 DOI: 10.3390/ijms24109010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Atherosclerosis is a systemic disease in which focal lesions in arteries promote the build-up of lipoproteins and cholesterol they are transporting. The development of atheroma (atherogenesis) narrows blood vessels, reduces the blood supply and leads to cardiovascular diseases. According to the World Health Organization (WHO), cardiovascular diseases are the leading cause of death, which has been especially boosted since the COVID-19 pandemic. There is a variety of contributors to atherosclerosis, including lifestyle factors and genetic predisposition. Antioxidant diets and recreational exercises act as atheroprotectors and can retard atherogenesis. The search for molecular markers of atherogenesis and atheroprotection for predictive, preventive and personalized medicine appears to be the most promising direction for the study of atherosclerosis. In this work, we have analyzed 1068 human genes associated with atherogenesis, atherosclerosis and atheroprotection. The hub genes regulating these processes have been found to be the most ancient. In silico analysis of all 5112 SNPs in their promoters has revealed 330 candidate SNP markers, which statistically significantly change the affinity of the TATA-binding protein (TBP) for these promoters. These molecular markers have made us confident that natural selection acts against underexpression of the hub genes for atherogenesis, atherosclerosis and atheroprotection. At the same time, upregulation of the one for atheroprotection promotes human health.
Collapse
Affiliation(s)
- Anton Bogomolov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Sergey Filonov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Dmitry Rasskazov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Bato Khandaev
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Karina Zolotareva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Anna Kazachek
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- The Natural Sciences Department, Novosibirsk State University, Novosibirsk 630090, Russia
| | - Dmitry Oshchepkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Vladimir A Ivanisenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Pavel Demenkov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Podkolodnyy
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
- Institute of Computational Mathematics and Mathematical Geophysics, Novosibirsk 630090, Russia
| | - Ekaterina Kondratyuk
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Zakhar Mustafin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Natalya Tverdokhleb
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| | - Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS), Novosibirsk 630090, Russia
| |
Collapse
|
6
|
Louro JA, Boopathi R, Beinsteiner B, Mohideen Patel AK, Cheng TC, Angelov D, Hamiche A, Bendar J, Kale S, Klaholz BP, Dimitrov S. Nucleosome dyad determines the H1 C-terminus collapse on distinct DNA arms. Structure 2023; 31:201-212.e5. [PMID: 36610392 DOI: 10.1016/j.str.2022.12.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/19/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023]
Abstract
Nucleosomes are symmetric structures. However, binding of linker histones generates an inherently asymmetric H1-nucleosome complex, and whether this asymmetry is transmitted to the overall nucleosome structure, and therefore also to chromatin, is unclear. Efforts to investigate potential asymmetry due to H1s have been hampered by the DNA sequence, which naturally differs in each gyre. To overcome this issue, we designed and analyzed by cryo-EM a nucleosome reconstituted with a palindromic (601L) 197-bp DNA. As in the non-palindromic 601 sequence, H1 restricts linker DNA flexibility but reveals partial asymmetrical unwrapping. However, in contrast to the non-palindromic nucleosome, in the palindromic nucleosome H1 CTD collapses to the proximal linker. Molecular dynamics simulations show that this could be dictated by a slightly tilted orientation of the globular domain (GD) of H1, which could be linked to the DNA sequence of the nucleosome dyad.
Collapse
Affiliation(s)
- Jaime Alegrio Louro
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Brice Beinsteiner
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Abdul Kareem Mohideen Patel
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Tat Cheung Cheng
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Dimitar Angelov
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS, Laboratoire de Biologie et de Modélisation de la Cellule (LBMC), 46 Allée d'Italie, 69007 Lyon, France
| | - Ali Hamiche
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France; Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch, France
| | - Jan Bendar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France.
| | - Seyit Kale
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 1 rue Laurent Fries, 67404 Illkirch, France.
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante' - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balçova, 35330 Izmir, Turkey.
| |
Collapse
|
7
|
Three-Way DNA Junction as an End Label for DNA in Atomic Force Microscopy Studies. Int J Mol Sci 2022; 23:ijms231911404. [PMID: 36232705 PMCID: PMC9569629 DOI: 10.3390/ijms231911404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Atomic Force Microscopy (AFM) is widely used for topographic imaging of DNA and protein-DNA complexes in ambient conditions with nanometer resolution. In AFM studies of protein-DNA complexes, identifying the protein’s location on the DNA substrate is one of the major goals. Such studies require distinguishing between the DNA ends, which can be accomplished by end-specific labeling of the DNA substrate. We selected as labels three-way DNA junctions (3WJ) assembled from synthetic DNA oligonucleotides with two arms of 39–40 bp each. The third arm has a three-nucleotide overhang, GCT, which is paired with the sticky end of the DNA substrate generated by the SapI enzyme. Ligation of the 3WJ results in the formation of a Y-type structure at the end of the linear DNA mole cule, which is routinely identified in the AFM images. The yield of labeling is 69%. The relative orientation of arms in the Y-end varies, such dynamics were directly visualized with time-lapse AFM studies using high-speed AFM (HS-AFM). This labeling approach was applied to the characterization of the nucleosome arrays assembled on different DNA templates. HS-AFM experiments revealed a high dynamic of nucleosomes resulting in a spontaneous unraveling followed by disassembly of nucleosomes.
Collapse
|
8
|
Boopathi R, Dimitrov S, Hamiche A, Petosa C, Bednar J. Cryo-electron microscopy of the chromatin fiber. Curr Opin Struct Biol 2020; 64:97-103. [PMID: 32717688 DOI: 10.1016/j.sbi.2020.06.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 06/16/2020] [Accepted: 06/22/2020] [Indexed: 01/10/2023]
Abstract
The three-dimensional (3D) organization of chromatin plays a crucial role in the regulation of gene expression. Chromatin conformation is strongly affected by the composition, structural features and dynamic properties of the nucleosome, which in turn determine the nature and geometry of interactions that can occur between neighboring nucleosomes. Understanding how chromatin is spatially organized above the nucleosome level is thus essential for understanding how gene regulation is achieved. Towards this end, great effort has been made to understand how an array of nucleosomes folds into a regular chromatin fiber. This review summarizes new insights into the 3D structure of the chromatin fiber that were made possible by recent advances in cryo-electron microscopy.
Collapse
Affiliation(s)
- Ramachandran Boopathi
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Stefan Dimitrov
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus, Balcova, Izmir 35330, Turkey
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Carlo Petosa
- Université Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 38000 Grenoble, France
| | - Jan Bednar
- Université Grenoble Alpes, CNRS UMR 5309, INSERM U1209, Institute for Advanced Biosciences (IAB), Site Sante´ - Allée des Alpes, 38700 La Tronche, France; Laboratory of the Biology and Pathology of the Eye, Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Albertov 4, 128 00 Prague 2, Czech Republic.
| |
Collapse
|
9
|
Lequieu J, Córdoba A, Moller J, de Pablo JJ. 1CPN: A coarse-grained multi-scale model of chromatin. J Chem Phys 2019; 150:215102. [PMID: 31176328 DOI: 10.1063/1.5092976] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A central question in epigenetics is how histone modifications influence the 3D structure of eukaryotic genomes and, ultimately, how this 3D structure is manifested in gene expression. The wide range of length scales that influence the 3D genome structure presents important challenges; epigenetic modifications to histones occur on scales of angstroms, yet the resulting effects of these modifications on genome structure can span micrometers. There is a scarcity of computational tools capable of providing a mechanistic picture of how molecular information from individual histones is propagated up to large regions of the genome. In this work, a new molecular model of chromatin is presented that provides such a picture. This new model, referred to as 1CPN, is structured around a rigorous multiscale approach, whereby free energies from an established and extensively validated model of the nucleosome are mapped onto a reduced coarse-grained topology. As such, 1CPN incorporates detailed physics from the nucleosome, such as histone modifications and DNA sequence, while maintaining the computational efficiency that is required to permit kilobase-scale simulations of genomic DNA. The 1CPN model reproduces the free energies and dynamics of both single nucleosomes and short chromatin fibers, and it is shown to be compatible with recently developed models of the linker histone. It is applied here to examine the effects of the linker DNA on the free energies of chromatin assembly and to demonstrate that these free energies are strongly dependent on the linker DNA length, pitch, and even DNA sequence. The 1CPN model is implemented in the LAMMPS simulation package and is distributed freely for public use.
Collapse
Affiliation(s)
- Joshua Lequieu
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Andrés Córdoba
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Joshua Moller
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| | - Juan J de Pablo
- Institute for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
10
|
Chromatin fiber structural motifs as regulatory hubs of genome function? Essays Biochem 2019; 63:123-132. [PMID: 30967476 PMCID: PMC6484786 DOI: 10.1042/ebc20180065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/13/2019] [Accepted: 03/13/2019] [Indexed: 02/07/2023]
Abstract
Nucleosomes cover eukaryotic genomes like beads on a string and play a central role in regulating genome function. Isolated strings of nucleosomes have the potential to compact and form higher order chromatin structures, such as the well-characterized 30-nm fiber. However, despite tremendous advances in observing chromatin fibers in situ it has not been possible to confirm that regularly ordered fibers represent a prevalent structural level in the folding of chromosomes. Instead, it appears that folding at a larger scale than the nucleosome involves a variety of random structures with fractal characteristics. Nevertheless, recent progress provides evidence for the existence of structural motifs in chromatin fibers, potentially localized to strategic sites in the genome. Here we review the current understanding of chromatin fiber folding and the emerging roles that oligonucleosomal motifs play in the regulation of genome function.
Collapse
|
11
|
Ohno M, Ando T, Priest DG, Kumar V, Yoshida Y, Taniguchi Y. Sub-nucleosomal Genome Structure Reveals Distinct Nucleosome Folding Motifs. Cell 2019; 176:520-534.e25. [DOI: 10.1016/j.cell.2018.12.014] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 10/16/2018] [Accepted: 12/09/2018] [Indexed: 12/11/2022]
|
12
|
Bednar J, Garcia-Saez I, Boopathi R, Cutter AR, Papai G, Reymer A, Syed SH, Lone IN, Tonchev O, Crucifix C, Menoni H, Papin C, Skoufias DA, Kurumizaka H, Lavery R, Hamiche A, Hayes JJ, Schultz P, Angelov D, Petosa C, Dimitrov S. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1. Mol Cell 2017; 66:384-397.e8. [PMID: 28475873 DOI: 10.1016/j.molcel.2017.04.012] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 03/08/2017] [Accepted: 04/17/2017] [Indexed: 10/19/2022]
Abstract
Linker histones associate with nucleosomes to promote the formation of higher-order chromatin structure, but the underlying molecular details are unclear. We investigated the structure of a 197 bp nucleosome bearing symmetric 25 bp linker DNA arms in complex with vertebrate linker histone H1. We determined electron cryo-microscopy (cryo-EM) and crystal structures of unbound and H1-bound nucleosomes and validated these structures by site-directed protein cross-linking and hydroxyl radical footprinting experiments. Histone H1 shifts the conformational landscape of the nucleosome by drawing the two linkers together and reducing their flexibility. The H1 C-terminal domain (CTD) localizes primarily to a single linker, while the H1 globular domain contacts the nucleosome dyad and both linkers, associating more closely with the CTD-distal linker. These findings reveal that H1 imparts a strong degree of asymmetry to the nucleosome, which is likely to influence the assembly and architecture of higher-order structures.
Collapse
Affiliation(s)
- Jan Bednar
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Isabel Garcia-Saez
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Ramachandran Boopathi
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Amber R Cutter
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA
| | - Gabor Papai
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Anna Reymer
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Sajad H Syed
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Imtiaz Nisar Lone
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Ognyan Tonchev
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Corinne Crucifix
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Hervé Menoni
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France; Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France
| | - Christophe Papin
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France
| | - Dimitrios A Skoufias
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France
| | - Hitoshi Kurumizaka
- Laboratory of Structural Biology, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan
| | - Richard Lavery
- MMSB, University of Lyon I/CNRS UMR 5086, Institut de Biologie et Chimie des Protéines, 69367 Lyon, France
| | - Ali Hamiche
- Département de Génomique Fonctionnelle et Cancer, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Jeffrey J Hayes
- Department of Biochemistry and Biophysics, University of Rochester, Rochester, New York 14642, USA.
| | - Patrick Schultz
- Department of Integrated Structural Biology, Institut de Génétique et Biologie Moléculaire et Cellulaire (IGBMC)/Université de Strasbourg/CNRS/INSERM, 67404 Illkirch Cedex, France.
| | - Dimitar Angelov
- Université de Lyon, Institut NeuroMyoGène (INMG) CNRS/UCBL UMR5310 & Laboratoire de Biologie et de Modélisation de la Cellule (LBMC) CNRS/ENSL/UCBL, Ecole Normale Supérieure de Lyon, 69007 Lyon, France.
| | - Carlo Petosa
- Institut de Biologie Structurale (IBS), Université Grenoble Alpes, CEA, CNRS, 38044 Grenoble, France.
| | - Stefan Dimitrov
- Institut for Advanced Biosciences, Inserm U 1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France.
| |
Collapse
|
13
|
Razin SV, Ulianov SV. Gene functioning and storage within a folded genome. Cell Mol Biol Lett 2017; 22:18. [PMID: 28861108 PMCID: PMC5575855 DOI: 10.1186/s11658-017-0050-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/24/2017] [Indexed: 01/28/2023] Open
Abstract
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome. This article was specially invited by the editors and represents work by leading researchers.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia.,Lomonosov Moscow State University, Biological Faculty, Leninskie Gory 1, building 12, 119192 Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia.,Lomonosov Moscow State University, Biological Faculty, Leninskie Gory 1, building 12, 119192 Moscow, Russia
| |
Collapse
|
14
|
Iashina EG, Velichko EV, Filatov MV, Bouwman WG, Duif CP, Brulet A, Grigoriev SV. Additive scaling law for structural organization of chromatin in chicken erythrocyte nuclei. Phys Rev E 2017; 96:012411. [PMID: 29347273 DOI: 10.1103/physreve.96.012411] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Indexed: 11/07/2022]
Abstract
Small-angle neutron scattering (SANS) on nuclei of chicken erythrocytes demonstrates the cubic dependence of the scattering intensity Q^{-3} in the range of momentum transfer Q∈10^{-3}-10^{-2}nm^{-1}. Independent spin-echo SANS measurements give the spin-echo function, which is well described by the exponential law in a range of sizes (3×10^{2})-(3×10^{4}) nm. Both experimental dependences reflect the nature of the structural organization of chromatin in the nucleus of a living cell, which corresponds to the correlation function γ(r)=ln(ξ/r) for r<ξ, where ξ=(3.69±0.07)×10^{3} nm, the size of the nucleus. It has the specific scaling property of the logarithmic fractal γ(r/a)=γ(r)+ln(a), i.e., the scaling down by a gives an additive constant to the correlation function, which distinguishes it from the mass fractal, which is characterized by multiplicative constant.
Collapse
Affiliation(s)
- E G Iashina
- Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia.,Saint Petersburg State University, Ulyanovskaya 1, St. Petersburg 198504, Russia
| | - E V Velichko
- Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands
| | - M V Filatov
- Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia
| | - W G Bouwman
- Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands
| | - C P Duif
- Delft University of Technology, Mekelweg 15, 2629 JB Delft, Netherlands
| | - A Brulet
- Leon Brillouin Laboratory, CEA Saclay, 91191 Gif sur Yvette Cedex, France
| | - S V Grigoriev
- Petersburg Nuclear Physics Institute, Gatchina, St. Petersburg 188300, Russia.,Saint Petersburg State University, Ulyanovskaya 1, St. Petersburg 198504, Russia
| |
Collapse
|
15
|
Pasternak M, Doss L, Farhat G, Al-Mahrouki A, Kim CH, Kolios M, Tran WT, Czarnota GJ. Effect of chromatin structure on quantitative ultrasound parameters. Oncotarget 2017; 8:19631-19644. [PMID: 28129644 PMCID: PMC5386710 DOI: 10.18632/oncotarget.14816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
High-frequency ultrasound (~20 MHz) techniques were investigated using in vitro and ex vivo models to determine whether alterations in chromatin structure are responsible for ultrasound backscatter changes in biological samples. Acute myeloid leukemia (AML) cells and their isolated nuclei were exposed to various chromatin altering treatments. These included 10 different ionic environments, DNA cleaving and unfolding agents, as well as DNA condensing agents. Raw radiofrequency (RF) data was used to generate quantitative ultrasound parameters from spectral and form factor analyses. Chromatin structure was evaluated using electron microscopy. Results indicated that trends in quantitative ultrasound parameters mirrored trends in biophysical chromatin structure parameters. In general, higher ordered states of chromatin compaction resulted in increases to ultrasound paramaters of midband fit, spectral intercept, and estimated scatterer concentration, while samples with decondensed forms of chromatin followed an opposite trend. Experiments with isolated nuclei demonstrated that chromatin changes alone were sufficient to account for these observations. Experiments with ex vivo samples indicated similar effects of chromatin structure changes. The results obtained in this research provide a mechanistic explanation for ultrasound investigations studying scattering from cells and tissues undergoing biological processes affecting chromatin.
Collapse
Affiliation(s)
- Maurice Pasternak
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Physics, Ryerson University, Toronto, Canada
| | - Lilian Doss
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Golnaz Farhat
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Azza Al-Mahrouki
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Christina Hyunjung Kim
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
| | - Michael Kolios
- Department of Physics, Ryerson University, Toronto, Canada
| | - William Tyler Tran
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| | - Gregory J. Czarnota
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Kuznetsova MA, Sheval EV. Chromatin fibers: from classical descriptions to modern interpretation. Cell Biol Int 2016; 40:1140-1151. [PMID: 27569720 DOI: 10.1002/cbin.10672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
The first description of intrachromosomal fibers was made by Baranetzky in 1880. Since that time, a plethora of fibrillar substructures have been described inside the mitotic chromosomes, and published data indicate that chromosomes may be formed as a result of the hierarchical folding of chromatin fibers. In this review, we examine the evolution and the current state of research on the morphological organization of mitotic chromosomes.
Collapse
Affiliation(s)
- Maria A Kuznetsova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia. .,LIA1066 French-Russian Joint Cancer Research Laboratory, 119334, Moscow, Russia.
| |
Collapse
|
17
|
Zhou Z, Irudayaraj J. A native chromatin extraction method based on salicylic acid coated magnetic nanoparticles and characterization of chromatin. Analyst 2015; 140:938-44. [PMID: 25475154 DOI: 10.1039/c4an01897d] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Native chromatin contains valuable genetic, epigenetic and structural information. Though DNA and nucleosome structures are well defined, less is known about the higher-order chromatin structure. Traditional chromatin extraction methods involve fixation, fragmentation and centrifugation, which might distort the higher-order structural information of native chromatin. We present a simple approach to isolate native chromatin from cultured mammalian cells using salicylic acid coated magnetic nanoparticles (SAMNPs). Chromatin is magnetically separated from cell lysates without any filtration or high-speed centrifugation. The purified chromatin is suitable for the examination of histone modifications and other chromatin associated proteins as confirmed by western blotting analysis. The structure of chromatin was determined by confocal fluorescence microscopy, transmission electron microscopy (TEM) and atomic force microscopy (AFM). High-resolution AFM and TEM images clearly show a classical bead-on-a-string structure. The higher-order chromatin structure is also determined via electron microscopy. Our method provides a simple, inexpensive and an environmentally friendly means to extract native chromatin not possible before, suitable for both biochemical and structural analysis.
Collapse
Affiliation(s)
- Zhongwu Zhou
- Bindley Bioscience Center and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907, USA.
| | | |
Collapse
|
18
|
Li X, Feng H, Zhang J, Sun L, Zhu P. Analysis of chromatin fibers in Hela cells with electron tomography. BIOPHYSICS REPORTS 2015; 1:51-60. [PMID: 26942219 PMCID: PMC4762132 DOI: 10.1007/s41048-015-0009-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/12/2015] [Indexed: 12/02/2022] Open
Abstract
The presence and folding pattern of chromatin in eukaryotic cells remain elusive and controversial. In this study, we prepared ultra-thin sections of Hela cells with three different fixation and sectioning methods, i.e., chemical fixation, high pressure freezing with freeze substitution, and cryo-ultramicrotomy with SEM-FIB (focused ion beam), and analyzed in vivo architecture of chromatin fibers in Hela nuclei with electron tomography technology. The results suggest that the chromatin fibers in eukaryotic Hela cells are likely organized in an architecture with a diameter of about 30 nm.
Collapse
Affiliation(s)
- Xiaomin Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China.,University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Hongli Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Jianguo Zhang
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Lei Sun
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
19
|
Zhang D, Zhang L. Binding to semiflexible polymers: a novel method to control the structures of small numbers of building blocks. SOFT MATTER 2014; 10:7661-7668. [PMID: 25144601 DOI: 10.1039/c4sm00885e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Through the molecular dynamics simulation method, we demonstrate that long semi-flexible polymer chains can serve as an effective soft elastic medium for manipulating the ordered structures of small numbers of building blocks, which can be easily controlled by the chain bending stiffness. For two spherical particles in a polymer-particle mixture, three types of local organization are identified: monomer level tight particle bridging, direct contact aggregation, and dispersion. For small numbers of spherical particles in a polymer-particle mixture, the ordered structures of particles, such as spherical and linear particle aggregations, depend mainly on chain bending stiffness. For non-spherical building blocks, the relative orientations of neighboring building blocks are also strongly affected by chain bending stiffness. These results can help us to understand the complexity of the self-assembly of small numbers of building blocks in polymer-particle mixtures and the gene activity in living cells, as well as to construct novel materials in the nanotechnology field.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Physics, Zhejiang University, Hangzhou 310027, China
| | | |
Collapse
|
20
|
Razin SV, Gavrilov AA. Chromatin without the 30-nm fiber: constrained disorder instead of hierarchical folding. Epigenetics 2014; 9:653-7. [PMID: 24561903 PMCID: PMC4063823 DOI: 10.4161/epi.28297] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Several hierarchical levels of DNA packaging are believed to exist in chromatin, starting from a 10-nm chromatin fiber that is further packed into a 30-nm fiber. Transitions between the 30-nm and 10-nm fibers are thought to be essential for the control of chromatin transcriptional status. However, recent studies demonstrate that in the nuclei, DNA is packed in tightly associated 10-nm fibers that are not compacted into 30-nm fibers. Additionally, the accessibility of DNA in chromatin depends on the local mobility of nucleosomes rather than on decompaction of chromosome regions. These findings argue for reconsidering the hierarchical model of chromatin packaging and some of the basic definitions of chromatin. In particular, chromatin domains should be considered as three-dimensional objects, which may include genomic regions that do not necessarily constitute a continuous domain on the DNA chain.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; Faculty of Biology; M.V. Lomonosov Moscow State University; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia
| | - Alexey A Gavrilov
- Institute of Gene Biology of the Russian Academy of Sciences; Moscow, Russia; LIA 1066 French-Russian Joint Cancer Research Laboratory; Moscow, Russia
| |
Collapse
|
21
|
Geiss CP, Keramisanou D, Sekulic N, Scheffer MP, Black BE, Frangakis AS. CENP-A arrays are more condensed than canonical arrays at low ionic strength. Biophys J 2014; 106:875-82. [PMID: 24559990 PMCID: PMC3944588 DOI: 10.1016/j.bpj.2014.01.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 01/02/2014] [Accepted: 01/07/2014] [Indexed: 10/25/2022] Open
Abstract
The centromeric histone H3 variant centromeric protein A (CENP-A), whose sequence is the least conserved among all histone variants, is responsible for specifying the location of the centromere. Here, we present a comprehensive study of CENP-A nucleosome arrays by cryo-electron tomography. We see that CENP-A arrays have different biophysical properties than canonical ones under low ionic conditions, as they are more condensed with a 20% smaller average nearest-neighbor distance and a 30% higher nucleosome density. We find that CENP-A nucleosomes have a predominantly crossed DNA entry/exit site that is narrowed on average by 8°, and they have a propensity to stack face to face. We therefore propose that CENP-A induces geometric constraints at the nucleosome DNA entry/exit site to bring neighboring nucleosomes into close proximity. This specific property of CENP-A may be responsible for generating a fundamental process that contributes to increased chromatin fiber compaction that is propagated under physiological conditions to form centromeric chromatin.
Collapse
Affiliation(s)
| | | | - Nikolina Sekulic
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Ben E Black
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | | |
Collapse
|
22
|
Abstract
A fundamental challenge associated with chromosomal gene regulation is accessibility of DNA within nucleosomes. Recent studies performed by various techniques, including single-molecule approaches, led to the realization that nucleosomes are dynamic structures rather than static systems, as it was once believed. Direct data is required in order to understand the dynamics of nucleosomes more clearly and answer fundamental questions, including: What is the range of nucleosome dynamics? Does a non-ATP dependent unwrapping process of nucleosomes exist? What are the factors facilitating the large scale opening and unwrapping of nucleosomes? This review summarizes the results of nucleosome dynamics obtained with time-lapse AFM, including a high-speed version (HS-AFM) capable of visualizing molecular dynamics on the millisecond time scale. With HS-AFM, the dynamics of nucleosomes at a sub-second time scale was observed allowing one to visualize various pathways of nucleosome dynamics, such as sliding and unwrapping, including complete dissociation. Overall, these findings reveal new insights into the dynamics of nucleosomes and the novel mechanisms controlling spontaneous chromatin dynamics.
Collapse
Affiliation(s)
- Yuri L Lyubchenko
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, 986025, Nebraska Medical Center, Omaha, NE 68198-6025, U. S. A., 402-559-1971 (office), 402-559-9543 (fax)
| |
Collapse
|
23
|
Dynamic Fuzziness During Linker Histone Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:15-26. [DOI: 10.1007/978-1-4614-0659-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
24
|
Scheffer MP, Eltsov M, Bednar J, Frangakis AS. Nucleosomes stacked with aligned dyad axes are found in native compact chromatin in vitro. J Struct Biol 2011; 178:207-14. [PMID: 22138167 DOI: 10.1016/j.jsb.2011.11.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 11/10/2011] [Accepted: 11/15/2011] [Indexed: 11/28/2022]
Abstract
In this study, electron tomograms of plunge-frozen isolated chromatin in both open and compacted form were recorded. We have resolved individual nucleosomes in these tomograms in order to provide a 3D view of the arrangement of nucleosomes within chromatin fibers at different compaction states. With an optimized template matching procedure we obtained accurate positions and orientations of nucleosomes in open chromatin in "low-salt" conditions (5 mM NaCl). The mean value of the planar angle between three consecutive nucleosomes is 70°, and the mean center-to-center distance between consecutive nucleosomes is 22.3 nm. Since the template matching approach was not effective in crowded conditions, for nucleosome detection in compact fibers (40 mM NaCl and 1 mM MgCl(2)) we developed the nucleosome detection procedure based on the watershed algorithm, followed by sub-tomogram alignment, averaging, and classification by Principal Components Analysis. We find that in compact chromatin the nucleosomes are arranged with a predominant face-to-face stacking organization, which has not been previously shown for native isolated chromatin. Although the path of the DNA cannot be directly seen in compact conditions, it is evident that the nucleosomes stack with their dyad axis aligned in forming a "double track" conformation which is a consequence of DNA joining adjacent nucleosome stacks. Our data suggests that nucleosome stacking is an important mechanism for generating chromatin compaction in vivo.
Collapse
Affiliation(s)
- Margot P Scheffer
- European Molecular Biology Laboratory, Meyerhofstr. 1, 69117 Heidelberg, Germany.
| | | | | | | |
Collapse
|
25
|
Majumder P, Dasgupta D. Effect of DNA groove binder distamycin A upon chromatin structure. PLoS One 2011; 6:e26486. [PMID: 22046291 PMCID: PMC3202541 DOI: 10.1371/journal.pone.0026486] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 09/27/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Distamycin A is a prototype minor groove binder, which binds to B-form DNA, preferentially at A/T rich sites. Extensive work in the past few decades has characterized the binding at the level of double stranded DNA. However, effect of the same on physiological DNA, i.e. DNA complexed in chromatin, has not been well studied. Here we elucidate from a structural perspective, the interaction of distamycin with soluble chromatin, isolated from Sprague-Dawley rat. METHODOLOGY/PRINCIPAL FINDINGS Chromatin is a hierarchical assemblage of DNA and protein. Therefore, in order to characterize the interaction of the same with distamycin, we have classified the system into various levels, according to the requirements of the method adopted, and the information to be obtained. Isothermal titration calorimetry has been employed to characterize the binding at the levels of chromatin, chromatosome and chromosomal DNA. Thermodynamic parameters obtained thereof, identify enthalpy as the driving force for the association, with comparable binding affinity and free energy for chromatin and chromosomal DNA. Reaction enthalpies at different temperatures were utilized to evaluate the change in specific heat capacity (ΔCp), which, in turn, indicated a possible binding associated structural change. Ligand induced structural alterations have been monitored by two complementary methods--dynamic light scattering, and transmission electron microscopy. They indicate compaction of chromatin. Using transmission electron microscopy, we have visualized the effect of distamycin upon chromatin architecture at di- and trinucleosome levels. Our results elucidate the simultaneous involvement of linker bending and internucleosomal angle contraction in compaction process induced by distamycin. CONCLUSIONS/SIGNIFICANCE We summarize here, for the first time, the thermodynamic parameters for the interaction of distamycin with soluble chromatin, and elucidate its effect on chromatin architecture. The study provides insight into a ligand induced compaction phenomenon, and suggests new mechanisms of chromatin architectural alteration.
Collapse
Affiliation(s)
- Parijat Majumder
- Biophysics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| | - Dipak Dasgupta
- Biophysics Division, Saha Institute of Nuclear Physics, Kolkata, West Bengal, India
| |
Collapse
|
26
|
Evidence for short-range helical order in the 30-nm chromatin fibers of erythrocyte nuclei. Proc Natl Acad Sci U S A 2011; 108:16992-7. [PMID: 21969536 DOI: 10.1073/pnas.1108268108] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chromatin folding in eukaryotes fits the genome into the limited volume of the cell nucleus. Formation of higher-order chromatin structures attenuates DNA accessibility, thus contributing to the control of essential genome functions such as transcription, DNA replication, and repair. The 30-nm fiber is thought to be the first hierarchical level of chromatin folding, but the nucleosome arrangement in the compact 30-nm fiber was previously unknown. We used cryoelectron tomography of vitreous sections to determine the structure of the compact, native 30-nm fiber of avian erythrocyte nuclei. The predominant geometry of the 30-nm fiber revealed by subtomogram averaging is a left-handed two-start helix with approximately 6.5 nucleosomes per 11 nm, in which the nucleosomes are juxtaposed face-to-face but are shifted off their superhelical axes with an axial translation of approximately 3.4 nm and an azimuthal rotation of approximately 54°. The nucleosomes produce a checkerboard pattern when observed in the direction perpendicular to the fiber axis but are not interdigitated. The nucleosome packing within the fibers shows larger center-to-center internucleosomal distances than previously anticipated, thus excluding the possibility of core-to-core interactions, explaining how transcription and regulation factors can access nucleosomes.
Collapse
|
27
|
Hinde E, Cardarelli F, Digman MA, Kershner A, Kimble J, Gratton E. The impact of mitotic versus interphase chromatin architecture on the molecular flow of EGFP by pair correlation analysis. Biophys J 2011; 100:1829-36. [PMID: 21463597 DOI: 10.1016/j.bpj.2011.02.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Revised: 02/01/2011] [Accepted: 02/07/2011] [Indexed: 11/24/2022] Open
Abstract
Here we address the impact nuclear architecture has on molecular flow within the mitotic nucleus of live cells as compared to interphase by the pair correlation function method. The mitotic chromatin is found to allow delayed but continuous molecular flow of EGFP in and out of a high chromatin density region, which, by pair correlation function analysis, is shown as a characteristic arc shape that appears upon entry and exit. This is in contrast to interphase chromatin, which regulates flow between different density chromatin regions by means of a mechanism which turns on and off intermittently, generating discrete bursts of EGFP. We show that the interphase bursts are maintained by metabolic energy, whereas the mitotic mechanism of regulation responsible for the arc is not sensitive to ATP depletion. These two distinct routes of molecular flow were concomitantly measured in the Caenorhabditis elegans germ line, which indicates a conservation of mechanism on a scale more widespread than cell type or organism.
Collapse
Affiliation(s)
- Elizabeth Hinde
- Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California, Irvine, California, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kepper N, Ettig R, Stehr R, Marnach S, Wedemann G, Rippe K. Force spectroscopy of chromatin fibers: Extracting energetics and structural information from Monte Carlo simulations. Biopolymers 2011; 95:435-47. [DOI: 10.1002/bip.21598] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/18/2011] [Accepted: 01/18/2011] [Indexed: 11/09/2022]
|
29
|
Diesinger PM, Kunkel S, Langowski J, Heermann DW. Histone depletion facilitates chromatin loops on the kilobasepair scale. Biophys J 2010; 99:2995-3001. [PMID: 21044597 PMCID: PMC2965941 DOI: 10.1016/j.bpj.2010.08.039] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 08/03/2010] [Accepted: 08/05/2010] [Indexed: 11/19/2022] Open
Abstract
The packing of eukaryotic DNA in the nucleus is decisive for its function; for instance, contact between remote genome sites constitutes a basic feature of gene regulation. Interactions among regulatory proteins, DNA binding, and transcription activation are facilitated by looping of the intervening chromatin. Such long-range interactions depend on the bending flexibility of chromatin, i.e., the ring-closure probability is a directly measurable indicator of polymer flexibility. The applicability of a wormlike chain model to naked DNA has been widely accepted. However, whether this model also suffices to describe the flexibility of eukaryotic interphase chromatin is still a matter of discussion. Here we compare both 5C data from a gene desert and data from fluorescence in situ hybridization with the results of a Monte Carlo simulation of chromatin fibers with and without histone depletion. We then estimate the ring-closure probabilities of simulated fibers with estimates from analytical calculations and show that the wormlike chain model grossly underestimates chromatin flexibility for sharp bends. Most importantly, we find that only fibers with random depletion of linker histones or nucleosomes can explain the probability of random chromatin contacts on small length scales that play an important role in gene regulation. It is possible that missing linker histones and nucleosomes are not just simple, unavoidable, randomly occurring defects, but instead play a regulatory role in gene expression.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Institut für Theoretische Physik, Universität Heidelberg, Heidelberg, Germany.
| | | | | | | |
Collapse
|
30
|
Perišić O, Collepardo-Guevara R, Schlick T. Modeling studies of chromatin fiber structure as a function of DNA linker length. J Mol Biol 2010; 403:777-802. [PMID: 20709077 DOI: 10.1016/j.jmb.2010.07.057] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 07/24/2010] [Accepted: 07/29/2010] [Indexed: 01/22/2023]
Abstract
Chromatin fibers encountered in various species and tissues are characterized by different nucleosome repeat lengths (NRLs) of the linker DNA connecting the nucleosomes. While single cellular organisms and rapidly growing cells with high protein production have short NRL ranging from 160 to 189 bp, mature cells usually have longer NRLs ranging between 190 and 220 bp. Recently, various experimental studies have examined the effect of NRL on the internal organization of chromatin fiber. Here, we investigate by mesoscale modeling of oligonucleosomes the folding patterns for different NRL, with and without linker histone (LH), under typical monovalent salt conditions using both one-start solenoid and two-start zigzag starting configurations. We find that short to medium NRL chromatin fibers (173 to 209 bp) with LH condense into zigzag structures and that solenoid-like features are viable only for longer NRLs (226 bp). We suggest that medium NRLs are more advantageous for packing and various levels of chromatin compaction throughout the cell cycle than their shortest and longest brethren; the former (short NRLs) fold into narrow fibers, while the latter (long NRLs) arrays do not easily lead to high packing ratios due to possible linker DNA bending. Moreover, we show that the LH has a small effect on the condensation of short-NRL arrays but has an important condensation effect on medium-NRL arrays, which have linker lengths similar to the LH lengths. Finally, we suggest that the medium-NRL species, with densely packed fiber arrangements, may be advantageous for epigenetic control because their histone tail modifications can have a greater effect compared to other fibers due to their more extensive nucleosome interaction network.
Collapse
Affiliation(s)
- Ognjen Perišić
- Department of Chemistry, New York University, New York, NY 10003, USA
| | | | | |
Collapse
|
31
|
MeCP2 binds cooperatively to its substrate and competes with histone H1 for chromatin binding sites. Mol Cell Biol 2010; 30:4656-70. [PMID: 20679481 DOI: 10.1128/mcb.00379-10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sporadic mutations in the hMeCP2 gene, coding for a protein that preferentially binds symmetrically methylated CpGs, result in the severe neurological disorder Rett syndrome (RTT). In the present work, employing a wide range of experimental approaches, we shed new light on the many levels of MeCP2 interaction with DNA and chromatin. We show that strong methylation-independent as well as methylation-dependent binding by MeCP2 is influenced by DNA length. Although MeCP2 is strictly monomeric in solution, its binding to DNA is cooperative, with dimeric binding strongly correlated with methylation density, and strengthened by nearby A/T repeats. Dimeric binding is abolished in the F155S and R294X severe RTT mutants. MeCP2 also binds chromatin in vitro, resulting in compaction-related changes in nucleosome architecture that resemble the classical zigzag motif induced by histone H1 and considered important for 30-nm-fiber formation. In vivo chromatin binding kinetics and in vitro steady-state nucleosome binding of both MeCP2 and H1 provide strong evidence for competition between MeCP2 and H1 for common binding sites. This suggests that chromatin binding by MeCP2 and H1 in vivo should be viewed in the context of competitive multifactorial regulation.
Collapse
|
32
|
Takenaka T, Zinchenko AA, Yoshikawa K, Murata S. Roles of Mono- and Divalent Cations in DNA Compaction Induced by Histone-Mimic Nanoparticles. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2010. [DOI: 10.1246/bcsj.20090324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Diesinger PM, Heermann DW. Monte Carlo Simulations indicate that Chromati: Nanostructure is accessible by Light Microscopy. PMC BIOPHYSICS 2010; 3:11. [PMID: 20537131 PMCID: PMC2911407 DOI: 10.1186/1757-5036-3-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Accepted: 06/10/2010] [Indexed: 12/20/2022]
Abstract
A long controversy exists about the structure of chromatin. Theoretically, this structure could be resolved by scattering experiments if one determines the scattering function - or equivalently the pair distribution function - of the nucleosomes. Unfortunately, scattering experiments with live cells are very difficult and limited to only a couple of nucleosomes.Nevertheless, new techniques like the high-resolution light microscopy supply a new approach to this problem. In this work we determine the radial pair distribution function of chromatin described by our E2A model and find that the dominant peaks which characterize the chromatin structure are very robust in several ways: They can still be identified in the case of chromatin fibers with reasonable linker histone and nucleosome defect rates as well as in the 2D case after a projection like in most high-res light microscopy experiments. This might initiate new experimental approaches like optical microscopy to finally determine the nanostructure of chromatin.Furthermore, we examine the statistics of random chromatin collisions and compare it with 5C data of a gene desert. We find that only chromatin fibers with histone depletion show a significant amount of contacts on the kbp-scale which play a important role in gene regulation. Therefore, linker histone and nucleosome depletion might not only be chromatin defects but even be necessary to facilitate transcription.PACS codes: 82.35.Pq, 87.16.A-, 87.16.af.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Institut für Theoretische Physik Universität Heidelberg Philosophenweg 19 D-69120 Heidelberg Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg Germany
| | - Dieter W Heermann
- Institut für Theoretische Physik Universität Heidelberg Philosophenweg 19 D-69120 Heidelberg Germany
- Interdisziplinäres Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg Germany
| |
Collapse
|
34
|
Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 2010; 20:519-28. [PMID: 20309017 DOI: 10.1038/cr.2010.35] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Linker histones, e.g., H1, are best known for their ability to bind to nucleosomes and stabilize both nucleosome structure and condensed higher-order chromatin structures. However, over the years many investigators have reported specific interactions between linker histones and proteins involved in important cellular processes. The purpose of this review is to highlight evidence indicating an important alternative mode of action for H1, namely protein-protein interactions. We first review key aspects of the traditional view of linker histone action, including the importance of the H1 C-terminal domain. We then discuss the current state of knowledge of linker histone interactions with other proteins, and, where possible, highlight the mechanism of linker histone-mediated protein-protein interactions. Taken together, the data suggest a combinatorial role for the linker histones, functioning both as primary chromatin architectural proteins and simultaneously as recruitment hubs for proteins involved in accessing and modifying the chromatin fiber.
Collapse
|
35
|
Takenaka T, Zinchenko AA, Yoshikawa K, Murata S. DNA Compaction on Histone Mimics Prepared from Silica Nanoparticles. CHEM LETT 2010. [DOI: 10.1246/cl.2010.72] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Hancock R, Hadj-Sahraoui Y. Isolation of cell nuclei using inert macromolecules to mimic the crowded cytoplasm. PLoS One 2009; 4:e7560. [PMID: 19851505 PMCID: PMC2762040 DOI: 10.1371/journal.pone.0007560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Accepted: 08/08/2009] [Indexed: 11/19/2022] Open
Abstract
Cell nuclei are commonly isolated and studied in media which include millimolar concentrations of cations, which conserve the nuclear volume by screening the negative charges on chromatin and maintaining its compaction. However, two factors question if these ionic conditions correctly reproduce the environment of nuclei in vivo: the small-scale motion and conformation of chromatin in vivo are not reproduced in isolated nuclei, and experiments and theory suggest that small ions in the cytoplasm are not free in the soluble phase but are predominantly bound to macromolecules. We studied the possible role in maintaining the structure and functions of nuclei in vivo of a further but frequently overlooked property of the cytoplasm, the crowding or osmotic effects caused by diffusible macromolecules whose concentration, measured in several studies, is in the range of 130 mg/ml. Nuclei which conserved their volume in the cell and their ultrastructure seen by electron microscopy were released from K562 cells in media containing the inert polymer 70 kDa Ficoll (50% w/v) or 70 kDa dextran (35% w/v) to replace the diffusible cytoplasmic molecules which were dispersed on cell lysis with digitonin, with 100 microM K-Hepes buffer as the only source of ions. Immunofluorescence labelling and experiments using cells expressing GFP-fusion proteins showed that internal compartments (nucleoli, PML and coiled bodies, foci of RNA polymerase II) were conserved in these nuclei, and nascent RNA transcripts could be elongated. Our observations are consistent with the hypothesis that crowding by diffusible cytoplasmic macromolecules is a crucial but overlooked factor which supports the nucleus in vivo by equilibrating the opposing osmotic pressure cause by the high concentration of macromolecules in the nucleus, and suggest that crowded media provide more physiological conditions to study nuclear structure and functions. They may also help to resolve the long-standing paradox that the small-scale motion and irregular conformation of chromatin seen in vivo are not reproduced in nuclei isolated in conventional ionic media.
Collapse
Affiliation(s)
- Ronald Hancock
- Laval University Cancer Research Centre, Hôtel-Dieu Hospital, Québec, Québec, Canada.
| | | |
Collapse
|
37
|
Diesinger PM, Heermann DW. Depletion effects massively change chromatin properties and influence genome folding. Biophys J 2009; 97:2146-53. [PMID: 19843447 PMCID: PMC2764066 DOI: 10.1016/j.bpj.2009.06.057] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Revised: 05/21/2009] [Accepted: 06/05/2009] [Indexed: 11/19/2022] Open
Abstract
We present a Monte Carlo model for genome folding at the 30-nm scale with focus on linker-histone and nucleosome depletion effects. We find that parameter distributions from experimental data do not lead to one specific chromatin fiber structure, but instead to a distribution of structures in the chromatin phase diagram. Depletion of linker histones and nucleosomes affects, massively, the flexibility and the extension of chromatin fibers. Increasing the amount of nucleosome skips (i.e., nucleosome depletion) can lead either to a collapse or to a swelling of chromatin fibers. These opposing effects are discussed and we show that depletion effects may even contribute to chromatin compaction. Furthermore, we find that predictions from experimental data for the average nucleosome skip rate lie exactly in the regime of maximum chromatin compaction. Finally, we determine the pair distribution function of chromatin. This function reflects the structure of the fiber, and its Fourier-transform can be measured experimentally. Our calculations show that even in the case of fibers with depletion effects, the main dominant peaks (characterizing the structure and the length scales) can still be identified.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Institut für Theoretische Physik, Heidelberg University, Heidelberg, Germany.
| | | |
Collapse
|
38
|
Schlick T, Perisić O. Mesoscale simulations of two nucleosome-repeat length oligonucleosomes. Phys Chem Chem Phys 2009; 11:10729-37. [PMID: 20145817 DOI: 10.1039/b918629h] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The compaction of chromatin, accessed through coarse-grained modeling and simulation, reveals different folding patterns as a function of the nucleosome repeat length (NRL), the presence of the linker histone, and the ionic strength. Our results indicate that the linker histone has negligible influence on short NRL fibers, whereas for longer NRL fibers it works like, and in tandem with, concentrated positive counterions to condense the chromatin fiber. Longer NRL fibers also exhibit structural heterogeneity, with solenoid-like conformations viable in addition to irregular zigzags. These features of chromatin and associated internucleosomal patterns presented here help interpret structural dependencies of the chromatin fiber on internal and external factors. In particular, we suggest that longer-NRL are more advantageous for packing and achieving various levels of fiber compaction throughout the cell cycle.
Collapse
Affiliation(s)
- Tamar Schlick
- Department of Chemistry and Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, USA.
| | | |
Collapse
|
39
|
Longworth MS, Dyson NJ. pRb, a local chromatin organizer with global possibilities. Chromosoma 2009; 119:1-11. [PMID: 19714354 DOI: 10.1007/s00412-009-0238-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/12/2009] [Accepted: 08/14/2009] [Indexed: 12/22/2022]
Abstract
The retinoblastoma (pRb) family of proteins are well known for their tumor suppressor properties and for their ability to regulate transcription. The action of pRb family members correlates with the appearance of repressive chromatin marks at promoter regions of genes encoding key regulators of cell proliferation. Recent studies raise the possibility that pRb family members do not simply act by controlling the activity of individual promoters but that they may also function by promoting the more general organization of chromatin. In several contexts, pRb family members stimulate the compaction or condensation of chromatin and promote the formation of heterochromatin. In this review, we summarize studies that link pRb family members to the condensation or compaction of DNA.
Collapse
Affiliation(s)
- Michelle S Longworth
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA, 02129, USA
| | | |
Collapse
|
40
|
Syed SH, Boulard M, Shukla MS, Gautier T, Travers A, Bednar J, Faivre-Moskalenko C, Dimitrov S, Angelov D. The incorporation of the novel histone variant H2AL2 confers unusual structural and functional properties of the nucleosome. Nucleic Acids Res 2009; 37:4684-95. [PMID: 19506029 PMCID: PMC2724287 DOI: 10.1093/nar/gkp473] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
In this work we have studied the properties of the novel mouse histone variant H2AL2. H2AL2 was used to reconstitute nucleosomes and the structural and functional properties of these particles were studied by a combination of biochemical approaches, atomic force microscopy (AFM) and electron cryo-microscopy. DNase I and hydroxyl radical footprinting as well as micrococcal and exonuclease III digestion demonstrated an altered structure of the H2AL2 nucleosomes all over the nucleosomal DNA length. Restriction nuclease accessibility experiments revealed that the interactions of the H2AL2 histone octamer with the ends of the nucleosomal DNA are highly perturbed. AFM imaging showed that the H2AL2 histone octamer was complexed with only ∼130 bp of DNA. H2AL2 reconstituted trinucleosomes exhibited a type of a ‘beads on a string’ structure, which was quite different from the equilateral triangle 3D organization of conventional H2A trinucleosomes. The presence of H2AL2 affected both the RSC and SWI/SNF remodeling and mobilization of the variant particles. These unusual properties of the H2AL2 nucleosomes suggest a specific role of H2AL2 during mouse spermiogenesis.
Collapse
Affiliation(s)
- Sajad Hussain Syed
- Université Joseph Fourier - Grenoble 1, INSERM Institut Albert Bonniot, U823, Site Santé-BP 170, 38042 Grenoble Cedex 9, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Arya G, Schlick T. A tale of tails: how histone tails mediate chromatin compaction in different salt and linker histone environments. J Phys Chem A 2009; 113:4045-59. [PMID: 19298048 PMCID: PMC2693032 DOI: 10.1021/jp810375d] [Citation(s) in RCA: 137] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To elucidate the role of the histone tails in chromatin compaction and in higher-order folding of chromatin under physiological conditions, we extend a mesoscale model of chromatin (Arya, Zhang, and Schlick. Biophys. J. 2006, 91, 133; Arya and Schlick. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 16236) to account for divalent cations (Mg(2+)) and linker histones. Configurations of 24-nucleosome oligonucleosomes in different salt environments and in the presence and absence of linker histones are sampled by a mixture of local and global Monte Carlo methods. Analyses of the resulting ensembles reveal a dynamic synergism between the histone tails, linker histones, and ions in forming compact higher-order structures of chromatin. In the presence of monovalent salt alone, oligonucleosomes remain relatively unfolded, and the histone tails do not mediate many internucleosomal interactions. Upon the addition of linker histones and divalent cations, the oligonucleosomes undergo a significant compaction triggered by a dramatic increase in the internucleosomal interactions mediated by the histone tails, formation of a rigid linker DNA "stem" around the linker histones' C-terminal domains, and reduction in the electrostatic repulsion between linker DNAs via sharp bending in some linker DNAs caused by the divalent cations. Among all histone tails, the H4 tails mediate the most internucleosomal interactions, consistent with experimental observations, followed by the H3, H2A, and H2B tails in decreasing order. Apart from mediating internucleosomal interactions, the H3 tails also contribute to chromatin compaction by attaching to the entering and exiting linker DNA to screen electrotatic repulsion among the linker DNAs. This tendency of the H3 tails to attach to linker DNA, however, decreases significantly upon the addition of linker histones due to competition effects. The H2A and H2B tails do not mediate significant internucleosomal interactions but are important for mediating fiber/fiber intractions, especially in relatively unfolded chromatin in monovalent salt environments.
Collapse
Affiliation(s)
- Gaurav Arya
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, Mail Code: 0448, La Jolla, California 92093, USA.
| | | |
Collapse
|
42
|
Nucleosome shape dictates chromatin fiber structure. Biophys J 2009; 96:777-84. [PMID: 19186120 DOI: 10.1016/j.bpj.2008.09.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 09/22/2008] [Indexed: 11/21/2022] Open
Abstract
In addition to being the gateway for all access to the eukaryotic genome, chromatin has in recent years been identified as carrying an epigenetic code regulating transcriptional activity. Though much is known about the biochemistry of this code, little is understood regarding the different fiber structures through which the regulation is mediated. Over the last three decades many fiber models have been suggested, but none are able to predict even the basic characteristics of the fiber. In this work, we characterize the set of all possible dense fibers, which includes, but is not limited to, all previously suggested structures. To guide future experimental efforts, we show which fiber characteristics depend on the underlying structure and, crucially, which do not. Addressing the predictive power of these models, we suggest a simple geometric criterion based on the nucleosome shape alone. This enables us to predict the observed characteristics of the condensed chromatin fiber, and how these change with varying nucleosome repeat length. Our approach sheds light on how the in vivo observed heterogeneity in linker lengths can be accommodated within the 30 nm fiber, and suggest an important role for nucleosome surface interactions in the regulation of chromatin structure and function.
Collapse
|
43
|
Abou El Hassan M, Bremner R. A rapid simple approach to quantify chromosome conformation capture. Nucleic Acids Res 2009; 37:e35. [PMID: 19181703 PMCID: PMC2655679 DOI: 10.1093/nar/gkp028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Chromosome conformation capture (3C) is a powerful tool to study DNA looping. The procedure generates chimeric DNA templates after ligation of restriction enzyme fragments juxtaposed in vivo by looping. These unique ligation products (ULPs) are typically quantified by gel-based methods, which are practically inefficient. Taqman probes may be used, but are expensive. Cycle threshold (Ct) determined using SYBR Green, an inexpensive alternative, is hampered by non-specific products and/or background fluorescence, both due to high template/ULP ratio. SYBR Green melting curve analysis (MCA) is a well-known qualitative tool for assessing PCR specificity. Here we present for the first time MCA as a quantitative tool (qMCA) to compare template concentrations across different samples and apply it to 3C to assess looping among remote elements identified by STAT1 and IRF1 ChIP-chip at the interferon-γ responsive CIITA and SOCS1 loci. This rapid, inexpensive approach provided highly reproducible identification and quantification of ULPs over a significant linear range. Therefore, qMCA is a robust method to assess chromatin looping in vivo, and overcomes several drawbacks associated with other approaches. Our data suggest that basal and induced looping is a involving remote enhancers is a common mechanism at IFNγ-regulated targets.
Collapse
Affiliation(s)
- M Abou El Hassan
- Genetics and Development Division, University Health Network, Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada M5T 2S8
| | | |
Collapse
|
44
|
Analysis of cryo-electron microscopy images does not support the existence of 30-nm chromatin fibers in mitotic chromosomes in situ. Proc Natl Acad Sci U S A 2008; 105:19732-7. [PMID: 19064912 DOI: 10.1073/pnas.0810057105] [Citation(s) in RCA: 273] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although the formation of 30-nm chromatin fibers is thought to be the most basic event of chromatin compaction, it remains controversial because high-resolution imaging of chromatin in living eukaryotic cells had not been possible until now. Cryo-electron microscopy of vitreous sections is a relatively new technique, which enables direct high-resolution observation of the cell structures in a close-to-native state. We used cryo-electron microscopy and image processing to further investigate the presence of 30-nm chromatin fibers in human mitotic chromosomes. HeLa S3 cells were vitrified by high-pressure freezing, thin-sectioned, and then imaged under the cryo-electron microscope without any further chemical treatment or staining. For an unambiguous interpretation of the images, the effects of the contrast transfer function were computationally corrected. The mitotic chromosomes of the HeLa S3 cells appeared as compact structures with a homogeneous grainy texture, in which there were no visible 30-nm fibers. Power spectra of the chromosome images also gave no indication of 30-nm chromatin folding. These results, together with our observations of the effects of chromosome swelling, strongly suggest that, within the bulk of compact metaphase chromosomes, the nucleosomal fiber does not undergo 30-nm folding, but exists in a highly disordered and interdigitated state, which is, on the local scale, comparable with a polymer melt.
Collapse
|
45
|
Rosandić M, Glunčić M, Paar V, Basar I. The role of alphoid higher order repeats (HORs) in the centromere folding. J Theor Biol 2008; 254:555-60. [DOI: 10.1016/j.jtbi.2008.06.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Revised: 05/13/2008] [Accepted: 06/06/2008] [Indexed: 10/21/2022]
|
46
|
Abstract
The folding of the nucleosome chain into a chromatin fiber modulates DNA accessibility and is therefore an important factor for the control of gene expression. The fiber conformation depends crucially on the interaction between individual nucleosomes. However, this parameter has not been accurately determined experimentally, and it is affected by posttranslational histone modifications and binding of chromosomal proteins. Here, the effect of different internucleosomal interaction strengths on the fiber conformation was investigated by Monte Carlo computer simulations. The fiber geometry was modeled to fit that of chicken erythrocyte chromatin, which has been examined in numerous experimental studies. In the Monte Carlo simulation, the nucleosome shape was described as an oblate spherocylinder, and a replica exchange protocol was developed to reach thermal equilibrium for a broad range of internucleosomal interaction energies. The simulations revealed the large impact of the nucleosome geometry and the nucleosome repeat length on the compaction of the chromatin fiber. At high internucleosomal interaction energies, a lateral self-association of distant fiber parts and an interdigitation of nucleosomes were apparent. These results identify key factors for the control of the compaction and higher order folding of the chromatin fiber.
Collapse
|
47
|
Staynov D. DNase I footprinting of the nucleosome in whole nuclei. Biochem Biophys Res Commun 2008; 372:226-9. [DOI: 10.1016/j.bbrc.2008.05.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Accepted: 05/04/2008] [Indexed: 11/27/2022]
|
48
|
Diesinger PM, Heermann DW. The influence of the cylindrical shape of the nucleosomes and H1 defects on properties of chromatin. Biophys J 2008; 94:4165-72. [PMID: 18234821 PMCID: PMC2480696 DOI: 10.1529/biophysj.107.113902] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2007] [Accepted: 10/22/2007] [Indexed: 11/18/2022] Open
Abstract
We present a model improving the two-angle model for interphase chromatin (E2A model). This model takes into account the cylindrical shape of the histone octamers, the H1 histones in front of the nucleosomes, and the distance d between the in and outgoing DNA strands orthogonal to the axis of the corresponding nucleosome cylinder. Factoring these chromatin features in, one gets essential changes in the chromatin phase diagram: Not only the shape of the excluded-volume borderline changes but also the orthogonal distance d has a dramatic influence on the forbidden area. Furthermore, we examined the influence of H1 defects on the properties of the chromatin fiber. Thus, we present two possible strategies for chromatin compaction: The use of very dense states in the phase diagram in the gaps in the excluded-volume, borderline, or missing H1 histones can lead to very compact fibers. The chromatin fiber might use both of these mechanisms to compact itself at least locally. Line densities computed within the model coincident with the experimental values.
Collapse
Affiliation(s)
- Philipp M Diesinger
- Department of Physics, Institut für Theoretische Physik, and Interdisziplinäres Zentrum für Wissenschaftliches Rechnen, Heidelberg University, Heidelberg, Germany
| | | |
Collapse
|
49
|
Abstract
Mitotic chromosomes are essential structures for the faithful transmission of duplicated genomic DNA into two daughter cells during cell division. Although more than 100 years have passed since chromosomes were first observed, it remains unclear how a long string of genomic DNA is packaged into compact mitotic chromosomes. Although the classical view is that human chromosomes consist of radial 30 nm chromatin loops that are somehow tethered centrally by scaffold proteins, called condensins, cryo-electron microscopy observation of frozen hydrated native chromosomes reveals a homogeneous, grainy texture and neither higher-order nor periodic structures including 30 nm chromatin fibres were observed. As a compromise to fill this huge gap, we propose a model in which the radial chromatin loop structures in the classic view are folded irregularly toward the chromosome centre with the increase in intracellular cations during mitosis. Consequently, compact native chromosomes are made up primarily of irregular chromatin networks cross-linked by self-assembled condensins forming the chromosome scaffold.
Collapse
|
50
|
Topological constraints on the possible structures of the 30 nm chromatin fibre. Chromosoma 2007; 117:67-76. [DOI: 10.1007/s00412-007-0127-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2007] [Revised: 09/26/2007] [Accepted: 09/27/2007] [Indexed: 10/22/2022]
|