1
|
Grazzini A, Cavanaugh AM. Fungal microtubule organizing centers are evolutionarily unstable structures. Fungal Genet Biol 2024; 172:103885. [PMID: 38485050 DOI: 10.1016/j.fgb.2024.103885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in Saccharomyces cerevisiae, and Schizosaccharomyces pombe MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the S. cerevisiae MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.
Collapse
Affiliation(s)
- Adam Grazzini
- Department of Biology, Creighton University, Omaha, Nebraska, USA
| | - Ann M Cavanaugh
- Department of Biology, Creighton University, Omaha, Nebraska, USA.
| |
Collapse
|
2
|
Chen J, Xiong Z, Miller DE, Yu Z, McCroskey S, Bradford WD, Cavanaugh AM, Jaspersen SL. The role of gene dosage in budding yeast centrosome scaling and spontaneous diploidization. PLoS Genet 2020; 16:e1008911. [PMID: 33332348 PMCID: PMC7775121 DOI: 10.1371/journal.pgen.1008911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 12/31/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022] Open
Abstract
Ploidy is the number of whole sets of chromosomes in a species. Ploidy is typically a stable cellular feature that is critical for survival. Polyploidization is a route recognized to increase gene dosage, improve fitness under stressful conditions and promote evolutionary diversity. However, the mechanism of regulation and maintenance of ploidy is not well characterized. Here, we examine the spontaneous diploidization associated with mutations in components of the Saccharomyces cerevisiae centrosome, known as the spindle pole body (SPB). Although SPB mutants are associated with defects in spindle formation, we show that two copies of the mutant in a haploid yeast favors diploidization in some cases, leading us to speculate that the increased gene dosage in diploids ‘rescues’ SPB duplication defects, allowing cells to successfully propagate with a stable diploid karyotype. This copy number-based rescue is linked to SPB scaling: certain SPB subcomplexes do not scale or only minimally scale with ploidy. We hypothesize that lesions in structures with incompatible allometries such as the centrosome may drive changes such as whole genome duplication, which have shaped the evolutionary landscape of many eukaryotes. Ploidy is the number of whole sets of chromosomes in a species. Most eukaryotes alternate between a diploid (two copy) and haploid (one copy) state during their life and sexual cycle. However, as part of normal human development, specific tissues increase their DNA content. This gain of entire sets of chromosomes is known as polyploidization, and it is observed in invertebrates, plants and fungi, as well. Polyploidy is thought to improve fitness under stressful conditions and promote evolutionary diversity, but how ploidy is determined is poorly understood. Here, we use budding yeast to investigate mechanisms underlying the ploidy of wild-type cells and specific mutants that affect the centrosome, a conserved structure involved in chromosome segregation during cell division. Our work suggests that different scaling relationships (allometry) between the genome and cellular structures underlies alterations in ploidy. Furthermore, mutations in cellular structures with incompatible allometric relationships with the genome may drive genomic changes such duplications, which are underly the evolution of many species including both yeasts and humans.
Collapse
Affiliation(s)
- Jingjing Chen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zhiyong Xiong
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Scott McCroskey
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Bradford
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Ann M. Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
3
|
Drennan AC, Krishna S, Seeger MA, Andreas MP, Gardner JM, Sether EKR, Jaspersen SL, Rayment I. Structure and function of Spc42 coiled-coils in yeast centrosome assembly and duplication. Mol Biol Cell 2019; 30:1505-1522. [PMID: 30969903 PMCID: PMC6724696 DOI: 10.1091/mbc.e19-03-0167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 11/12/2022] Open
Abstract
Centrosomes and spindle pole bodies (SPBs) are membraneless organelles whose duplication and assembly is necessary for bipolar mitotic spindle formation. The structural organization and functional roles of major proteins in these organelles can provide critical insights into cell division control. Spc42, a phosphoregulated protein with an N-terminal dimeric coiled-coil (DCC), assembles into a hexameric array at the budding yeast SPB core, where it functions as a scaffold for SPB assembly. Here, we present in vitro and in vivo data to elucidate the structural arrangement and biological roles of Spc42 elements. Crystal structures reveal details of two additional coiled-coils in Spc42: a central trimeric coiled-coil and a C-terminal antiparallel DCC. Contributions of the three Spc42 coiled-coils and adjacent undetermined regions to the formation of an ∼145 Å hexameric lattice in an in vitro lipid monolayer assay and to SPB duplication and assembly in vivo reveal structural and functional redundancy in Spc42 assembly. We propose an updated model that incorporates the inherent symmetry of these Spc42 elements into a lattice, and thereby establishes the observed sixfold symmetry. The implications of this model for the organization of the central SPB core layer are discussed.
Collapse
Affiliation(s)
- Amanda C. Drennan
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | - Mark A. Seeger
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| | | | | | | | - Sue L. Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin–Madison, WI 53706
| |
Collapse
|
4
|
Fong KK, Zelter A, Graczyk B, Hoyt JM, Riffle M, Johnson R, MacCoss MJ, Davis TN. Novel phosphorylation states of the yeast spindle pole body. Biol Open 2018; 7:bio.033647. [PMID: 29903865 PMCID: PMC6215409 DOI: 10.1242/bio.033647] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Phosphorylation regulates yeast spindle pole body (SPB) duplication and separation and likely regulates microtubule nucleation. We report a phosphoproteomic analysis using tandem mass spectrometry of enriched Saccharomyces cerevisiae SPBs for two cell cycle arrests, G1/S and the mitotic checkpoint, expanding on previously reported phosphoproteomic data sets. We present a novel phosphoproteomic state of SPBs arrested in G1/S by a cdc4-1 temperature-sensitive mutation, with particular focus on phosphorylation events on the γ-tubulin small complex (γ-TuSC). The cdc4-1 arrest is the earliest arrest at which microtubule nucleation has occurred at the newly duplicated SPB. Several novel phosphorylation sites were identified in G1/S and during mitosis on the microtubule nucleating γ-TuSC. These sites were analyzed in vivo by fluorescence microscopy and were shown to be required for proper regulation of spindle length. Additionally, in vivo analysis of two mitotic sites in Spc97 found that phosphorylation of at least one of these sites is required for progression through the cell cycle. This phosphoproteomic data set not only broadens the scope of the phosphoproteome of SPBs, it also identifies several γ-TuSC phosphorylation sites that influence microtubule formation. Summary: A phosphoproteome of yeast spindle pole bodies in G1/S or M phase identifies phosphorylation sites involved in spindle length control and provides direction for future phosphorylation analyses of spindle pole components.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Beth Graczyk
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jill M Hoyt
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Richard Johnson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Michael J MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
5
|
Dai W, Li N, Zhang Z, Chen G, Li X, Peng X, Zhang Y, Xu L, Shen Z. Identification and localization of SAS-6 in the microsporidium Nosema bombycis. INFECTION GENETICS AND EVOLUTION 2018; 70:182-188. [PMID: 30244093 DOI: 10.1016/j.meegid.2018.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/16/2018] [Accepted: 09/17/2018] [Indexed: 11/28/2022]
Abstract
The centriole in eukaryotes functions as the cell's microtubule-organizing center (MTOC) to nucleate spindle assembly. The evolutionarily conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. Microsporidia possess the spindle plaque instead of centriole as their MTOC to nucleate spindle assembly. However, little is known about the components of spindle plaques in microsporidia. In our present study, we identified a SAS-6 protein in the microsporidium Nosema bombycis and named it as NSAS-6. The NSAS-6 gene contains a complete ORF of 1104 bp in length that encodes a 367-amino acid polypeptide. NSAS-6 consists of a conserved N-terminal domain and a coiled-coil domain. The high identity of SAS-6 homologous sequences from microsporidia indicates that SAS-6 is a conserved protein in microsporidia. Immunolocalization in sporoplasms, intracellular stages and mature spores showed that NSAS-6 probably localizes to the nucleus of N. bombycis and exists throughout the life cycle of N. bombycis. These results suggest that NSAS-6 is required in cell morphogenesis and division in N. bombycis. The function and structure of NSAS-6 should be the focus for further studies, which is essential to elucidate the role of SAS-6 in spindle plaque assembly.
Collapse
Affiliation(s)
- Weijiang Dai
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Nan Li
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Zhilin Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Gong Chen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Xiaoliang Li
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Xiangran Peng
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China
| | - Yiling Zhang
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Li Xu
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China
| | - Zhongyuan Shen
- Jiangsu University of Science and Technology, Zhenjiang 212018, Jiangsu Province, China; Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, Jiangsu Province, China.
| |
Collapse
|
6
|
Gunzelmann J, Rüthnick D, Lin TC, Zhang W, Neuner A, Jäkle U, Schiebel E. The microtubule polymerase Stu2 promotes oligomerization of the γ-TuSC for cytoplasmic microtubule nucleation. eLife 2018; 7:39932. [PMID: 30222109 PMCID: PMC6158006 DOI: 10.7554/elife.39932] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/14/2018] [Indexed: 12/25/2022] Open
Abstract
Stu2/XMAP215/ZYG-9/Dis1/Alp14/Msps/ch-TOG family members in association with with γ-tubulin complexes nucleate microtubules, but we know little about the interplay of these nucleation factors. Here, we show that the budding yeast Stu2 in complex with the γ-tubulin receptor Spc72 nucleates microtubules in vitro without the small γ-tubulin complex (γ-TuSC). Upon γ-TuSC addition, Stu2 facilitates Spc72–γ-TuSC interaction by binding to Spc72 and γ-TuSC. Stu2 together with Spc72–γ-TuSC increases microtubule nucleation in a process that is dependent on the TOG domains of Stu2. Importantly, these activities are also important for microtubule nucleation in vivo. Stu2 stabilizes Spc72–γ-TuSC at the minus end of cytoplasmic microtubules (cMTs) and an in vivo assay indicates that cMT nucleation requires the TOG domains of Stu2. Upon γ-tubulin depletion, we observed efficient cMT nucleation away from the spindle pole body (SPB), which was dependent on Stu2. Thus, γ-TuSC restricts cMT assembly to the SPB whereas Stu2 nucleates cMTs together with γ-TuSC and stabilizes γ-TuSC at the cMT minus end.
Collapse
Affiliation(s)
- Judith Gunzelmann
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Diana Rüthnick
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Tien-Chen Lin
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Wanlu Zhang
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Ursula Jäkle
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Allianz, Heidelberg, Germany
| |
Collapse
|
7
|
Jones MH, O'Toole ET, Fabritius AS, Muller EG, Meehl JB, Jaspersen SL, Winey M. Key phosphorylation events in Spc29 and Spc42 guide multiple steps of yeast centrosome duplication. Mol Biol Cell 2018; 29:2280-2291. [PMID: 30044722 PMCID: PMC6249810 DOI: 10.1091/mbc.e18-05-0296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Phosphorylation modulates many cellular processes during cell cycle progression. The yeast centrosome (called the spindle pole body, SPB) is regulated by the protein kinases Mps1 and Cdc28/Cdk1 as it nucleates microtubules to separate chromosomes during mitosis. Previously we completed an SPB phosphoproteome, identifying 297 sites on 17 of the 18 SPB components. Here we describe mutagenic analysis of phosphorylation events on Spc29 and Spc42, two SPB core components that were shown in the phosphoproteome to be heavily phosphorylated. Mutagenesis at multiple sites in Spc29 and Spc42 suggests that much of the phosphorylation on these two proteins is not essential but enhances several steps of mitosis. Of the 65 sites examined on both proteins, phosphorylation of the Mps1 sites Spc29-T18 and Spc29-T240 was shown to be critical for function. Interestingly, these two sites primarily influence distinct successive steps; Spc29-T240 is important for the interaction of Spc29 with Spc42, likely during satellite formation, and Spc29-T18 facilitates insertion of the new SPB into the nuclear envelope and promotes anaphase spindle elongation. Phosphorylation sites within Cdk1 motifs affect function to varying degrees, but mutations only have significant effects in the presence of an MPS1 mutation, supporting a theme of coregulation by these two kinases.
Collapse
Affiliation(s)
- Michele Haltiner Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Eileen T O'Toole
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Amy S Fabritius
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95616
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Janet B Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, MO 64110.,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309
| |
Collapse
|
8
|
Cavanaugh AM, Jaspersen SL. Big Lessons from Little Yeast: Budding and Fission Yeast Centrosome Structure, Duplication, and Function. Annu Rev Genet 2017; 51:361-383. [PMID: 28934593 DOI: 10.1146/annurev-genet-120116-024733] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are a functionally conserved feature of eukaryotic cells that play an important role in cell division. The conserved γ-tubulin complex organizes spindle and astral microtubules, which, in turn, separate replicated chromosomes accurately into daughter cells. Like DNA, centrosomes are duplicated once each cell cycle. Although in some cell types it is possible for cell division to occur in the absence of centrosomes, these divisions typically result in defects in chromosome number and stability. In single-celled organisms such as fungi, centrosomes [known as spindle pole bodies (SPBs)] are essential for cell division. SPBs also must be inserted into the membrane because fungi undergo a closed mitosis in which the nuclear envelope (NE) remains intact. This poorly understood process involves events similar or identical to those needed for de novo nuclear pore complex assembly. Here, we review how analysis of fungal SPBs has advanced our understanding of centrosomes and NE events.
Collapse
Affiliation(s)
- Ann M Cavanaugh
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA;
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, Missouri 64110, USA; .,Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| |
Collapse
|
9
|
Viswanath S, Bonomi M, Kim SJ, Klenchin VA, Taylor KC, Yabut KC, Umbreit NT, Van Epps HA, Meehl J, Jones MH, Russel D, Velazquez-Muriel JA, Winey M, Rayment I, Davis TN, Sali A, Muller EG. The molecular architecture of the yeast spindle pole body core determined by Bayesian integrative modeling. Mol Biol Cell 2017; 28:3298-3314. [PMID: 28814505 PMCID: PMC5687031 DOI: 10.1091/mbc.e17-06-0397] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 12/31/2022] Open
Abstract
A model of the core of the yeast spindle pole body (SPB) was created by a Bayesian modeling approach that integrated a diverse data set of biophysical, biochemical, and genetic information. The model led to a proposed pathway for the assembly of Spc110, a protein related to pericentrin, and a mechanism for how calmodulin strengthens the SPB during mitosis. Microtubule-organizing centers (MTOCs) form, anchor, and stabilize the polarized network of microtubules in a cell. The central MTOC is the centrosome that duplicates during the cell cycle and assembles a bipolar spindle during mitosis to capture and segregate sister chromatids. Yet, despite their importance in cell biology, the physical structure of MTOCs is poorly understood. Here we determine the molecular architecture of the core of the yeast spindle pole body (SPB) by Bayesian integrative structure modeling based on in vivo fluorescence resonance energy transfer (FRET), small-angle x-ray scattering (SAXS), x-ray crystallography, electron microscopy, and two-hybrid analysis. The model is validated by several methods that include a genetic analysis of the conserved PACT domain that recruits Spc110, a protein related to pericentrin, to the SPB. The model suggests that calmodulin can act as a protein cross-linker and Spc29 is an extended, flexible protein. The model led to the identification of a single, essential heptad in the coiled-coil of Spc110 and a minimal PACT domain. It also led to a proposed pathway for the integration of Spc110 into the SPB.
Collapse
Affiliation(s)
- Shruthi Viswanath
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Massimiliano Bonomi
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158 .,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Vadim A Klenchin
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Keenan C Taylor
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - King C Yabut
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Neil T Umbreit
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | | | - Janet Meehl
- Department of Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Michele H Jones
- Department of Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Daniel Russel
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Javier A Velazquez-Muriel
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado-Boulder, Boulder, CO 80309
| | - Ivan Rayment
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, Department of Pharmaceutical Chemistry, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158
| | - Eric G Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| |
Collapse
|
10
|
Fong KK, Sarangapani KK, Yusko EC, Riffle M, Llauró A, Graczyk B, Davis TN, Asbury CL. Direct measurement of the strength of microtubule attachment to yeast centrosomes. Mol Biol Cell 2017; 28:1853-1861. [PMID: 28331072 PMCID: PMC5541836 DOI: 10.1091/mbc.e17-01-0034] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 03/13/2017] [Accepted: 03/17/2017] [Indexed: 01/14/2023] Open
Abstract
Laser trapping is used to manipulate single attached microtubules in vitro. Direct mechanical measurement shows that attachment of microtubule minus ends to yeast spindle pole bodies is extraordinarily strong. Centrosomes, or spindle pole bodies (SPBs) in yeast, are vital mechanical hubs that maintain load-bearing attachments to microtubules during mitotic spindle assembly, spindle positioning, and chromosome segregation. However, the strength of microtubule-centrosome attachments is unknown, and the possibility that mechanical force might regulate centrosome function has scarcely been explored. To uncover how centrosomes sustain and regulate force, we purified SPBs from budding yeast and used laser trapping to manipulate single attached microtubules in vitro. Our experiments reveal that SPB–microtubule attachments are extraordinarily strong, rupturing at forces approximately fourfold higher than kinetochore attachments under identical loading conditions. Furthermore, removal of the calmodulin-binding site from the SPB component Spc110 weakens SPB–microtubule attachment in vitro and sensitizes cells to increased SPB stress in vivo. These observations show that calmodulin binding contributes to SPB mechanical integrity and suggest that its removal may cause pole delamination and mitotic failure when spindle forces are elevated. We propose that the very high strength of SPB–microtubule attachments may be important for spindle integrity in mitotic cells so that tensile forces generated at kinetochores do not cause microtubule detachment and delamination at SPBs.
Collapse
Affiliation(s)
- Kimberly K Fong
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Krishna K Sarangapani
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Erik C Yusko
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Michael Riffle
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Aida Llauró
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - Beth Graczyk
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Charles L Asbury
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| |
Collapse
|
11
|
Villoria MT, Ramos F, Dueñas E, Faull P, Cutillas PR, Clemente-Blanco A. Stabilization of the metaphase spindle by Cdc14 is required for recombinational DNA repair. EMBO J 2016; 36:79-101. [PMID: 27852625 PMCID: PMC5210157 DOI: 10.15252/embj.201593540] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 10/05/2016] [Accepted: 10/18/2016] [Indexed: 11/24/2022] Open
Abstract
Cells are constantly threatened by multiple sources of genotoxic stress that cause DNA damage. To maintain genome integrity, cells have developed a coordinated signalling network called DNA damage response (DDR). While multiple kinases have been thoroughly studied during DDR activation, the role of protein dephosphorylation in the damage response remains elusive. Here, we show that the phosphatase Cdc14 is essential to fulfil recombinational DNA repair in budding yeast. After DNA double‐strand break (DSB) generation, Cdc14 is transiently released from the nucleolus and activated. In this state, Cdc14 targets the spindle pole body (SPB) component Spc110 to counterbalance its phosphorylation by cyclin‐dependent kinase (Cdk). Alterations in the Cdk/Cdc14‐dependent phosphorylation status of Spc110, or its inactivation during the induction of a DNA lesion, generate abnormal oscillatory SPB movements that disrupt DSB‐SPB interactions. Remarkably, these defects impair DNA repair by homologous recombination indicating that SPB integrity is essential during the repair process. Together, these results show that Cdc14 promotes spindle stability and DSB‐SPB tethering during DNA repair, and imply that metaphase spindle maintenance is a critical feature of the repair process.
Collapse
Affiliation(s)
- María Teresa Villoria
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| | - Facundo Ramos
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| | - Encarnación Dueñas
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| | - Peter Faull
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council Clinical Science Centre Imperial College, London, UK
| | - Pedro Rodríguez Cutillas
- Biological Mass Spectrometry and Proteomics Laboratory, Medical Research Council Clinical Science Centre Imperial College, London, UK
| | - Andrés Clemente-Blanco
- Cell Cycle and Genome Stability Group, Instituto de Biología Funcional y Genómica Consejo Superior de Investigaciones Científicas (CSIC) Universidad de Salamanca (USAL), Salamanca, Spain
| |
Collapse
|
12
|
Lyon AS, Morin G, Moritz M, Yabut KCB, Vojnar T, Zelter A, Muller E, Davis TN, Agard DA. Higher-order oligomerization of Spc110p drives γ-tubulin ring complex assembly. Mol Biol Cell 2016; 27:2245-58. [PMID: 27226487 PMCID: PMC4945142 DOI: 10.1091/mbc.e16-02-0072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/19/2016] [Indexed: 02/01/2023] Open
Abstract
Assembly of the microtubule-nucleating γ-tubulin ring complex (γTuRC) requires higher-order oligomerization of Spc110p, which connects γTuRC to the yeast spindle pole body (SPB). Because Spc110p is highly concentrated at the SPB, spatial regulation of microtubule nucleation is thus achieved by exclusive assembly of γTuRCs proximal to the SPB. The microtubule (MT) cytoskeleton plays important roles in many cellular processes. In vivo, MT nucleation is controlled by the γ-tubulin ring complex (γTuRC), a 2.1-MDa complex composed of γ-tubulin small complex (γTuSC) subunits. The mechanisms underlying the assembly of γTuRC are largely unknown. In yeast, the conserved protein Spc110p both stimulates the assembly of the γTuRC and anchors the γTuRC to the spindle pole body. Using a quantitative in vitro FRET assay, we show that γTuRC assembly is critically dependent on the oligomerization state of Spc110p, with higher-order oligomers dramatically enhancing the stability of assembled γTuRCs. Our in vitro findings were confirmed with a novel in vivo γTuSC recruitment assay. We conclude that precise spatial control over MT nucleation is achieved by coupling localization and higher-order oligomerization of the receptor for γTuRC.
Collapse
Affiliation(s)
- Andrew S Lyon
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| | - Geneviève Morin
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Michelle Moritz
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| | | | - Tamira Vojnar
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Alex Zelter
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Eric Muller
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA 98195
| | - David A Agard
- Department of Biochemistry and Biophysics and Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158
| |
Collapse
|
13
|
Abstract
The yeast spindle pole body (SPB) is the functional equivalent of the mammalian centrosome. Centrosomes and SPBs duplicate exactly once per cell cycle by mechanisms that use the mother structure as a platform for the assembly of the daughter. The conserved Sfi1 and centrin proteins are essential components of the SPB duplication process. Sfi1 is an elongated molecule that has, in its center, 20 to 23 binding sites for the Ca(2+)-binding protein centrin. In the yeastSaccharomyces cerevisiae, all Sfi1 N termini are in contact with the mother SPB whereas the free C termini are distal to it. During S phase and early mitosis, cyclin-dependent kinase 1 (Cdk1) phosphorylation of mainly serine residues in the Sfi1 C termini blocks the initiation of SPB duplication ("off" state). Upon anaphase onset, the phosphatase Cdc14 dephosphorylates Sfi1 ("on" state) to promote antiparallel and shifted incorporation of cytoplasmic Sfi1 molecules into the half-bridge layer, which thereby elongates into the bridge. The Sfi1 C termini of the two Sfi1 layers localize in the bridge center, whereas the N termini of the newly assembled Sfi1 molecules are distal to the mother SPB. These free Sfi1 N termini then assemble the new SPB in G1phase. Recruitment of Sfi1 molecules into the anaphase SPB and bridge formation were also observed inSchizosaccharomyces pombe, suggesting that the Sfi1 bridge cycle is conserved between the two organisms. Thus, restricting SPB duplication to one event per cell cycle requires only an oscillation between Cdk1 kinase and Cdc14 phosphatase activities. This clockwork regulates the "on"/"off" state of the Sfi1-centrin receiver.
Collapse
|
14
|
Burns S, Avena JS, Unruh JR, Yu Z, Smith SE, Slaughter BD, Winey M, Jaspersen SL. Structured illumination with particle averaging reveals novel roles for yeast centrosome components during duplication. eLife 2015; 4. [PMID: 26371506 PMCID: PMC4564689 DOI: 10.7554/elife.08586] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/11/2015] [Indexed: 01/23/2023] Open
Abstract
Duplication of the yeast centrosome (called the spindle pole body, SPB) is thought to occur through a series of discrete steps that culminate in insertion of the new SPB into the nuclear envelope (NE). To better understand this process, we developed a novel two-color structured illumination microscopy with single-particle averaging (SPA-SIM) approach to study the localization of all 18 SPB components during duplication using endogenously expressed fluorescent protein derivatives. The increased resolution and quantitative intensity information obtained using this method allowed us to demonstrate that SPB duplication begins by formation of an asymmetric Sfi1 filament at mitotic exit followed by Mps1-dependent assembly of a Spc29- and Spc42-dependent complex at its tip. Our observation that proteins involved in membrane insertion, such as Mps2, Bbp1, and Ndc1, also accumulate at the new SPB early in duplication suggests that SPB assembly and NE insertion are coupled events during SPB formation in wild-type cells. DOI:http://dx.doi.org/10.7554/eLife.08586.001 Cells divide to produce two new daughter cells that each contain the same genetic material. First, the DNA of the parent cell is copied, then it must be physically separated into the daughter cells by a structure made of filaments called microtubules. To ensure that the DNA is separated into two equal parts, the microtubules must emerge from two points in the cell, known as spindle poles. Each spindle pole is made of a group (or ‘complex’) of proteins and these have to be copied before the cell can divide. While we understand how DNA is copied, we do not know how cells copy proteins. The spindle pole in yeast—known as the spindle pole body—is an ideal model to study this problem because the proteins that form it have already been identified and it is easy to study yeast in the laboratory. Burns et al. developed a new method to study the spindle pole body using fluorescent protein tags and a sophisticated microscopy technique. The experiments mapped the positions of 18 proteins within the spindle pole body during its duplication. Some of these proteins enable the spindle pole to insert into the membrane that surrounds the cell's nucleus. Unexpectedly, Burns et al. observed that this set of proteins interact with the new spindle pole as it forms, instead of afterwards as was previously believed. Burns et al.'s findings suggest that the spindle pole body assembles into the membrane surrounding the nucleus at the same time as it is copied. The next challenges are to understand the details of how this works and to use the same method to study other large protein complexes in cells. Until now, highly detailed surveys of protein structures have been limited to a handful of proteins and conditions. The method developed by Burns et al. makes it possible to carry out studies that examine the movements of whole protein complexes during cell division. DOI:http://dx.doi.org/10.7554/eLife.08586.002
Collapse
Affiliation(s)
- Shannon Burns
- Stowers Institute for Medical Research, Kansas City, United States
| | - Jennifer S Avena
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Jay R Unruh
- Stowers Institute for Medical Research, Kansas City, United States
| | - Zulin Yu
- Stowers Institute for Medical Research, Kansas City, United States
| | - Sarah E Smith
- Stowers Institute for Medical Research, Kansas City, United States
| | | | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado Boulder, Boulder, United States
| | - Sue L Jaspersen
- Stowers Institute for Medical Research, Kansas City, United States
| |
Collapse
|
15
|
Galletta BJ, Guillen RX, Fagerstrom CJ, Brownlee CW, Lerit DA, Megraw TL, Rogers GC, Rusan NM. Drosophila pericentrin requires interaction with calmodulin for its function at centrosomes and neuronal basal bodies but not at sperm basal bodies. Mol Biol Cell 2014; 25:2682-94. [PMID: 25031429 PMCID: PMC4161505 DOI: 10.1091/mbc.e13-10-0617] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pericentrin is a critical centrosomal protein required for organizing pericentriolar material (PCM) in mitosis. Mutations in pericentrin cause the human genetic disorder Majewski/microcephalic osteodysplastic primordial dwarfism type II, making a detailed understanding of its regulation extremely important. Germaine to pericentrin's function in organizing PCM is its ability to localize to the centrosome through the conserved C-terminal PACT domain. Here we use Drosophila pericentrin-like-protein (PLP) to understand how the PACT domain is regulated. We show that the interaction of PLP with calmodulin (CaM) at two highly conserved CaM-binding sites in the PACT domain controls the proper targeting of PLP to the centrosome. Disrupting the PLP-CaM interaction with single point mutations renders PLP inefficient in localizing to centrioles in cultured S2 cells and Drosophila neuroblasts. Although levels of PCM are unaffected, it is highly disorganized. We also demonstrate that basal body formation in the male testes and the production of functional sperm does not rely on the PLP-CaM interaction, whereas production of functional mechanosensory neurons does.
Collapse
Affiliation(s)
- Brian J Galletta
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Rodrigo X Guillen
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Carey J Fagerstrom
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Chris W Brownlee
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Dorothy A Lerit
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Timothy L Megraw
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32304
| | - Gregory C Rogers
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ 85724
| | - Nasser M Rusan
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
16
|
Lin TC, Neuner A, Schlosser YT, Scharf AND, Weber L, Schiebel E. Cell-cycle dependent phosphorylation of yeast pericentrin regulates γ-TuSC-mediated microtubule nucleation. eLife 2014; 3:e02208. [PMID: 24842996 PMCID: PMC4034690 DOI: 10.7554/elife.02208] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Budding yeast Spc110, a member of γ-tubulin complex receptor family (γ-TuCR), recruits γ-tubulin complexes to microtubule (MT) organizing centers (MTOCs). Biochemical studies suggest that Spc110 facilitates higher-order γ-tubulin complex assembly (Kollman et al., 2010). Nevertheless the molecular basis for this activity and the regulation are unclear. Here we show that Spc110 phosphorylated by Mps1 and Cdk1 activates γ-TuSC oligomerization and MT nucleation in a cell cycle dependent manner. Interaction between the N-terminus of the γ-TuSC subunit Spc98 and Spc110 is important for this activity. Besides the conserved CM1 motif in γ-TuCRs (Sawin et al., 2004), a second motif that we named Spc110/Pcp1 motif (SPM) is also important for MT nucleation. The activating Mps1 and Cdk1 sites lie between SPM and CM1 motifs. Most organisms have both SPM-CM1 (Spc110/Pcp1/PCNT) and CM1-only (Spc72/Mto1/Cnn/CDK5RAP2/myomegalin) types of γ-TuCRs. The two types of γ-TuCRs contain distinct but conserved C-terminal MTOC targeting domains. DOI:http://dx.doi.org/10.7554/eLife.02208.001 Microtubules are hollow structures made of proteins that have a central role in cell division and a variety of other important processes within cells. For a cell to divide successfully, the chromosomes containing the genetic information of the cell must be duplicated and then separated so that one copy of each chromosome ends up in each daughter cell. To separate the chromosomes, microtubules extend out from two structures called spindle pole bodies, which are found at either end of the cell, and pull one copy of each chromosome to opposite sides of the cell. Although the individual proteins that make up a microtubule can self-assemble into tubes, this occurs very slowly, so cells employ other molecules to speed up this process. In yeast cells, a protein called gamma-tubulin is recruited to the spindle pole body by the protein Spc110, where it combines with two other proteins to form a complex called the gamma-tubulin small complex. Several of these complexes then join together to form a ring, which probably acts as the platform that microtubules grow from. Recent observations suggested that Spc110 may help to construct this ring, but without revealing how. Now, Lin et al. reveal that Spc110 can regulate microtubule formation by controlling how several gamma-tubulin small complexes bind together, and have identified the exact section of Spc110 that interacts with the complexes. However, the Spc110 must become active before it can perform this role, and it is only activated during certain stages of cell division, through phosphorylation. The structures in Spc110 that bind to the gamma-tubulin small complex in yeast are also found in gamma-tubulin binding receptor proteins in human cells. The work of Lin et al. demonstrates that proteins that are assumed to have passive roles within cells, such as Spc110, often play more active roles instead. DOI:http://dx.doi.org/10.7554/eLife.02208.002
Collapse
Affiliation(s)
- Tien-Chen Lin
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany The Hartmut Hoffmann-Berling International Graduate School, University of Heidelberg, Heidelberg, Germany
| | - Annett Neuner
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Yvonne T Schlosser
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Annette N D Scharf
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Lisa Weber
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| | - Elmar Schiebel
- Zentrum für Molekulare Biologie (ZMBH), Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
17
|
Mallampalli RK, Glasser JR, Coon TA, Chen BB. Calmodulin protects Aurora B on the midbody to regulate the fidelity of cytokinesis. Cell Cycle 2013; 12:663-73. [PMID: 23370391 DOI: 10.4161/cc.23586] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aurora B kinase is an integral regulator of cytokinesis as it stabilizes the intercellular canal within the midbody to ensure proper chromosomal segregation during cell division. Here we identified an E3 ligase subunit, F box protein FBXL2, that by recognizing a calmodulin binding signature within Aurora B, ubiquitinates and removes the kinase from the midbody. Calmodulin, by competing with the F box protein for access to the calmodulin binding signature, protected Aurora B from FBXL2. Calmodulin co-localized with Aurora B on the midbody, preserved Aurora B levels in cells, and stabilized intercellular canals during delayed abscission. Genetic or pharmaceutical depletion of endogenous calmodulin significantly reduced Aurora B protein levels at the midbody resulting in tetraploidy and multi-spindle formation. The calmodulin inhibitor, calmidazolium, reduced Aurora B protein levels resulting in tetraploidy, mitotic arrest, and apoptosis of tumorigenic cells and profoundly inhibiting tumor formation in athymic nude mice. These observations indicate molecular interplay between Aurora B and calmodulin in telophase and suggest that calmodulin acts as a checkpoint sensor for chromosomal segregation errors during mitosis.
Collapse
Affiliation(s)
- Rama K Mallampalli
- Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
18
|
A pericentrin-related protein homolog in Aspergillus nidulans plays important roles in nucleus positioning and cell polarity by affecting microtubule organization. EUKARYOTIC CELL 2012; 11:1520-30. [PMID: 23087372 DOI: 10.1128/ec.00203-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Pericentrin is a large coiled-coil protein in mammalian centrosomes that serves as a multifunctional scaffold for anchoring numerous proteins. Recent studies have linked numerous human disorders with mutated or elevated levels of pericentrin, suggesting unrecognized contributions of pericentrin-related proteins to the development of these disorders. In this study, we characterized AnPcpA, a putative homolog of pericentrin-related protein in the model filamentous fungus Aspergillus nidulans, and found that it is essential for conidial germination and hyphal development. Compared to the hyphal apex localization pattern of calmodulin (CaM), which has been identified as an interactive partner of the pericentrin homolog, GFP-AnPcpA fluorescence dots are associated mainly with nuclei, while the accumulation of CaM at the hyphal apex depends on the function of AnPcpA. In addition, the depletion of AnPcpA by an inducible alcA promoter repression results in severe growth defects and abnormal nuclear segregation. Most interestingly, in mature hyphal cells, knockdown of pericentrin was able to significantly induce changes in cell shape and cytoskeletal remodeling; it resulted in some enlarged compartments with condensed nuclei and anucleate small compartments as well. Moreover, defects in AnPcpA significantly disrupted the microtubule organization and nucleation, suggesting that AnPcpA may affect nucleus positioning by influencing microtubule organization.
Collapse
|
19
|
Abstract
The Saccharomyces cerevisiae mitotic spindle in budding yeast is exemplified by its simplicity and elegance. Microtubules are nucleated from a crystalline array of proteins organized in the nuclear envelope, known as the spindle pole body in yeast (analogous to the centrosome in larger eukaryotes). The spindle has two classes of nuclear microtubules: kinetochore microtubules and interpolar microtubules. One kinetochore microtubule attaches to a single centromere on each chromosome, while approximately four interpolar microtubules emanate from each pole and interdigitate with interpolar microtubules from the opposite spindle to provide stability to the bipolar spindle. On the cytoplasmic face, two to three microtubules extend from the spindle pole toward the cell cortex. Processes requiring microtubule function are limited to spindles in mitosis and to spindle orientation and nuclear positioning in the cytoplasm. Microtubule function is regulated in large part via products of the 6 kinesin gene family and the 1 cytoplasmic dynein gene. A single bipolar kinesin (Cin8, class Kin-5), together with a depolymerase (Kip3, class Kin-8) or minus-end-directed kinesin (Kar3, class Kin-14), can support spindle function and cell viability. The remarkable feature of yeast cells is that they can survive with microtubules and genes for just two motor proteins, thus providing an unparalleled system to dissect microtubule and motor function within the spindle machine.
Collapse
|
20
|
Greenland KB, Ding H, Costanzo M, Boone C, Davis TN. Identification of Saccharomyces cerevisiae spindle pole body remodeling factors. PLoS One 2010; 5:e15426. [PMID: 21103054 PMCID: PMC2980476 DOI: 10.1371/journal.pone.0015426] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Accepted: 09/20/2010] [Indexed: 12/18/2022] Open
Abstract
The Saccharomyces cerevisiae centrosome or spindle pole body (SPB) is a dynamic structure that is remodeled in a cell cycle dependent manner. The SPB increases in size late in the cell cycle and during most cell cycle arrests and exchanges components during G1/S. We identified proteins involved in the remodeling process using a strain in which SPB remodeling is conditionally induced. This strain was engineered to express a modified SPB component, Spc110, which can be cleaved upon the induction of a protease. Using a synthetic genetic array analysis, we screened for genes required only when Spc110 cleavage is induced. Candidate SPB remodeling factors fell into several functional categories: mitotic regulators, microtubule motors, protein modification enzymes, and nuclear pore proteins. The involvement of candidate genes in SPB assembly was assessed in three ways: by identifying the presence of a synthetic growth defect when combined with an Spc110 assembly defective mutant, quantifying growth of SPBs during metaphase arrest, and comparing distribution of SPB size during asynchronous growth. These secondary screens identified four genes required for SPB remodeling: NUP60, POM152, and NCS2 are required for SPB growth during a mitotic cell cycle arrest, and UBC4 is required to maintain SPB size during the cell cycle. These findings implicate the nuclear pore, urmylation, and ubiquitination in SPB remodeling and represent novel functions for these genes.
Collapse
Affiliation(s)
- Kristen B. Greenland
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
| | - Huiming Ding
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Michael Costanzo
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Charles Boone
- Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Trisha N. Davis
- Department of Biochemistry, University of Washington, Seattle, Washington, United States of America
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
21
|
Araki Y, Gombos L, Migueleti SPS, Sivashanmugam L, Antony C, Schiebel E. N-terminal regions of Mps1 kinase determine functional bifurcation. ACTA ACUST UNITED AC 2010; 189:41-56. [PMID: 20368617 PMCID: PMC2854372 DOI: 10.1083/jcb.200910027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Spindle pole body components Spc29 and Cdc31 are identified as targets of Mps1 kinase, which, when phosphorylated, regulate protein–protein interactions in the spindle pole body. Mps1 is a conserved kinase that in budding yeast functions in duplication of the spindle pole body (SPB), spindle checkpoint activation, and kinetochore biorientation. The identity of Mps1 targets and the subdomains that convey specificity remain largely unexplored. Using a novel combination of systematic deletion analysis and chemical biology, we identified two regions within the N terminus of Mps1 that are essential for either SPB duplication or kinetochore biorientation. Suppression analysis of the MPS1 mutants defective in SPB duplication and biochemical enrichment of Mps1 identified the essential SPB components Spc29 and the yeast centrin Cdc31 as Mps1 targets in SPB duplication. Our data suggest that phosphorylation of Spc29 by Mps1 in G1/S recruits the Mps2–Bbp1 complex to the newly formed SPB to facilitate its insertion into the nuclear envelope. Mps1 phosphorylation of Cdc31 at the conserved T110 residue controls substrate binding to Kar1 protein. These findings explain the multiple SPB duplication defects of mps1 mutants on a molecular level.
Collapse
Affiliation(s)
- Yasuhiro Araki
- Zentrum für Molekulare Biologie der Universität Heidelberg, Deutsches Krebsforschungszentrum-ZMBH Allianz, 69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Wang Z, Wu T, Shi L, Zhang L, Zheng W, Qu JY, Niu R, Qi RZ. Conserved motif of CDK5RAP2 mediates its localization to centrosomes and the Golgi complex. J Biol Chem 2010; 285:22658-65. [PMID: 20466722 DOI: 10.1074/jbc.m110.105965] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
As the primary microtubule-organizing centers, centrosomes require gamma-tubulin for microtubule nucleation and organization. Located in close vicinity to centrosomes, the Golgi complex is another microtubule-organizing organelle in interphase cells. CDK5RAP2 is a gamma-tubulin complex-binding protein and functions in gamma-tubulin attachment to centrosomes. In this study, we find that CDK5RAP2 localizes to the Golgi complex in an ATP- and centrosome-dependent manner and associates with Golgi membranes independently of microtubules. CDK5RAP2 contains a centrosome-targeting domain with its core region highly homologous to the Motif 2 (CM2) of centrosomin, a functionally related protein in Drosophila. This sequence, referred to as the CM2-like motif, is also conserved in related proteins in chicken and zebrafish. Therefore, CDK5RAP2 may undertake a conserved mechanism for centrosomal localization. Using a mutational approach, we demonstrate that the CM2-like motif plays a crucial role in the centrosomal and Golgi localization of CDK5RAP2. Furthermore, the CM2-like motif is essential for the association of the centrosome-targeting domain to pericentrin and AKAP450. The binding with pericentrin is required for the centrosomal and Golgi localization of CDK5RAP2, whereas the binding with AKAP450 is required for the Golgi localization. Although the CM2-like motif possesses the activity of Ca(2+)-independent calmodulin binding, binding of calmodulin to this sequence is dispensable for centrosomal and Golgi association. Altogether, CDK5RAP2 may represent a novel mechanism for centrosomal and Golgi localization.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Biochemistry and State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Abstract
Pericentrin is an integral component of the centrosome that serves as a multifunctional scaffold for anchoring numerous proteins and protein complexes. Through these interactions, pericentrin contributes to a diversity of fundamental cellular processes. Recent studies link pericentrin to a growing list of human disorders. Studies on pericentrin at the cellular, molecular, and, more recently, organismal level, provide a platform for generating models to elucidate the etiology of these disorders. Although the complexity of phenotypes associated with pericentrin-mediated disorders is somewhat daunting, insights into the cellular basis of disease are beginning to come into focus. In this review, we focus on human conditions associated with loss or elevation of pericentrin and propose cellular and molecular models that might explain them.
Collapse
Affiliation(s)
- Benedicte Delaval
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | |
Collapse
|
24
|
Hoffman-Sommer M, Kucharczyk R, Piekarska I, Kozlowska E, Rytka J. Mutations in the Saccharomyces cerevisiae vacuolar fusion proteins Ccz1, Mon1 and Ypt7 cause defects in cell cycle progression in a num1Δ background. Eur J Cell Biol 2009; 88:639-52. [DOI: 10.1016/j.ejcb.2009.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Revised: 06/29/2009] [Accepted: 07/03/2009] [Indexed: 01/07/2023] Open
|
25
|
Shimogawa MM, Widlund PO, Riffle M, Ess M, Davis TN. Bir1 is required for the tension checkpoint. Mol Biol Cell 2008; 20:915-23. [PMID: 19056681 DOI: 10.1091/mbc.e08-07-0723] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The Saccharomyces cerevisiae chromosomal passenger proteins Ipl1 (Aurora B) and Sli15 (INCENP) are required for the tension checkpoint, but the role of the third passenger, Bir1, is controversial. We have isolated a temperature-sensitive mutant (bir1-107) in the essential C-terminal region of Bir1 known to be required for binding to Sli15. This allele reveals a checkpoint function for Bir1. The mutant displays a biorientation defect, a defective checkpoint response to lack of tension, and an inability to detach mutant kinetochores. Ipl1 localizes to aberrant foci when Bir1 localization is disrupted in the bir1-107 mutant. Thus, one checkpoint role of Bir1 is to properly localize Ipl1 and allow detachment of kinetochores. Quantitative analysis indicates that the chromosomal passengers colocalize with kinetochores in G1 but localize between kinetochores that are under tension. Bir1 localization to kinetochores is maintained in an mcd1-1 mutant in the absence of tension. Our results suggest that the establishment of tension removes Ipl1, Bir1, and Sli15, and their kinetochore detachment activity, from the vicinity of kinetochores and allows cells to proceed through the tension checkpoint.
Collapse
Affiliation(s)
- Michelle M Shimogawa
- Department of Biochemistry, University of Washington, Seattle, WA 98195-7350, USA
| | | | | | | | | |
Collapse
|
26
|
Sun L, Hodeify R, Haun S, Charlesworth A, MacNicol AM, Ponnappan S, Ponnappan U, Prigent C, Machaca K. Ca2+ homeostasis regulates Xenopus oocyte maturation. Biol Reprod 2008; 78:726-35. [PMID: 18094360 PMCID: PMC2587222 DOI: 10.1095/biolreprod.107.063693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
In contrast to the well-defined role of Ca2+ signals during mitosis, the contribution of Ca2+ signaling to meiosis progression is controversial, despite several decades of investigating the role of Ca2+ and its effectors in vertebrate oocyte maturation. We have previously shown that during Xenopus oocyte maturation, Ca2+ signals are dispensable for entry into meiosis and for germinal vesicle breakdown. However, normal Ca2+ homeostasis is essential for completion of meiosis I and extrusion of the first polar body. In this study, we test the contribution of several downstream effectors in mediating the Ca2+ effects during oocyte maturation. We show that calmodulin and calcium-calmodulin-dependent protein kinase II (CAMK2) are not critical downstream Ca2+ effectors during meiotic maturation. In contrast, accumulation of Aurora kinase A (AURKA) protein is disrupted in cells deprived of Ca2+ signals. Since AURKA is required for bipolar spindle formation, failure to accumulate AURKA may contribute to the defective spindle phenotype following Ca2+ deprivation. These findings argue that Ca2+ homeostasis is important in establishing the oocyte's competence to undergo maturation in preparation for fertilization and embryonic development.
Collapse
Affiliation(s)
- Lu Sun
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Rawad Hodeify
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Shirley Haun
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Amanda Charlesworth
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Angus M. MacNicol
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Subramaniam Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Usha Ponnappan
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Department of Immunology & Microbiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| | - Claude Prigent
- CNRS UMR6061, Genetique et Developpement, Universite de Rennes 1, 35043 Rennes, France
| | - Khaled Machaca
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
- Arkansas Cancer Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205
| |
Collapse
|
27
|
Batchelder EL, Thomas-Virnig CL, Hardin JD, White JG. Cytokinesis is not controlled by calmodulin or myosin light chain kinase in the Caenorhabditis elegans early embryo. FEBS Lett 2007; 581:4337-41. [PMID: 17716666 PMCID: PMC2144740 DOI: 10.1016/j.febslet.2007.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 07/27/2007] [Accepted: 08/03/2007] [Indexed: 12/16/2022]
Abstract
Furrow ingression in animal cell cytokinesis is controlled by phosphorylation of myosin II regulatory light chain (mRLC). In Caenorhabditis elegans embryos, Rho-dependent Kinase (RhoK) is involved in, but not absolutely required for, this phosphorylation. The calmodulin effector myosin light chain kinase (MLCK) can also phosphorylate mRLC and is widely regarded as a candidate for redundant function with RhoK. However, our results show that RNA mediated interference against C. elegans calmodulin and candidate MLCKs had no effect on cytokinesis in wild-type or RhoK mutant embryos, ruling out the calmodulin/MLCK pathway as the missing regulator of cytokinesis in the C. elegans early embryo.
Collapse
Affiliation(s)
- Ellen L Batchelder
- Laboratory of Molecular Biology, University of Wisconsin-Madison, 1525 Linden Drive, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
28
|
Mc Intyre J, Muller EGD, Weitzer S, Snydsman BE, Davis TN, Uhlmann F. In vivo analysis of cohesin architecture using FRET in the budding yeast Saccharomyces cerevisiae. EMBO J 2007; 26:3783-93. [PMID: 17660750 PMCID: PMC1952217 DOI: 10.1038/sj.emboj.7601793] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Accepted: 06/18/2007] [Indexed: 12/23/2022] Open
Abstract
Cohesion between sister chromatids in eukaryotes is mediated by the evolutionarily conserved cohesin complex. Cohesin forms a proteinaceous ring, large enough to trap pairs of replicated sister chromatids. The circumference consists of the Smc1 and Smc3 subunits, while Scc1 is thought to close the ring by bridging the Smc (structural maintenance of chromosomes) ATPase head domains. Little is known about two additional subunits, Scc3 and Pds5, and about possible conformational changes of the complex during the cell cycle. We have employed fluorescence resonance energy transfer (FRET) to analyse interactions within the cohesin complex in live budding yeast. These experiments reveal an unexpected geometry of Scc1 at the Smc heads, and suggest that Pds5 plays a role at the Smc hinge on the opposite side of the ring. Key subunit interactions, including close proximity of the two ATPase heads, are constitutive throughout the cell cycle. This depicts cohesin as a stable molecular machine undergoing only transient conformational changes during binding and dissociation from chromosomes. Using FRET, we did not observe interactions between more than one cohesin complex in vivo.
Collapse
Affiliation(s)
- John Mc Intyre
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Eric G D Muller
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Stefan Weitzer
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, UK
| | - Brian E Snydsman
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Trisha N Davis
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Frank Uhlmann
- Chromosome Segregation Laboratory, Cancer Research UK London Research Institute, London, UK
| |
Collapse
|
29
|
Huisman SM, Smeets MFMA, Segal M. Phosphorylation of Spc110p by Cdc28p-Clb5p kinase contributes to correct spindle morphogenesis in S. cerevisiae. J Cell Sci 2007; 120:435-46. [PMID: 17213332 DOI: 10.1242/jcs.03342] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Spindle morphogenesis is regulated by cyclin-dependent kinases and monitored by checkpoint pathways to accurately coordinate chromosomal segregation with other events in the cell cycle. We have previously dissected the contribution of individual B-type cyclins to spindle morphogenesis in Saccharomyces cerevisiae. We showed that the S-phase cyclin Clb5p is required for coupling spindle assembly and orientation. Loss of Clb5p-dependent kinase abolishes intrinsic asymmetry between the spindle poles resulting in lethal translocation of the spindle into the bud with high penetrance in diploid cells. This phenotype was exploited in a screen for high dosage suppressors that yielded spc110(Delta)(13), encoding a truncation of the spindle pole body component Spc110p (the intranuclear receptor for the gamma-tubulin complex). We found that Clb5p-GFP was localised to the spindle poles and intranuclear microtubules and that Clb5p-dependent kinase promoted cell cycle dependent phosphorylation of Spc110p contributing to spindle integrity. Two cyclin-dependent kinase consensus sites were required for this phosphorylation and were critical for the activity of spc110(Delta)(13) as a suppressor. Together, our results point to the function of cyclin-dependent kinase phosphorylation of Spc110p and provide, in addition, support to a model for Clb5p control of spindle polarity at the level of astral microtubule organisation.
Collapse
Affiliation(s)
- Stephen M Huisman
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, UK
| | | | | |
Collapse
|
30
|
Tsang WY, Spektor A, Luciano DJ, Indjeian VB, Chen Z, Salisbury JL, Sánchez I, Dynlacht BD. CP110 cooperates with two calcium-binding proteins to regulate cytokinesis and genome stability. Mol Biol Cell 2006; 17:3423-34. [PMID: 16760425 PMCID: PMC1525247 DOI: 10.1091/mbc.e06-04-0371] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The centrosome is an integral component of the eukaryotic cell cycle machinery, yet very few centrosomal proteins have been fully characterized to date. We have undertaken a series of biochemical and RNA interference (RNAi) studies to elucidate a role for CP110 in the centrosome cycle. Using a combination of yeast two-hybrid screens and biochemical analyses, we report that CP110 interacts with two different Ca2+-binding proteins, calmodulin (CaM) and centrin, in vivo. In vitro binding experiments reveal a direct, robust interaction between CP110 and CaM and the existence of multiple high-affinity CaM-binding domains in CP110. Native CP110 exists in large (approximately 300 kDa to 3 MDa) complexes that contain both centrin and CaM. We investigated a role for CP110 in CaM-mediated events using RNAi and show that its depletion leads to a failure at a late stage of cytokinesis and the formation of binucleate cells, mirroring the defects resulting from ablation of either CaM or centrin function. Importantly, expression of a CP110 mutant unable to bind CaM also promotes cytokinesis failure and binucleate cell formation. Taken together, our data demonstrate a functional role for CaM binding to CP110 and suggest that CP110 cooperates with CaM and centrin to regulate progression through cytokinesis.
Collapse
Affiliation(s)
- William Y. Tsang
- *Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Alexander Spektor
- *Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Daniel J. Luciano
- *Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Vahan B. Indjeian
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138
| | | | | | - Irma Sánchez
- *Department of Pathology, New York University School of Medicine, New York, NY 10016
| | - Brian David Dynlacht
- *Department of Pathology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
31
|
Niepel M, Strambio-de-Castillia C, Fasolo J, Chait BT, Rout MP. The nuclear pore complex-associated protein, Mlp2p, binds to the yeast spindle pole body and promotes its efficient assembly. ACTA ACUST UNITED AC 2005; 170:225-35. [PMID: 16027220 PMCID: PMC2171418 DOI: 10.1083/jcb.200504140] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The two yeast proteins Mlp1p and Mlp2p (homologues of the vertebrate protein Tpr) are filamentous proteins attached to the nuclear face of nuclear pore complexes. Here we perform a proteomic analysis, which reveals that the two Mlps have strikingly different interacting partners, testifying to their different roles within the cell. We find that Mlp2p binds directly to Spc110p, Spc42p, and Spc29p, which are three core components of the spindle pole body (SPB), the nuclear envelope–associated yeast spindle organizer. We further show that SPB function is compromised in mlp2 mutants. Cells lacking Mlp2p form significantly smaller SPBs, accumulate aberrant SPB component-containing structures inside the nucleus, and have stochastic failures of cell division. In addition, depletion of Mlp2p is synthetically lethal with mutants impaired in SPB assembly. Based on these data, we propose that Mlp2p links the SPB to the peripheral Mlp assembly, and that this linkage is required for efficient incorporation of components into the SPB.
Collapse
Affiliation(s)
- Mario Niepel
- The Rockefeller University, New York, NY 10021, USA
| | | | | | | | | |
Collapse
|
32
|
Jin Y, Mancuso JJ, Uzawa S, Cronembold D, Cande WZ. The fission yeast homolog of the human transcription factor EAP30 blocks meiotic spindle pole body amplification. Dev Cell 2005; 9:63-73. [PMID: 15992541 DOI: 10.1016/j.devcel.2005.04.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 03/22/2005] [Accepted: 04/20/2005] [Indexed: 11/19/2022]
Abstract
Centrosome aberrations caused by misregulated centrosome maturation result in defective spindle and genomic instability. Here we report that the fission yeast homolog of the human transcription factor EAP30, Dot2, negatively regulates meiotic spindle pole body (SPB, the yeast equivalent of centrosome) maturation. dot2 mutants show excess electron-dense material accumulating near SPBs, which we refer to as aberrant microtubule organization centers (AMtOCs). These AMtOCs assemble multipolar spindles, leading to chromosome missegregation. SPB aberrations were associated with elevated levels of Pcp1, the fission yeast ortholog of pericentrin/kentrin, and reducing pcp1(+) expression significantly suppressed AMtOCs in dot2-439 cells. Our findings, therefore, uncover meiosis-specific regulation of SPB maturation and provide evidence that a member of the conserved EAP30 family is required for maintenance of genome stability through regulation of SPB maturation. EAP30 is part of a transcription factor complex associated with acute myeloid leukemia, so these results may have relevance to human cancer.
Collapse
Affiliation(s)
- Ye Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
Nucleation of microtubules by eukaryotic microtubule organizing centers (MTOCs) is required for a variety of functions, including chromosome segregation during mitosis and meiosis, cytokinesis, fertilization, cellular morphogenesis, cell motility, and intracellular trafficking. Analysis of MTOCs from different organisms shows that the structure of these organelles is widely varied even though they all share the function of microtubule nucleation. Despite their morphological diversity, many components and regulators of MTOCs, as well as principles in their assembly, seem to be conserved. This review focuses on one of the best-characterized MTOCs, the budding yeast spindle pole body (SPB). We review what is known about its structure, protein composition, duplication, regulation, and functions. In addition, we discuss how studies of the yeast SPB have aided investigation of other MTOCs, most notably the centrosome of animal cells.
Collapse
Affiliation(s)
- Sue L Jaspersen
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
| | | |
Collapse
|
34
|
Yoder TJ, McElwain MA, Francis SE, Bagley J, Muller EGD, Pak B, O'Toole ET, Winey M, Davis TN. Analysis of a spindle pole body mutant reveals a defect in biorientation and illuminates spindle forces. Mol Biol Cell 2004; 16:141-52. [PMID: 15525672 PMCID: PMC539159 DOI: 10.1091/mbc.e04-08-0703] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The spindle pole body (SPB) is the microtubule organizing center in Saccharomyces cerevisiae. An essential task of the SPB is to ensure assembly of the bipolar spindle, which requires a proper balancing of forces on the microtubules and chromosomes. The SPB component Spc110p connects the ends of the spindle microtubules to the core of the SPB. We previously reported the isolation of a mutant allele spc110-226 that causes broken spindles and SPB disintegration 30 min after spindle formation. By live cell imaging of mutant cells with green fluorescent protein (GFP)-Tub1p or Spc97p-GFP, we show that spc110-226 mutant cells have early defects in spindle assembly. Short spindles form but do not advance to the 1.5-microm stage and frequently collapse. Kinetochores are not arranged properly in the mutant cells. In 70% of the cells, no stable biorientation occurs and all kinetochores are associated with only one SPB. Examination of the SPB remnants by electron microscopy tomography and fluorescence microscopy revealed that the Spc110-226p/calmodulin complex is stripped off of the central plaque of the SPB and coalesces to from a nucleating structure in the nucleoplasm. The central plaque components Spc42p and Spc29p remain behind in the nuclear envelope. The delamination is likely due to a perturbed interaction between Spc42p and Spc110-226p as detected by fluorescence resonance energy transfer analysis. We suggest that the force exerted on the SPB by biorientation of the chromosomes pulls the Spc110-226p out of the SPB; removal of force exerted by coherence of the sister chromatids reduced fragmentation fourfold. Removal of the forces exerted by the cytoplasmic microtubules had no effect on fragmentation. Our results provide insights into the relative contributions of the kinetochore and cytoplasmic microtubules to the forces involved in formation of a bipolar spindle.
Collapse
Affiliation(s)
- Tennessee J Yoder
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Kawaguchi SI, Zheng Y. Characterization of a Drosophila centrosome protein CP309 that shares homology with Kendrin and CG-NAP. Mol Biol Cell 2004; 15:37-45. [PMID: 14565985 PMCID: PMC307525 DOI: 10.1091/mbc.e03-03-0191] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2003] [Revised: 08/27/2003] [Accepted: 08/28/2003] [Indexed: 11/11/2022] Open
Abstract
The centrosome in animal cells provides a major microtubule-nucleating site that regulates the microtubule cytoskeleton temporally and spatially throughout the cell cycle. We report the identification in Drosophila melanogaster of a large coiled-coil centrosome protein that can bind to calmodulin. Biochemical studies reveal that this novel Drosophila centrosome protein, centrosome protein of 309 kDa (CP309), cofractionates with the gamma-tubulin ring complex and the centrosome-complementing activity. We show that CP309 is required for microtubule nucleation mediated by centrosomes and that it interacts with the gamma-tubulin small complex. These findings suggest that the microtubule-nucleating activity of the centrosome requires the function of CP309.
Collapse
Affiliation(s)
- Shin-ichi Kawaguchi
- Department of Embryology, Carnegie Institution of Washington and Howard Hughes Medical Institute, Baltimore, Maryland 21210, USA
| | | |
Collapse
|
36
|
Flory MR, Davis TN. The centrosomal proteins pericentrin and kendrin are encoded by alternatively spliced products of one gene. Genomics 2003; 82:401-5. [PMID: 12906865 DOI: 10.1016/s0888-7543(03)00119-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pericentrin, a critical centrosome component first identified in mouse, recruits factors required for assembly of the mitotic spindle apparatus. A similar yet larger human protein named kendrin was recently identified, but its relationship to pericentrin was not clear. Extensive sequence homology between the mouse chromosome 10 region encoding pericentrin and the human chromosome 21 region encoding kendrin indicates that these proteins are encoded by syntenic loci. However, comparison of the published mouse pericentrin cDNA sequence to mouse genomic DNA sequences revealed two important differences: the stop codon present in the published mouse pericentrin cDNA is not found in the mouse genomic sequence, and the 3' end of the published mouse pericentrin cDNA is a fragment from a different mouse chromosome. To resolve these discrepancies, we sequenced a mouse expressed sequence tag (EST) that corresponds to the 3' end for a 7.1-kb mouse pericentrin RNA encoded on chromosome 10. Extensive northern blot analysis revealed that the pericentrin gene displays a complex expression pattern in both mouse and human: a 10-kb kendrin transcript is found in most tissues, whereas smaller transcripts are detected in a limited subset of tissues. These analyses demonstrate that pericentrin and kendrin are encoded by one gene, correct the previously published pericentrin cDNA sequence, and describe the complex expression pattern for a gene important for centrosome function in normal and transformed cells.
Collapse
Affiliation(s)
- Mark R Flory
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, 98195 USA
| | | |
Collapse
|
37
|
Flory MR, Davis TN. Localization of calmodulin in budding yeast and fission yeast using green fluorescent protein. Methods Enzymol 2003; 302:87-102. [PMID: 12876765 DOI: 10.1016/s0076-6879(99)02012-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- M R Flory
- Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | | |
Collapse
|
38
|
Yoder TJ, Pearson CG, Bloom K, Davis TN. The Saccharomyces cerevisiae spindle pole body is a dynamic structure. Mol Biol Cell 2003; 14:3494-505. [PMID: 12925780 PMCID: PMC181584 DOI: 10.1091/mbc.e02-10-0655] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Revised: 04/02/2003] [Accepted: 04/02/2003] [Indexed: 11/11/2022] Open
Abstract
During spindle pole body (SPB) duplication, the new SPB is assembled at a distinct site adjacent to the old SPB. Using quantitative fluorescence methods, we studied the assembly and dynamics of the core structural SPB component Spc110p. The SPB core exhibits both exchange and growth in a cell cycle-dependent manner. During G1/S phase, the old SPB exchanges approximately 50% of old Spc110p for new Spc110p. In G2 little Spc110p is exchangeable. Thus, Spc110p is dynamic during G1/S and becomes stable during G2. The SPB incorporates additional Spc110p in late G2 and M phases; this growth is followed by reduction in the next G1. Spc110p addition to the SPBs (growth) also occurs in response to G2 and mitotic arrests but not during a G1 arrest. Our results reveal several dynamic features of the SPB core: cell cycle-dependent growth and reduction, growth in response to cell cycle arrests, and exchange of Spc110p during SPB duplication. Moreover, rather than being considered a conservative or dispersive process, the assembly of Spc110p into the SPB is more readily considered in terms of growth and exchange.
Collapse
Affiliation(s)
- Tennessee J Yoder
- Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
39
|
Okano H, Ohya Y. Binding of calmodulin to Nuf1p is required for karyogamy in Saccharomyces cerevisiae. Mol Genet Genomics 2003; 269:649-57. [PMID: 12836012 DOI: 10.1007/s00438-003-0853-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2003] [Accepted: 04/13/2003] [Indexed: 10/26/2022]
Abstract
The role of calmodulin (CaM) during mating in Saccharomyces cerevisiae was examined by using a set of Phe-to-Ala substitutions. We identified ten CaM mutants that exhibited significantly reduced mating efficiencies when crossed to a strain of the opposite mating type harboring the same CaM mutation. Most of the mating-defective CaM mutants were bilateral, i.e., they also exhibited mating defects, albeit minor ones, when crossed to the wild type. When strains carrying different bilateral CaM mutations were mated, the mating efficiencies recovered dramatically. We termed this phenomenon "intragenic mating complementation", and classified the mating-defective CaM mutations into two intragenic mating complementation groups. Two mutant alleles belonging to different groups showed minor defects in cell adhesion and cell fusion, but exhibited severe defects in karyogamy. CaM is known to bind to the essential spindle pole body component Nuf1p. This binding appears to be important for karyogamy because the nuf1(C911R) mutation, which impairs CaM-Nuf1p binding, resulted in a severe defect in karyogamy. Indeed, the two mating-defective CaM mutations were found to compromise formation of the CaM/Nuf1p complex, and the mating defects of these two CaM mutants were suppressible by a dominant, CaM-independent, mutation in NUF1. Taken together, these results suggest that loss of CaM binding to Nuf1p causes a defect in karyogamy, thereby inhibiting productive mating.
Collapse
Affiliation(s)
- H Okano
- Bio-Mimetic Control Research Center, The Institute of Physical and Chemical Research RIKEN, Anagahora, 463-0003 Nagoya, Aichi, Japan
| | | |
Collapse
|
40
|
Takahashi M, Yamagiwa A, Nishimura T, Mukai H, Ono Y. Centrosomal proteins CG-NAP and kendrin provide microtubule nucleation sites by anchoring gamma-tubulin ring complex. Mol Biol Cell 2002; 13:3235-45. [PMID: 12221128 PMCID: PMC124155 DOI: 10.1091/mbc.e02-02-0112] [Citation(s) in RCA: 191] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microtubule assembly is initiated by the gamma-tubulin ring complex (gamma-TuRC). In yeast, the microtubule is nucleated from gamma-TuRC anchored to the amino-terminus of the spindle pole body component Spc110p, which interacts with calmodulin (Cmd1p) at the carboxy-terminus. However, mammalian protein that anchors gamma-TuRC remains to be elucidated. A giant coiled-coil protein, CG-NAP (centrosome and Golgi localized PKN-associated protein), was localized to the centrosome via the carboxyl-terminal region. This region was found to interact with calmodulin by yeast two-hybrid screening, and it shares high homology with the carboxyl-terminal region of another centrosomal coiled-coil protein, kendrin. The amino-terminal region of either CG-NAP or kendrin indirectly associated with gamma-tubulin through binding with gamma-tubulin complex protein 2 (GCP2) and/or GCP3. Furthermore, endogenous CG-NAP and kendrin were coimmunoprecipitated with each other and with endogenous GCP2 and gamma-tubulin, suggesting that CG-NAP and kendrin form complexes and interact with gamma-TuRC in vivo. These proteins were localized to the center of microtubule asters nucleated from isolated centrosomes. Pretreatment of the centrosomes by antibody to CG-NAP or kendrin moderately inhibited the microtubule nucleation; moreover, the combination of these antibodies resulted in stronger inhibition. These results imply that CG-NAP and kendrin provide sites for microtubule nucleation in the mammalian centrosome by anchoring gamma-TuRC.
Collapse
|
41
|
Yin H, You L, Pasqualone D, Kopski KM, Huffaker TC. Stu1p is physically associated with beta-tubulin and is required for structural integrity of the mitotic spindle. Mol Biol Cell 2002; 13:1881-92. [PMID: 12058056 PMCID: PMC117611 DOI: 10.1091/mbc.01-09-0458] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Formation of the bipolar mitotic spindle relies on a balance of forces acting on the spindle poles. The primary outward force is generated by the kinesin-related proteins of the BimC family that cross-link antiparallel interpolar microtubules and slide them past each other. Here, we provide evidence that Stu1p is also required for the production of this outward force in the yeast Saccharomyces cerevisiae. In the temperature-sensitive stu1-5 mutant, spindle pole separation is inhibited, and preanaphase spindles collapse, with their previously separated poles being drawn together. The temperature sensitivity of stu1-5 can be suppressed by doubling the dosage of Cin8p, a yeast BimC kinesin-related protein. Stu1p was observed to be a component of the mitotic spindle localizing to the midregion of anaphase spindles. It also binds to microtubules in vitro, and we have examined the nature of this interaction. We show that Stu1p interacts specifically with beta-tubulin and identify the domains required for this interaction on both Stu1p and beta-tubulin. Taken together, these findings suggest that Stu1p binds to interpolar microtubules of the mitotic spindle and plays an essential role in their ability to provide an outward force on the spindle poles.
Collapse
Affiliation(s)
- Hongwei Yin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853-2703, USA
| | | | | | | | | |
Collapse
|
42
|
Vinh DBN, Kern JW, Hancock WO, Howard J, Davis TN. Reconstitution and characterization of budding yeast gamma-tubulin complex. Mol Biol Cell 2002; 13:1144-57. [PMID: 11950928 PMCID: PMC102258 DOI: 10.1091/mbc.02-01-0607] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nucleation of microtubules is central to assembly of the mitotic spindle, which is required for each cell division. gamma-Tubulin is a universal component essential for microtubule nucleation from centrosomes. To elucidate the mechanism of microtubule nucleation in budding yeast we reconstituted and characterized the yeast gamma-tubulin complex (Tub4p complex) produced in insect cells. The recombinant complex has the same sedimentation coefficient (11.6 S) as the native complex in yeast cell extracts and contains one molecule of Spc97p, one molecule of Spc98p, and two molecules of Tub4p. The reconstituted Tub4p complex binds preformed microtubules and has a low nucleating activity, allowing us to begin a detailed analysis of conditions that enhance this nucleating activity. We tested whether binding of the recombinant Tub4p complex to the spindle pole body docking protein Spc110p affects its nucleating activity. The solubility of recombinant Spc110p in insect cells is improved by coexpression with yeast calmodulin (Cmd1p). The Spc110p/Cmd1p complex has a small sedimentation coefficient (4.2 S) and a large Stokes radius (14.3 nm), indicative of an elongated structure. The Tub4p complex binds Spc110p/Cmd1p via Spc98p and the K(d) for binding is 150 nM. The low nucleation activity of the Tub4p complex is not enhanced when it is bound to Spc110p/Cmd1p, suggesting that it requires additional components or modifications to achieve robust activity. Finally, we report the identification of a large 22 S Tub4p complex in yeast extract that contains multimers of Spc97p similar to gamma-tubulin ring complexes found in higher eukaryotic cells.
Collapse
Affiliation(s)
- Dani B N Vinh
- Departments of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
43
|
Euskirchen GM. Nnf1p, Dsn1p, Mtw1p, and Nsl1p: a new group of proteins important for chromosome segregation in Saccharomyces cerevisiae. EUKARYOTIC CELL 2002; 1:229-40. [PMID: 12455957 PMCID: PMC118027 DOI: 10.1128/ec.1.2.229-240.2002] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, antibodies were raised against a nuclear envelope-enriched fraction of yeast, and the essential gene NNF1 was cloned by reverse genetics. Here it is shown that the conditional nnf1-17 mutant has decreased stability of a minichromosome in addition to mitotic spindle defects. I have identified the novel essential genes DSN1, DSN3, and NSL1 through genetic interactions with nnf1-17. Dsn3p was found to be equivalent to the kinetochore protein Mtw1p. By indirect immunofluorescence, all four proteins, Nnf1p, Mtw1p, Dsn1p, and Nsl1p, colocalize and are found in the region of the spindle poles. Based on the colocalization of these four proteins, the minichromosome instability and the spindle defects seen in nnf1 mutants, I propose that Nnf1p is part of a new group of proteins necessary for chromosome segregation.
Collapse
Affiliation(s)
- Ghia M Euskirchen
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA.
| |
Collapse
|
44
|
Jin Y, Uzawa S, Cande WZ. Fission yeast mutants affecting telomere clustering and meiosis-specific spindle pole body integrity. Genetics 2002; 160:861-76. [PMID: 11901107 PMCID: PMC1462000 DOI: 10.1093/genetics/160.3.861] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In meiotic prophase of many eukaryotic organisms, telomeres attach to the nuclear envelope and form a polarized configuration called the bouquet. Bouquet formation is hypothesized to facilitate homologous chromosome pairing. In fission yeast, bouquet formation and telomere clustering occurs in karyogamy and persists throughout the horsetail stage. Here we report the isolation and characterization of six mutants from our screen for meiotic mutants. These mutants show defective telomere clustering as demonstrated by mislocalization of Swi6::GFP, a heterochromatin-binding protein, and Taz1p::GFP, a telomere-specific protein. These mutants define four complementation groups and are named dot1 to dot4-defective organization of telomeres. dot3 and dot4 are allelic to mat1-Mm and mei4, respectively. Immunolocalization of Sad1, a protein associated with the spindle pole body (SPB), in dot mutants showed an elevated frequency of multiple Sad1-nuclei signals relative to wild type. Many of these Sad1 foci were colocalized with Taz1::GFP. Impaired SPB structure and function were further demonstrated by failure of spore wall formation in dot1, by multiple Pcp1::GFP signals (an SPB component) in dot2, and by abnormal microtubule organizations during meiosis in dot mutants. The coincidence of impaired SPB functions with defective telomere clustering suggests a link between the SPB and the telomere cluster.
Collapse
Affiliation(s)
- Ye Jin
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94732, USA
| | | | | |
Collapse
|
45
|
Abstract
Calmodulin, a small, ubiquitous Ca2+-binding protein, regulates a wide variety of proteins and processes in all eukaryotes. CMD1, the single gene encoding calmodulin in S. cerevisiae, is essential, and this review discusses studies that identified many of calmodulin's physiological targets and their functions in yeast cells. Calmodulin performs essential roles in mitosis, through its regulation of Nuf1p/Spc110p, a component of the spindle pole body, and in bud growth, by binding Myo2p, an unconventional class V myosin required for polarized secretion. Surprisingly, mutant calmodulins that fail to bind Ca2+ can perform these essential functions. Calmodulin is also required for endocytosis in yeast and participates in Ca2+-dependent, stress-activated signaling pathways through its regulation of a protein phosphatase, calcineurin, and the protein kinases, Cmk1p and Cmk2p. Thus, calmodulin performs important physiological functions in yeast cells in both its Ca2+-bound and Ca2+-free form.
Collapse
Affiliation(s)
- M S Cyert
- Department of Biological Sciences, Stanford University, Stanford, California 94305-5020, USA.
| |
Collapse
|
46
|
Hosotani T, Koyama H, Uchino M, Miyakawa T, Tsuchiya E. PKC1, a protein kinase C homologue of Saccharomyces cerevisiae, participates in microtubule function through the yeast EB1 homologue, BIM1. Genes Cells 2001; 6:775-88. [PMID: 11554924 DOI: 10.1046/j.1365-2443.2001.00461.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND RSC is a chromatin-remodelling complex of Saccharomyces cerevisiae and essential for growth. Its catalytic subunit is encoded by the NPS1/STH1 gene. At the present time, little is known regarding the cellular function of RSC. RESULTS To identify genes with functions related to NPS1, we screened high-copy suppressor genes for the temperature- and thiabendazole (TBZ)-sensitive mutant allele of NPS1, nps1-105. Amongst the suppressors we cloned PKC1/STT1 and BIM1 that encoded a homologue of mammalian protein kinase C and a conserved microtubule binding protein homologous to human EB1, respectively. Both the temperature sensitive mutation of PKC1, stt1, and the bim1 null mutation caused synthetic growth defects with nps1-105. A genetic analysis of the functional relationships between these genes revealed that PKC1 suppressed the defect of nps1-105 through the BIM1 function but not by the activation of the MPK1/MAPK pathway. The stt1 mutation alone showed TBZ sensitivity and delayed the G2-phase progression at semi-permissive temperatures. Both of these stt1 phenotypes were suppressed by the over-expression of BIM1. In addition, stt1 as well as nps1-105, mis-segregated a mini-chromosome at frequencies higher than the wild-type at a permissive temperature. The mis-segregation was enhanced in the nps1-105 stt1 double mutant. CONCLUSION These results suggest that Pkc1p plays a role which is relevant to microtubule functions and that this role is mediated by a hitherto unknown PKC signalling pathway and by Bim1p
Collapse
Affiliation(s)
- T Hosotani
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Japan 739-8527
| | | | | | | | | |
Collapse
|
47
|
Friedman DB, Kern JW, Huneycutt BJ, Vinh DBN, Crawford DK, Steiner E, Scheiltz D, Yates J, Resing KA, Ahn NG, Winey M, Davis TN. Yeast Mps1p phosphorylates the spindle pole component Spc110p in the N-terminal domain. J Biol Chem 2001; 276:17958-67. [PMID: 11278681 PMCID: PMC4013285 DOI: 10.1074/jbc.m010461200] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The yeast spindle pole body (SPB) component Spc110p (Nuf1p) undergoes specific serine/threonine phosphorylation as the mitotic spindle apparatus forms, and this phosphorylation persists until cells enter anaphase. We demonstrate that the dual-specificity kinase Mps1p is essential for the mitosis-specific phosphorylation of Spc110p in vivo and that Mps1p phosphorylates Spc110p in vitro. Phosphopeptides generated by proteolytic cleavage were identified and sequenced by mass spectrometry. Ser(60), Thr(64), and Thr(68) are the major sites in Spc110p phosphorylated by Mps1p in vitro, and alanine substitution at these sites abolishes the mitosis-specific isoform in vivo. This is the first time that phosphorylation sites of an SPB component have been determined, and these are the first sites of Mps1p phosphorylation identified. Alanine substitution for any one of these phosphorylated residues, in conjunction with an alanine substitution at residue Ser(36), is lethal in combination with alleles of SPC97, which encodes a component of the Tub4p complex. Consistent with a specific dysfunction for the alanine substitution mutations, simultaneous mutation of all four serine/threonine residues to aspartate does not confer any defect. Sites of Mps1p phosphorylation and Ser(36) are located within the N-terminal globular domain of Spc110p, which resides at the inner plaque of the SPB and binds the Tub4p complex.
Collapse
Affiliation(s)
- David B. Friedman
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309
| | - Joshua W. Kern
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Brenda J. Huneycutt
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Dani B. N. Vinh
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Douglas K. Crawford
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
| | - Estelle Steiner
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - David Scheiltz
- Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195
| | - John Yates
- Department of Molecular Biotechnology, University of Washington, Seattle, Washington 98195
| | - Katheryn A. Resing
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, Colorado 80309
| | - Natalie G. Ahn
- Howard Hughes Medical Institute, University of Colorado, Boulder, Colorado 80309
| | - Mark Winey
- Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, Colorado 80309
| | - Trisha N. Davis
- Department of Biochemistry, University of Washington, Seattle, Washington 98195
- To whom correspondence should be addressed: Tel.: 206-543-5345; Fax: 206-685-1792;
| |
Collapse
|
48
|
Francis SE, Davis TN. The spindle pole body of Saccharomyces cerevisiae: architecture and assembly of the core components. Curr Top Dev Biol 2001; 49:105-32. [PMID: 11005016 DOI: 10.1016/s0070-2153(99)49006-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- S E Francis
- Department of Biochemistry, University of Washington, Seattle 98195, USA
| | | |
Collapse
|
49
|
Stirling DA, Stark MJ. Mutations in SPC110, encoding the yeast spindle pole body calmodulin-binding protein, cause defects in cell integrity as well as spindle formation. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1499:85-100. [PMID: 11118641 DOI: 10.1016/s0167-4889(00)00110-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The 110 kDa spindle pole body component, Spc110p, is an essential target of calmodulin in budding yeast. Cells with mutations which reduce calmodulin binding to Spc110p are unable to form a mitotic spindle and die. Here we show that these effects can be overcome either directly by increasing extracellular calcium or calmodulin expression, which reverse the primary spindle defect, or indirectly through increased extracellular osmolarity or high dosage of MID2 or SLG1/HCS77/WSC1 which preserve viability. We propose that overcoming a cell integrity defect associated with the mitotic arrest enables the defective spindle pole bodies to provide sufficient function for proliferation of a large proportion of mutant cells. Our findings demonstrate a role for calcium in the Spc110p-calmodulin interaction in vivo and have important general implications for the interpretation of genetic interactions involving cell integrity genes.
Collapse
Affiliation(s)
- D A Stirling
- Department of Biochemistry, University of Dundee, MSI/WTB Complex, DD1 5EH, Dundee, UK.
| | | |
Collapse
|
50
|
Khalfan W, Ivanovska I, Rose MD. Functional interaction between the PKC1 pathway and CDC31 network of SPB duplication genes. Genetics 2000; 155:1543-59. [PMID: 10924456 PMCID: PMC1461188 DOI: 10.1093/genetics/155.4.1543] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The earliest known step in yeast spindle pole body (SPB) duplication requires Cdc31p and Kar1p, two physically interacting SPB components, and Dsk2p and Rad23p, a pair of ubiquitin-like proteins. Components of the PKC1 pathway were found to interact with these SPB duplication genes in two independent genetic screens. Initially, SLG1 and PKC1 were obtained as high-copy suppressors of dsk2Delta rad23Delta and a mutation in MPK1 was synthetically lethal with kar1-Delta17. Subsequently, we demonstrated extensive genetic interactions between the PKC1 pathway and the SPB duplication mutants that affect Cdc31p function. The genetic interactions are unlikely to be related to the cell-wall integrity function of the PKC1 pathway because the SPB mutants did not exhibit cell-wall defects. Overexpression of multiple PKC1 pathway components suppressed the G2/M arrest of the SPB duplication mutants and mutations in MPK1 exacerbated the cell cycle arrest of kar1-Delta17, suggesting a role for the PKC1 pathway in SPB duplication. We also found that mutations in SPC110, which encodes a major SPB component, showed genetic interactions with both CDC31 and the PKC1 pathway. In support of the model that the PKC1 pathway regulates SPB duplication, one of the phosphorylated forms of Spc110p was absent in pkc1 and mpk1Delta mutants.
Collapse
Affiliation(s)
- W Khalfan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544-1014, USA
| | | | | |
Collapse
|