1
|
Winton MJ, Igaz LM, Wong MM, Kwong LK, Trojanowski JQ, Lee VMY. Disturbance of nuclear and cytoplasmic TAR DNA-binding protein (TDP-43) induces disease-like redistribution, sequestration, and aggregate formation. J Biol Chem 2008; 283:13302-9. [PMID: 18305110 DOI: 10.1074/jbc.m800342200] [Citation(s) in RCA: 498] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
TAR DNA-binding protein 43 (TDP-43) is the disease protein in frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U) and amyotrophic lateral sclerosis (ALS). Although normal TDP-43 is a nuclear protein, pathological TDP-43 is redistributed and sequestered as insoluble aggregates in neuronal nuclei, perikarya, and neurites. Here we recapitulate these pathological phenotypes in cultured cells by altering endogenous TDP-43 nuclear trafficking and by expressing mutants with defective nuclear localization (TDP-43-DeltaNLS) or nuclear export signals (TDP-43-DeltaNES). Restricting endogenous cytoplasmic TDP-43 from entering the nucleus or preventing its exit out of the nucleus resulted in TDP-43 aggregate formation. TDP-43-DeltaNLS accumulates as insoluble cytoplasmic aggregates and sequesters endogenous TDP-43, thereby depleting normal nuclear TDP-43, whereas TDP-43-DeltaNES forms insoluble nuclear aggregates with endogenous TDP-43. Mutant forms of TDP-43 also replicate the biochemical profile of pathological TDP-43 in FTLD-U/ALS. Thus, FTLD-U/ALS pathogenesis may be linked mechanistically to deleterious perturbations of nuclear trafficking and solubility of TDP-43.
Collapse
Affiliation(s)
- Matthew J Winton
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | |
Collapse
|
2
|
Cornett J, Cao F, Wang CE, Ross CA, Bates GP, Li SH, Li XJ. Polyglutamine expansion of huntingtin impairs its nuclear export. Nat Genet 2005; 37:198-204. [PMID: 15654337 DOI: 10.1038/ng1503] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 12/13/2004] [Indexed: 11/09/2022]
Abstract
Proteins with polyglutamine (polyQ) expansions accumulate in the nucleus and affect gene expression. The mechanism by which mutant huntingtin (htt) accumulates intranuclearly is not known; wild-type htt, a 350-kDa protein of unknown function, is normally found in the cytoplasm. N-terminal fragments of mutant htt, which contain a polyQ expansion (>37 glutamines), have no conserved nuclear localization sequences or nuclear export sequences but can accumulate in the nucleus and cause neurological problems in transgenic mice. Here we report that N-terminal htt shuttles between the cytoplasm and nucleus in a Ran GTPase-independent manner. Small N-terminal htt fragments interact with the nuclear pore protein translocated promoter region (Tpr), which is involved in nuclear export. PolyQ expansion and aggregation decrease this interaction and increase the nuclear accumulation of htt. Reducing the expression of Tpr by RNA interference or deletion of ten amino acids of N-terminal htt, which are essential for the interaction of htt with Tpr, increased the nuclear accumulation of htt. These results suggest that Tpr has a role in the nuclear export of N-terminal htt and that polyQ expansion reduces this nuclear export to cause the nuclear accumulation of htt.
Collapse
Affiliation(s)
- Jonathan Cornett
- Department of Human Genetics, Emory University School of Medicine, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | | | | | |
Collapse
|
3
|
Fornerod M, Ohno M. Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 2002; 35:67-91. [PMID: 11791409 DOI: 10.1007/978-3-540-44603-3_4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Maarten Fornerod
- EMBL, Gene Expression Programme, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
4
|
Affiliation(s)
- Elaine A Elion
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
5
|
Mertens D, Wolf S, Schroeter P, Schaffner C, Döhner H, Stilgenbauer S, Lichter P. Down-regulation of candidate tumor suppressor genes within chromosome band 13q14.3 is independent of the DNA methylation pattern in B-cell chronic lymphocytic leukemia. Blood 2002; 99:4116-21. [PMID: 12010815 DOI: 10.1182/blood.v99.11.4116] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Loss of genomic material from chromosomal band 13q14.3 is the most common genetic imbalance in B-cell chronic lymphocytic leukemia (B-CLL) and mantle cell lymphoma, pointing to the involvement of this region in a tumor suppressor mechanism. From the minimally deleted region, 3 candidate genes have been isolated, RFP2, BCMS, and BCMSUN. DNA sequence analyses have failed to detect small mutations in any of these genes, suggesting a different pathomechanism, most likely haploinsufficiency. We, therefore, tested B-CLL patients for epigenetic aberrations by measuring expression of genes from 13q14.3 and methylation of their promotor region. RB1, CLLD7, KPNA3, CLLD6, and RFP2 were down-regulated in B-CLL patients as compared with B cells of healthy donors, with RFP2 showing the most pronounced loss of expression. To test whether this loss of gene expression is associated with methylation of CpG islands in the respective promotor regions, we performed methylation-sensitive quantitative polymerase chain reaction analyses and bisulfite sequencing on DNA from B-CLL patients. No difference in the methylation patterns could be detected in any CpG island of the minimally deleted region. Down-regulation of genes within chromosomal band 13q14.3 in B-CLL is in line with the concept of haploinsufficiency, but this tumor-specific phenomenon is not associated with DNA methylation.
Collapse
Affiliation(s)
- Daniel Mertens
- Abteilung "Organisation komplexer Genome," Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
6
|
Bird CH, Blink EJ, Hirst CE, Buzza MS, Steele PM, Sun J, Jans DA, Bird PI. Nucleocytoplasmic distribution of the ovalbumin serpin PI-9 requires a nonconventional nuclear import pathway and the export factor Crm1. Mol Cell Biol 2001; 21:5396-407. [PMID: 11463822 PMCID: PMC87262 DOI: 10.1128/mcb.21.16.5396-5407.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2001] [Accepted: 05/18/2001] [Indexed: 11/20/2022] Open
Abstract
Proteinase inhibitor 9 (PI-9) is a human serpin present in the cytoplasm of cytotoxic lymphocytes and epithelial cells. It inhibits the cytotoxic lymphocyte granule proteinase granzyme B (graB) and is thought to protect cytotoxic lymphocytes and bystander cells from graB-mediated apoptosis. Following uptake into cells, graB promotes DNA degradation, rapidly translocating to the nucleus, where it binds a nuclear component. PI-9 should therefore be found in cytotoxic lymphocyte and bystander cell nuclei to ensure complete protection against graB. Here we demonstrate by microscopy and subcellular fractionation experiments that PI-9 is present in the nuclei of human cytotoxic cells, endothelial cells, and epithelial cells. We also show that the related serpins, PI-6, monocyte neutrophil elastase inhibitor (MNEI), PI-8, plasminogen activator inhibitor 2 (PAI-2), and the viral serpin CrmA exhibit similar nucleocytoplasmic distributions. Because these serpins lack classical nuclear localization signals and are small enough to diffuse through nuclear pores, we investigated whether import occurs actively or passively. Large (approximately 70 kDa) chimeric proteins comprising PI-9, PI-6, PI-8, MNEI, or PAI-2 fused to green fluorescent protein (GFP) show similar nucleocytoplasmic distributions to the parent proteins, indicating that nuclear import is active. By contrast, CrmA-GFP is excluded from nuclei, indicating that CrmA is not actively imported. In vitro nuclear transport assays show that PI-9 accumulates at a rate above that of passive diffusion, that it requires cytosolic factors but not ATP, and that it does not bind an intranuclear component. Furthermore, PI-9 is exported from nuclei via a leptomycin B-sensitive pathway, implying involvement of the export factor Crm1p. We conclude that the nucleocytoplasmic distribution of PI-9 and related serpins involves a nonconventional nuclear import pathway and Crm1p.
Collapse
Affiliation(s)
- C H Bird
- Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Kim IS, Kim DH, Han SM, Chin MU, Nam HJ, Cho HP, Choi SY, Song BJ, Kim ER, Bae YS, Moon YH. Truncated form of importin alpha identified in breast cancer cell inhibits nuclear import of p53. J Biol Chem 2000; 275:23139-45. [PMID: 10930427 DOI: 10.1074/jbc.m909256199] [Citation(s) in RCA: 95] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Disruption of the function of tumor suppressor proteins occasionally can be dependent on their subcellular localization. In about 40% of the breast cancer tissues, p53 is found in the cytoplasm as opposed to the nucleus, where it resides in normal breast cells. This means that the regulation of subcellular location of p53 is an important mechanism in controlling its function. The transport factors required for the nuclear export of p53 and the mechanisms of their nuclear export have been extensively characterized. However, little is known about the mechanism of nuclear import of p53. p53 contains putative nuclear localization signals (NLSs) which would interact with a nuclear transport factor, importin alpha. In this report we demonstrate that importin alpha binds to NLSI in p53 and mediates the nuclear import of p53. Reverse transcriptase-polymerase chain reaction and sequencing analyses showed that a truncated importin alpha deleted the region encoding the putative NLS-binding domain of p53, suggesting that it could not bind to NLSs of p53 proteins. Binding of importin alpha to p53 was confirmed by using yeast two-hybrid assay. When expressed in CHO-K1 cells, the truncated importin alpha predominantly localized to the cytoplasm. In truncated importin alpha expressing cells, p53 preferentially localized to cytoplasmic sites as well. A significant increase in the p21(waf1/cip1) mRNA level and induction of apoptosis were also observed in importin alpha overexpressing cells. These results strongly suggest that importin alpha functions as a component of the NLS receptor for p53 and mediates nuclear import of p53.
Collapse
Affiliation(s)
- I S Kim
- Sung Ae Life Science Research Institute, Kyeonggi 423-030, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Barnard DC, Patton JG. Identification and characterization of a novel serine-arginine-rich splicing regulatory protein. Mol Cell Biol 2000; 20:3049-57. [PMID: 10757789 PMCID: PMC85584 DOI: 10.1128/mcb.20.9.3049-3057.2000] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We have identified an 86-kDa protein containing a single amino-terminal RNA recognition motif and two carboxy-terminal domains rich in serine-arginine (SR) dipeptides. Despite structural similarity to members of the SR protein family, p86 is clearly unique. It is not found in standard SR protein preparations, does not precipitate in the presence of high magnesium concentrations, is not recognized by antibodies specific for SR proteins, and cannot complement splicing-defective S100 extracts. However, we have found that p86 can inhibit the ability of purified SR proteins to activate splicing in S100 extracts and can even inhibit the in vitro and in vivo activation of specific splice sites by a subset of SR proteins, including ASF/SF2, SC35, and SRp55. In contrast, p86 activates splicing in the presence of SRp20. Thus, it appears that pairwise combination of p86 with specific SR proteins leads to altered splicing efficiency and differential splice site selection. In all cases, such regulation requires the presence of the two RS domains and a unique intervening EK-rich region, which appear to mediate direct protein-protein contact between these family members. Full-length p86, but not a mutant lacking the RS-EK-RS domains, was found to preferentially interact with itself, SRp20, ASF/SF2, SRp55, and, to a slightly lesser extent, SC35. Because of the primary sequence and unique properties of p86, we have named this protein SRrp86 for SR-related protein of 86 kDa.
Collapse
Affiliation(s)
- D C Barnard
- Department of Molecular Biology, Vanderbilt University, Nashville, Tennessee 37235, USA
| | | |
Collapse
|
9
|
Abstract
The compartmentation of eukaryotic cells requires all nuclear proteins to be imported from the cytoplasm, whereas, for example, transfer RNAs, messenger RNAs, and ribosomes are made in the nucleus and need to be exported to the cytoplasm. Nuclear import and export proceed through nuclear pore complexes and can occur along a great number of distinct pathways, many of which are mediated by importin beta-related nuclear transport receptors. These receptors shuttle between nucleus and cytoplasm, and they bind transport substrates either directly or via adapter molecules. They all cooperate with the RanGTPase system to regulate the interactions with their cargoes. Another focus of our review is nuclear export of messenger RNA, which apparently largely relies on export mediators distinct from importin beta-related factors. We discuss mechanistic aspects and the energetics of transport receptor function and describe a number of pathways in detail.
Collapse
Affiliation(s)
- D Görlich
- Zentrum für Molekulare Biologie, Universität Heidelberg, Federal Republic of Germany.
| | | |
Collapse
|
10
|
Paraskeva E, Izaurralde E, Bischoff FR, Huber J, Kutay U, Hartmann E, Lührmann R, Görlich D. CRM1-mediated recycling of snurportin 1 to the cytoplasm. J Cell Biol 1999; 145:255-64. [PMID: 10209022 PMCID: PMC2133107 DOI: 10.1083/jcb.145.2.255] [Citation(s) in RCA: 145] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1998] [Revised: 03/05/1999] [Indexed: 11/22/2022] Open
Abstract
Importin beta is a major mediator of import into the cell nucleus. Importin beta binds cargo molecules either directly or via two types of adapter molecules, importin alpha, for import of proteins with a classical nuclear localization signal (NLS), or snurportin 1, for import of m3G-capped U snRNPs. Both adapters have an NH2-terminal importin beta-binding domain for binding to, and import by, importin beta, and both need to be returned to the cytoplasm after having delivered their cargoes to the nucleus. We have shown previously that CAS mediates export of importin alpha. Here we show that snurportin 1 is exported by CRM1, the receptor for leucine-rich nuclear export signals (NESs). However, the interaction of CRM1 with snurportin 1 differs from that with previously characterized NESs. First, CRM1 binds snurportin 1 50-fold stronger than the Rev protein and 5,000-fold stronger than the minimum Rev activation domain. Second, snurportin 1 interacts with CRM1 not through a short peptide but rather via a large domain that allows regulation of affinity. Strikingly, snurportin 1 has a low affinity for CRM1 when bound to its m3G-capped import substrate, and a high affinity when substrate-free. This mechanism appears crucial for productive import cycles as it can ensure that CRM1 only exports snurportin 1 that has already released its import substrate in the nucleus.
Collapse
Affiliation(s)
- E Paraskeva
- Zentrum für Molekulare Biologie der Universität Heidelberg, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Nakielny S, Shaikh S, Burke B, Dreyfuss G. Nup153 is an M9-containing mobile nucleoporin with a novel Ran-binding domain. EMBO J 1999; 18:1982-95. [PMID: 10202161 PMCID: PMC1171283 DOI: 10.1093/emboj/18.7.1982] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We employed a phage display system to search for proteins that interact with transportin 1 (TRN1), the import receptor for shuttling hnRNP proteins with an M9 nuclear localization sequence (NLS), and identified a short region within the N-terminus of the nucleoporin Nup153 which binds TRN1. Nup153 is located at the nucleoplasmic face of the nuclear pore complex (NPC), in the distal basket structure, and functions in mRNA export. We show that this Nup153 TRN1-interacting region is an M9 NLS. We found that both import and export receptors interact with several regions of Nup153, in a RanGTP-regulated fashion. RanGTP dissociates Nup153-import receptor complexes, but is required for Nup153-export receptor interactions. We also show that Nup153 is a RanGDP-binding protein, and that the interaction is mediated by the zinc finger region of Nup153. This represents a novel Ran-binding domain, which we term the zinc finger Ran-binding motif. We provide evidence that Nup153 shuttles between the nuclear and cytoplasmic faces of the NPC. The presence of an M9 shuttling domain in Nup153, together with its ability to move within the NPC and to interact with export receptors, suggests that this nucleoporin is a mobile component of the pore which carries export cargos towards the cytoplasm.
Collapse
Affiliation(s)
- S Nakielny
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6148, USA
| | | | | | | |
Collapse
|
12
|
Solsbacher J, Maurer P, Bischoff FR, Schlenstedt G. Cse1p is involved in export of yeast importin alpha from the nucleus. Mol Cell Biol 1998; 18:6805-15. [PMID: 9774694 PMCID: PMC109264 DOI: 10.1128/mcb.18.11.6805] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proteins bearing a nuclear localization signal (NLS) are targeted to the nucleus by the heterodimeric transporter importin. Importin alpha binds to the NLS and to importin beta, which carries it through the nuclear pore complex (NPC). Importin disassembles in the nucleus, evidently by binding of RanGTP to importin beta. The importin subunits are exported separately. We investigated the role of Cse1p, the Saccharomyces cerevisiae homologue of human CAS, in nuclear export of Srp1p (yeast importin alpha). Cse1p is located predominantly in the nucleus but also is present in the cytoplasm and at the NPC. We analyzed the in vivo localization of the importin subunits fused to the green fluorescent protein in wild-type and cse1-1 mutant cells. Srp1p but not importin beta accumulated in nuclei of cse1-1 mutants, which are defective in NLS import but not defective in NLS-independent import pathways. Purified Cse1p binds with high affinity to Srp1p only in the presence of RanGTP. The complex is dissociated by the cytoplasmic RanGTP-binding protein Yrb1p. Combined with the in vivo results, this suggests that a complex containing Srp1p, Cse1p, and RanGTP is exported from the nucleus and is subsequently disassembled in the cytoplasm by Yrb1p. The formation of the trimeric Srp1p-Cse1p-RanGTP complex is inhibited by NLS peptides, indicating that only NLS-free Srp1p will be exported to the cytoplasm.
Collapse
Affiliation(s)
- J Solsbacher
- Medizinische Biochemie, Universität des Saarlandes, 66421 Homburg, Germany
| | | | | | | |
Collapse
|
13
|
Tyagi RK, Amazit L, Lescop P, Milgrom E, Guiochon-Mantel A. Mechanisms of progesterone receptor export from nuclei: role of nuclear localization signal, nuclear export signal, and ran guanosine triphosphate. Mol Endocrinol 1998; 12:1684-95. [PMID: 9817595 DOI: 10.1210/mend.12.11.0197] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Steroid hormone receptors are, in most cases, mainly nuclear proteins that undergo a continuous nucleocytoplasmic shuttling. The mechanism of the nuclear export of these proteins remains largely unknown. To approach this problem experimentally in vivo, we have prepared cell lines permanently coexpressing the wild-type nuclear progesterone receptor (PR) and a cytoplasmic receptor mutant deleted of its nuclear localization signal (NLS) [(deltaNLS)PR]. Each receptor species was deleted from the epitope recognized by a specific monoclonal antibody, thus allowing separated observation of the two receptor forms in the same cells. Administration of hormone provoked formation of heterodimers during nucleocytoplasmic shuttling and import of (deltaNLS)PR into the nucleus. Washing out of the hormone allowed us to follow the export of (deltaNLS)PR into the cytoplasm. Microinjection of BSA coupled to a NLS inhibited the export of (deltaNLS)PR. On the contrary, microinjection of BSA coupled to a nuclear export signal (NES) was without effect. Moreover, leptomycin B, which inhibits NES-mediated export, was also without effect. tsBN2 cells contain a thermosensitive RCC1 protein (Ran GTP exchange protein). At the nonpermissive temperature, the nuclear export of (deltaNLS)PR could be observed, whereas the export of NES-BSA was suppressed. Microinjection of GTPgammaS confirmed that the export of (deltaNLS)PR was not dependent on GTP hydrolysis. These experiments show that the nuclear export of PR is not NES mediated but probably involves the NLS. It does not involve Ran GTP, and it is not dependent on the hydrolysis of GTP. The nucleocytoplasmic shuttling of steroid hormone receptors thus appears to utilize mechanisms different from those previously described for some viral, regulatory, and heterogeneous ribonuclear proteins.
Collapse
Affiliation(s)
- R K Tyagi
- Hormones et Reproduction, INSERM U135, Faculté de Médecine Paris-Sud, Le Kremlin-Bicêtre, France
| | | | | | | | | |
Collapse
|
14
|
Herold A, Truant R, Wiegand H, Cullen BR. Determination of the functional domain organization of the importin alpha nuclear import factor. J Cell Biol 1998; 143:309-18. [PMID: 9786944 PMCID: PMC2132842 DOI: 10.1083/jcb.143.2.309] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/1998] [Revised: 09/09/1998] [Indexed: 12/22/2022] Open
Abstract
Although importin alpha (Imp alpha) has been shown to act as the receptor for basic nuclear localization signals (NLSs) and to mediate their recruitment to the importin beta nuclear import factor, little is known about the functional domains present in Imp alpha, with the exception that importin beta binding is known to map close to the Imp alpha NH2 terminus. Here, we demonstrate that sequences essential for binding to the CAS nuclear export factor are located near the Imp alpha COOH terminus and include a critical acidic motif. Although point mutations introduced into this acidic motif inactivated both CAS binding and Imp alpha nuclear export, a putative leucine-rich nuclear export signal proved to be neither necessary nor sufficient for Imp alpha nuclear export. Analysis of sequences within Imp alpha that bind to the SV-40 T antigen NLS or to the similar LEF-1 NLS revealed that both NLSs interact with a subset of the eight degenerate armadillo (Arm) repeats that form the central part of Imp alpha. However, these two NLS-binding sites showed only minimal overlap, thus suggesting that the degeneracy of the Arm repeat region of Imp alpha may serve to facilitate binding to similar but nonidentical basic NLSs. Importantly, the SV-40 T NLS proved able to specifically inhibit the interaction of Imp alpha with CAS in vitro, thus explaining why the SV-40 T NLS is unable to also function as a nuclear export signal.
Collapse
Affiliation(s)
- A Herold
- Department of Genetics, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | |
Collapse
|
15
|
Abstract
CSE1 is essential for yeast cell viability and has been implicated in chromosome segregation. Based on its sequence similarity, Cse1p has been grouped into the family of importin beta-like nucleocytoplasmic transport receptors with highest homology to the recently identified human nuclear export receptor for importin alpha, CAS. We demonstrate here that Cse1p physically interacts with yeast Ran and yeast importin alpha (Srp1p) in the yeast two-hybrid system and that recombinant Cse1p, Srp1p and Ran-GTP form a trimeric complex in vitro. Re-export of Srp1p from the nucleus into the cytoplasm and nuclear uptake of a reporter protein containing a classical NLS are inhibited in a cse1 mutant strain. These findings suggest that Cse1p is the exportin of importin alpha in yeast.
Collapse
Affiliation(s)
- M Künzler
- Biochemie-Zentrum Heidelberg, Ruprecht-Karls-Universität, Germany
| | | |
Collapse
|
16
|
Abstract
The recent progress with respect to understanding the signals mediating the transport of proteins in both directions through the NPC, and cellular proteins interacting with these signals to effect the transport process has made possible a number of advances in terms of the use of this information in a clinical setting. In particular, our knowledge of the mechanism of regulation of the process, and of how we may exploit the cellular transport machinery itself in a therapeutic situation, especially where there may be transport pathways specific to particular viruses, has advanced considerably. In this context, this review expounds current understanding of the signals conferring targeting to the nucleus, and their practical and potential use in delivering molecules of interest to the nucleus in a clinical context. It also deals with targeting signals conferring nuclear protein export/ shuttling between nuclear and cytoplasmic compartments as well as with those conferring nuclear or cytoplasmic retention, and with the specific mechanisms regulating the activity of these signals, and in particular those regulating signal-dependent nuclear protein import. Detailed understanding of the processes of signal-mediated nuclear protein import/export and its regulation enables the considered application and optimization of approaches to target molecules of interest, such as plasmid DNA or toxic molecules, efficiently to the nucleus according to need in a clinical or research context, and enhance the expression or efficiency of their action, respectively. The use of nuclear targeting signals in this context is reviewed, and future possibilities in terms of the application of our growing understanding of nuclear transport and its regulation are discussed.
Collapse
Affiliation(s)
- D A Jans
- Nuclear Signaling Laboratory, John Curtin School of Medical Research, Canberra, Australia.
| | | | | |
Collapse
|
17
|
Abstract
The nuclear pore complex can be considered to be the stationary phase of bidirectional traffic between the nucleus and the cytoplasm. The mobile phase consists of karyopherins, transport substrates, and the small GTPase Ran and its modulators. Recently, the family of karyopherins was expanded with the recognition of numerous open reading frames with limited homology to karyopherin beta 1. In several cases, the specific substrates transported by the new karyopherins have been identified, allowing the characterization of new pathways into and out of the nucleus. However, the mechanisms of transport, particularly the role of Ran, remain poorly understood.
Collapse
Affiliation(s)
- L F Pemberton
- Laboratory of Cell Biology, Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA.
| | | | | |
Collapse
|
18
|
Kehlenbach RH, Dickmanns A, Gerace L. Nucleocytoplasmic shuttling factors including Ran and CRM1 mediate nuclear export of NFAT In vitro. J Cell Biol 1998; 141:863-74. [PMID: 9585406 PMCID: PMC2132762 DOI: 10.1083/jcb.141.4.863] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1998] [Revised: 04/03/1998] [Indexed: 02/07/2023] Open
Abstract
We have developed a permeabilized cell assay to study the nuclear export of the shuttling transcription factor NFAT, which contains a leucine-rich export signal. The assay uses HeLa cells that are stably transfected with NFAT fused to the green fluorescent protein (GFP). Nuclear export of GFP-NFAT in digitonin-permeabilized cells occurs in a temperature- and ATP-dependent manner and can be quantified by flow cytometry. In vitro NFAT export requires the GTPase Ran, which is released from cells during the digitonin permeabilization. At least one additional rate-limiting export factor is depleted from permeabilized cells by a preincubation at 30 degrees C in the absence of cytosol. This activity can be provided by cytosolic or nucleoplasmic extracts in a subsequent export step. Using this assay, we have purified a second major export activity from cytosol. We found that it corresponds to CRM1, a protein recently reported to be a receptor for certain leucine-rich export sequences. CRM1 appears to be imported into the nucleus by a Ran-dependent mechanism that is distinct from conventional signaling pathways. Considered together, our studies directly demonstrate by fractionation and reconstitution that nuclear export of NFAT is mediated by multiple nucleocytoplasmic shuttling factors, including Ran and CRM1.
Collapse
Affiliation(s)
- R H Kehlenbach
- Department of Cell Biology and Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | |
Collapse
|
19
|
Abstract
Every minute, several million protein and RNA molecules must be transported between the cytoplasm and the nucleus of a eukaryotic cell. The characterization of mediators, receptors and accessory factors for different nuclear import and export pathways has provided a glimpse at the molecular machinery that is responsible for these trafficking events. It appears that both inbound and outbound traffic is mediated by a protein family of related transport factors that can be classified as importins and exportins.
Collapse
Affiliation(s)
- K Weis
- Dept of Biochemistry and Biophysics, UCSF 94143-0448, USA.
| |
Collapse
|