1
|
Chhetri KB. DNA compaction and chromatin dynamics: The role of cationic polyamines and proteins. Biochem Biophys Res Commun 2025; 756:151538. [PMID: 40058308 DOI: 10.1016/j.bbrc.2025.151538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/09/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025]
Abstract
DNA compaction by polyaminic cations and proteins involves reversible condensation mechanisms. Polyamines, metal cations, and histone proteins are utilized to compact lengthy DNA chains. Chromatin organization begins with nucleosomal arrays, further compacted by linker histones. Various factors such as DNA methylation, histone modifications, and non-histone proteins influence chromatin structure. Posttranslational modifications like acetylation and methylation alter nucleosome shape. Polyamines induce significant phase transitions, while cationic surfactants drive conformational changes in DNA. In sperm cells, protamines replace histones, leading to dense DNA packing. Despite advances, unresolved aspects persist in understanding the dynamic regulation of chromatin structure, highlighting avenues for future research. An overview of current knowledge and cutting-edge discoveries in the field of reversible DNA compaction induced by charged polyamines and histone proteins is presented in this work, highlighting emerging mechanisms of chromatin compaction and their relevance to cellular function, disease, and potential therapeutic strategies.
Collapse
Affiliation(s)
- Khadka B Chhetri
- Department of Physics, Prithvinarayan Campus, Tribhuvan University, Pokhara, Nepal.
| |
Collapse
|
2
|
Prizak R, Gadzekpo A, Hilbert L. Chromatin unfolding via loops can drive clustered transposon insertion. Biophys J 2025:S0006-3495(25)00212-7. [PMID: 40188359 DOI: 10.1016/j.bpj.2025.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 04/08/2025] Open
Abstract
Transposons, DNA sequences capable of relocating within the genome, make up a significant portion of eukaryotic genomes and are often found in clusters. Within the cell nucleus, the genome is organized into chromatin, a structure with varying degrees of compaction due to three-dimensional folding. Transposon insertion or activation can lead to chromatin decompaction, increasing accessibility and potentially facilitating further nearby insertions. This positive feedback between chromatin unfolding and transposon insertion may result in transposon clustering. Here, we combine bioinformatics with polymer modeling to explore possible mechanisms and conditions that promote clustered transposon insertions. Our analysis of human cell line genomic repeat data reveals extensive clustering of heterochromatic LINE-1 elements and euchromatic Alu elements. For Alu elements, this clustering correlates with increased chromatin accessibility. Both Alu and LINE-1 deviate in their sequence-inherent flexibility from the overall genome, with above-average flexibility for Alu and below-average flexibility for most LINE-1 sequences. Flexibility was highest in young transposons, so that young Alu and LINE-1 exceed overall genome flexibility. We developed an according polymer model of transposon insertion, consisting of a self-attracting chromatin domain. Transposon insertions locally disrupt self-attraction, leading to unfolding of the domain as more transposons are inserted. In simulations where transposons are inserted adjacent to existing ones, we observed gradual unfolding through loop extensions from a folded core. Including transposases as explicit particles, our model shows that adjacent transposon insertion occurs when densely packed chromatin excludes transposases or when insertion rates exceed the thermal equilibration rate of polymer configurations. We conclude that 1) dense chromatin packing that hinders transposase access as well as 2) a local loss of compaction upon transposon insertion favor clustered transposon insertion via loop formation. This biophysical mechanism of clustered insertion site preference would act in combination with selective pressures shaping transposon distribution over evolutionary timescales.
Collapse
Affiliation(s)
- Roshan Prizak
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany
| | - Aaron Gadzekpo
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany
| | - Lennart Hilbert
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems, Eggenstein-Leopoldshafen, Germany; Karlsruhe Institute of Technology, Zoological Institute, Karlsruhe, Germany.
| |
Collapse
|
3
|
Lee J, Chen LF, Gaudin S, Gupta K, Spakowitz A, Boettiger AN. Kinetic organization of the genome revealed by ultra-resolution, multiscale live imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645817. [PMID: 40236138 PMCID: PMC11996339 DOI: 10.1101/2025.03.27.645817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
In the last decade, sequencing methods like Hi-C have made it clear the genome is intricately folded, and that this organization contributes significantly to the control of gene expression and thence cell fate and behavior. Single-cell DNA tracing microscopy and polymer physics-based simulations of genome folding have proposed these population-scale patterns arise from motor- driven, heterogeneous movement, rather than stable 3D genomic architecture, implying that motion, rather than structure, is key to understanding genome function. However, tools to directly observe this motion in vivo have been limited in coverage and resolution. Here we describe TRansposon Assisted Chromatin Kinetic Imaging Technology (TRACK-IT), which combines a suite of imaging and labeling improvements to achieve ultra-resolution in space and time, with self-mapping transposons to distribute labels across the chromosome, uncovering dynamic behaviors across four orders of magnitude of genomic separation. We find that sequences separated by sub-megabase distances, typically 200-500 nm of nanometers apart, can transition to close proximity in tens of seconds - faster than previously hypothesized. This rapid motion is dependent upon cohesin and is exhibited only within certain genomic domains. Domain borders act as kinetic impediments to this search process, substantially slowing the rate and frequency of the transition to proximity. The genomic separation-dependent scaling of the search time for cis-interactions within a domain violates predictions of diffusion, suggesting motor driven folding. This distinctive scaling is lost following cohesin depletion, replaced with a behavior consistent with diffusion. Finally, we found cohesin containing cells exhibited rare, processive movements, not seen in cohesin depleted cells. These processive trajectories exhibit extrusion rates of ∼2.7 kb/s across three distinct genomic intervals, faster than recent in vitro measurements and prior estimates from in vivo data. Taken together, these results reveal a genome in motion across multiple genomic and temporal scales, where motor-dependent extrusion divides the sequence, not into spatially separate domains, but into kinetically separated domains that experience accelerated local search.
Collapse
|
4
|
Saddoris SM, Schang LM. The opportunities and challenges of epigenetic approaches to manage herpes simplex infections. Expert Rev Anti Infect Ther 2024; 22:1123-1142. [PMID: 39466139 PMCID: PMC11634640 DOI: 10.1080/14787210.2024.2420329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 09/24/2024] [Accepted: 10/20/2024] [Indexed: 10/29/2024]
Abstract
INTRODUCTION Despite the existence of antivirals that potently and efficiently inhibit the replication of herpes simplex virus 1 and 2 (HSV-1, -2), their ability to establish and maintain, and reactivate from, latency has precluded the development of curative therapies. Several groups are exploring the opportunities of targeting epigenetic regulation to permanently silence latent HSV genomes or induce their simultaneous reactivation in the presence of antivirals to flush the latent reservoirs, as has been explored for HIV. AREAS COVERED This review covers the basic principles of epigenetic regulation with an emphasis on those mechanisms relevant to the regulation of herpes simplex viruses, as well as the current knowledge on the regulation of lytic infections and the establishment and maintenance of, and reactivation from, latency, with an emphasis on epigenetic regulation. The differences with the epigenetic regulation of viral and cellular gene expression are highlighted as are the effects of known epigenetic regulators on herpes simplex viruses. The major limitations of current models to the development of novel antiviral strategies targeting latency are highlighted. EXPERT OPINION We provide an update on the epigenetic regulation during lytic and latent HSV-1 infection, highlighting the commonalities and differences with cellular gene expression and the potential of epigenetic drugs as antivirals, including the opportunities, challenges, and potential future directions.
Collapse
Affiliation(s)
- Sarah M Saddoris
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| | - Luis M Schang
- Department of Microbiology and Immunology and Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University. 235 Hungerford Hill Road, Ithaca, NY, 14850-USA
| |
Collapse
|
5
|
Phan LMU, Yeo WH, Zhang HF, Huang S. Dynamic chromosome association with nuclear organelles in living cells. Histochem Cell Biol 2024; 162:149-159. [PMID: 38811432 DOI: 10.1007/s00418-024-02288-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/08/2024] [Indexed: 05/31/2024]
Abstract
The development of progressively sophisticated tools complemented by the integration of live cell imaging enhances our understanding of the four-dimensional (4D) nucleome, revealing elaborate molecular interactions and chromatin states. Yet, the dynamics of chromosomes in relation to nuclear organelles or to each other across cell cycle in living cells are underexplored. We have developed photoconvertible GFP H3-Dendra2 stably expressing in PC3M cells. The nuclear lamina and perinucleolar associated heterochromatin or diffuse chromosome regions were photoconverted through a single-point activation using a confocal microscope. The results demonstrated a dynamic nature for both types of chromosomes in the same cell cycle and across mitosis. While some chromosome domains were heritably associated with either nuclear lamina or nucleoli, others changed alliance to different nuclear organelles postmitotically. In addition, co-photoconverted chromosome domains often do not stay together within the same cell cycle and across mitosis, suggesting a transient nature of chromosome neighborhoods. Long-range spreading and movement of chromosomes were also observed. Interestingly, when cells were treated with a low concentration of actinomycin D that inhibits Pol I transcription through intercalating GC-rich DNA, chromosome movement was significantly blocked. Treatment with another Pol I inhibitor, metarrestin, which does not impact DNA, had little effect on the movement, suggesting that the DNA structure itself plays a role in chromosome dynamics. Furthermore, inhibition of Pol II transcription with α-amanitin also reduced the chromosome movement, demonstrating that Pol II, but not Pol I transcription, is important for chromosome dynamics in the nucleus.
Collapse
Affiliation(s)
- Lam Minh Uyen Phan
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA
| | - Wei-Hong Yeo
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Hao F Zhang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Sui Huang
- Department of Cell and Developmental Biology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
6
|
Li Y, Li S, Li C, Zhang C, Yan L, Li J, He Y, Guo Y, Xia L. Fusion of a rice endogenous N-methylpurine DNA glycosylase to a plant adenine base transition editor ABE8e enables A-to-K base editing in rice plants. ABIOTECH 2024; 5:127-139. [PMID: 38974865 PMCID: PMC11224198 DOI: 10.1007/s42994-024-00138-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/11/2024] [Indexed: 07/09/2024]
Abstract
Engineering of a new type of plant base editor for simultaneous adenine transition and transversion within the editing window will greatly expand the scope and potential of base editing in directed evolution and crop improvement. Here, we isolated a rice endogenous hypoxanthine excision protein, N-methylpurine DNA glycosylase (OsMPG), and engineered two plant A-to-K (K = G or T) base editors, rAKBE01 and rAKBE02, for simultaneous adenine transition and transversion base editing in rice by fusing OsMPG or its mutant mOsMPG to a plant adenine transition base editor, ABE8e. We further coupled either OsMPG or mOsMPG with a transactivation factor VP64 to generate rAKBE03 and rAKBE04, respectively. Testing these four rAKBEs, at five endogenous loci in rice protoplasts, indicated that rAKBE03 and rAKBE04 enabled higher levels of A-to-G base transitions when compared to ABE8e and ABE8e-VP64. Furthermore, whereas rAKBE01 only enabled A-to-C/T editing at one endogenous locus, in comparison with rAKBE02 and rAKBE03, rAKBE04 could significantly improve the A-to-C/T base transversion efficiencies by up to 6.57- and 1.75-fold in the rice protoplasts, respectively. Moreover, although no stable lines with A-to-C transversion were induced by rAKBE01 and rAKBE04, rAKBE04 could enable simultaneous A-to-G and A-to-T transition and transversion base editing, at all the five target loci, with the efficiencies of A-to-G transition and A-to-T transversion editing ranging from 70.97 to 92.31% and 1.67 to 4.84% in rice stable lines, respectively. Together, these rAKBEs enable different portfolios of editing products and, thus, now expands the potential of base editing in diverse application scenario for crop improvement. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00138-8.
Collapse
Affiliation(s)
- Yucai Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Chenfei Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing, 100193 China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, 572024 China
| |
Collapse
|
7
|
Flores Cortes E, Saddoris SM, Owens AK, Gibeault R, Depledge DP, Schang LM. Histone H2A variant H2A.B is enriched in transcriptionally active and replicating HSV-1 lytic chromatin. J Virol 2024; 98:e0201523. [PMID: 38451083 PMCID: PMC11019955 DOI: 10.1128/jvi.02015-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 03/08/2024] Open
Abstract
Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections but the precise mechanisms are not fully defined. Nucleosomes are dynamic: they slide, breathe, assemble, and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent, whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X, and macroH2A were enhanced in infected cells, whereas those of H2A.B were uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, as well as ectopic and endogenous H2B were assembled into HSV-1 chromatin evenly throughout the genome but canonical H2A was relatively depleted whereas H2A.B was enriched, particularly in the most dynamic viral chromatin. When viral transcription and DNA replication were restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. IMPORTANCE Herpes simplex virus 1 (HSV-1) transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed epigenetic mechanisms of regulation of HSV-1 transcription have not been fully characterized and may differ from those regulating cellular transcription. Whereas lytic HSV-1 chromatin is unusually dynamic, latent silenced HSV-1 chromatin is not. The mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment of the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding of its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.
Collapse
Affiliation(s)
- Esteban Flores Cortes
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Sarah M. Saddoris
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Arryn K. Owens
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
| | - Rebecca Gibeault
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Daniel P. Depledge
- Institute of Virology, Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Excellence Cluster 2155 RESIST, Hannover Medical School, Hannover, Germany
| | - Luis M. Schang
- Baker Institute for Animal Health and Department of Microbiology and Immunology, Cornell University, Ithaca, New York, USA
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Flores E, Saddoris SM, Owens AK, Gibeault R, Depledge DP, Schang LM. Histone H2A variant H2A.B is enriched in transcriptionally active HSV-1 lytic chromatin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.22.573075. [PMID: 38187672 PMCID: PMC10769327 DOI: 10.1101/2023.12.22.573075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Herpes simplex virus 1 (HSV-1) transcription is restricted in latently infected neurons and the genomes are in mostly silenced chromatin, whereas all viral genes are transcribed in lytically infected cells, in which the genomes are dynamically chromatinized. Epigenetic regulation modulates HSV-1 transcription during lytic, latent, and reactivating infections, but the precise mechanisms are not fully defined. Nucleosomes are dynamic; they slide, breathe, assemble and disassemble. We and others have proposed that the most dynamic HSV-1 chromatin is transcriptionally competent whereas the least dynamic is silenced. However, the mechanisms yielding the unusually dynamic viral chromatin remain unknown. Histone variants affect nucleosome dynamics. The dynamics of H2A, H2A.X and macroH2A were enhanced in infected cells, whereas those of H2A.B uniquely decreased. We constructed stably transduced cells expressing tagged histone H2A, H2A.B, macroH2A, or H2B, which assembles the H2A/H2B nucleosome dimers with all H2A variants. All H2A variants, ectopic, and endogenous H2B, were assembled into HSV-1 chromatin evenly throughout the genome, but canonical H2A was relatively depleted from the viral chromatin whereas H2A.B was enriched in the most dynamic viral chromatin. When viral transcription was restricted, H2A.B became as depleted from the viral chromatin through the entire genome as H2A. We propose that lytic HSV-1 nucleosomes are enriched in the dynamic variant H2A.B/H2B dimers to promote HSV-1 chromatin dynamics and transcriptional competency, and conclude that the dynamics of HSV-1 chromatin are determined in part by the H2A variants. Importance HSV-1 transcription is epigenetically regulated during latent and lytic infections, and epigenetic inhibitors have been proposed as potential antiviral drugs to modulate latency and reactivation. However, the detailed mechanisms of regulation of HSV-1 transcription by epigenetics have not been fully characterized and may differ from those regulating cellular transcription. In particular, the lytic HSV-1 chromatin is unusually dynamic, whereas the latent silenced one is not, but the mechanisms resulting in the unique dynamics of the lytic chromatin remain unknown. Here we identify the enrichment on the highly dynamic histone 2A variant H2A in the most dynamic viral chromatin, which provides a mechanistic understanding for its unique dynamics. Future work to identify the mechanisms of enrichment in H2A.B on the viral chromatin may identify novel druggable epigenetic regulators that modulate HSV-1 latency and reactivation.
Collapse
|
9
|
Li Y, Li S, Li C, Zhang C, Yan L, Li J, He Y, Guo Y, Lin Y, Zhang Y, Xia L. Engineering a plant A-to-K base editor with improved performance by fusion with a transactivation module. PLANT COMMUNICATIONS 2023; 4:100667. [PMID: 37528582 PMCID: PMC10721455 DOI: 10.1016/j.xplc.2023.100667] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/19/2023] [Accepted: 07/26/2023] [Indexed: 08/03/2023]
Affiliation(s)
- Yucai Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaoya Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China
| | - Chenfei Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Chen Zhang
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Lei Yan
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Jingying Li
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China
| | - Yubing He
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China
| | - Yan Guo
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yong Lin
- Beijing Dabeinong Technology Group Co., Ltd., Beijing 10080, China
| | - Yangjun Zhang
- Beijing Dabeinong Technology Group Co., Ltd., Beijing 10080, China
| | - Lanqin Xia
- Institute of Crop Sciences (ICS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China; Hainan Yazhou Bay Seed Laboratory/National Nanfan Research Institute (Sanya), CAAS, Sanya, Hainan Province 572024, China.
| |
Collapse
|
10
|
Li S, Shen X. Long interspersed nuclear element 1 and B1/Alu repeats blueprint genome compartmentalization. Curr Opin Genet Dev 2023; 80:102049. [PMID: 37229928 DOI: 10.1016/j.gde.2023.102049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/14/2023] [Accepted: 04/15/2023] [Indexed: 05/27/2023]
Abstract
The organization of the genome into euchromatin and heterochromatin has been known for almost 100 years [1]. More than 50% of mammalian genomes contain repetitive sequences [2,3]. Recently, a functional link between the genome and its folding has been identified [4,5]. Homotypic clustering of long interspersed nuclear element 1 (LINE1 or L1) and B1/Alu retrotransposons forms grossly exclusive nuclear domains that characterize and predict heterochromatin and euchromatin, respectively. The spatial segregation of L1 and B1/Alu-rich compartments is conserved in mammalian cells and can be rebuilt during the cell cycle and established de novo in early embryogenesis. Inhibition of L1 RNA drastically weakened homotypic repeat contacts and compartmental segregation, indicating that L1 plays a more significant role than just being a compartmental marker. This simple and inclusive genetic coding model of L1 and B1/Alu in shaping the macroscopic structure of the genome provides a plausible explanation for the remarkable conservation and robustness of its folding in mammalian cells. It also proposes a conserved core structure on which subsequent dynamic regulation takes place.
Collapse
Affiliation(s)
- Siyang Li
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaohua Shen
- Department of Basic Medical Sciences, School of Medicine, Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
11
|
Ibrahim Z, Wang T, Destaing O, Salvi N, Hoghoughi N, Chabert C, Rusu A, Gao J, Feletto L, Reynoird N, Schalch T, Zhao Y, Blackledge M, Khochbin S, Panne D. Structural insights into p300 regulation and acetylation-dependent genome organisation. Nat Commun 2022; 13:7759. [PMID: 36522330 PMCID: PMC9755262 DOI: 10.1038/s41467-022-35375-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Histone modifications are deposited by chromatin modifying enzymes and read out by proteins that recognize the modified state. BRD4-NUT is an oncogenic fusion protein of the acetyl lysine reader BRD4 that binds to the acetylase p300 and enables formation of long-range intra- and interchromosomal interactions. We here examine how acetylation reading and writing enable formation of such interactions. We show that NUT contains an acidic transcriptional activation domain that binds to the TAZ2 domain of p300. We use NMR to investigate the structure of the complex and found that the TAZ2 domain has an autoinhibitory role for p300. NUT-TAZ2 interaction or mutations found in cancer that interfere with autoinhibition by TAZ2 allosterically activate p300. p300 activation results in a self-organizing, acetylation-dependent feed-forward reaction that enables long-range interactions by bromodomain multivalent acetyl-lysine binding. We discuss the implications for chromatin organisation, gene regulation and dysregulation in disease.
Collapse
Affiliation(s)
- Ziad Ibrahim
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, United States
| | - Tao Wang
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Destaing
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Nicola Salvi
- Institut de Biologie Structurale, CNRS, CEA, UGA, Grenoble, France
| | - Naghmeh Hoghoughi
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Clovis Chabert
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Alexandra Rusu
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Jinjun Gao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Leonardo Feletto
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Nicolas Reynoird
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Thomas Schalch
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Yingming Zhao
- Ben May Department of Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | | | - Saadi Khochbin
- CNRS UMR 5309, INSERM U1209, Université Grenoble Alpes, Institute for Advanced Biosciences, Grenoble, France
| | - Daniel Panne
- Leicester Institute of Structural and Chemical Biology, Department of Molecular and Cell Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
12
|
Enhancing glycosylase base-editor activity by fusion to transactivation modules. Cell Rep 2022; 40:111090. [PMID: 35858572 DOI: 10.1016/j.celrep.2022.111090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 05/09/2022] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Base editors (BEs) are a group of genetic tools with potential in both scientific and medical research. Recently, a glycosylase BE (GBE), which converts C to G, has been constructed. However, the editing efficiency and targeting scope remains to be further exploited. Here, we renovate the GBE by first fusing it to various transactivation modules including Vp64, leading to a higher conversion of C to G relative to GBE in HEK293T cells. Further, higher editing efficiency, enhanced editing purity, and an enlarged editing window are acquired by the combination of SunTag system, GBE, and VP64. Finally, a SpRY-Cas9 variant is used to expand the targeting scope for Vp64-GBE. Vp64-SpRY-GBE and SpRY-GBE target genomic sites with non-NGG PAM, and Vp64-SpRY-GBE demonstrates better performance compared with SpRY-GBE. The construction of GBE variants with superior performance and versatile editing scope broadens the toolbox of BEs and may contribute to genetic therapies with C-to-G mutation.
Collapse
|
13
|
Biswas J, Li W, Singer RH, Coleman RA. Imaging Organization of RNA Processing within the Nucleus. Cold Spring Harb Perspect Biol 2021; 13:a039453. [PMID: 34127450 PMCID: PMC8635003 DOI: 10.1101/cshperspect.a039453] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Within the nucleus, messenger RNA is generated and processed in a highly organized and regulated manner. Messenger RNA processing begins during transcription initiation and continues until the RNA is translated and degraded. Processes such as 5' capping, alternative splicing, and 3' end processing have been studied extensively with biochemical methods and more recently with single-molecule imaging approaches. In this review, we highlight how imaging has helped understand the highly dynamic process of RNA processing. We conclude with open questions and new technological developments that may further our understanding of RNA processing.
Collapse
Affiliation(s)
- Jeetayu Biswas
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Weihan Li
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | - Robert A Coleman
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| |
Collapse
|
14
|
Jiang H, Swacha P, Gekara NO. Nuclear AIM2-Like Receptors Drive Genotoxic Tissue Injury by Inhibiting DNA Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102534. [PMID: 34658166 PMCID: PMC8596118 DOI: 10.1002/advs.202102534] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Radiation is an essential preparative procedure for bone marrow (BM) transplantation and cancer treatment. The therapeutic efficacy of radiation and associated toxicity varies from patient to patient, making it difficult to prescribe an optimal patient-specific irradiation dose. The molecular determinants of radiation response remain unclear. AIM2-like receptors (ALRs) are key players in innate immunity and determine the course of infections, inflammatory diseases, senescence, and cancer. Here it is reported that mice lacking ALRs are resistant to irradiation-induced BM injury. It is shown that nuclear ALRs are inhibitors of DNA repair, thereby accelerate genome destabilization, micronuclei generation, and cell death, and that this novel function is uncoupled from their role in innate immunity. Mechanistically, ALRs bind to and interfere with chromatin decompaction vital for DNA repair. The finding uncovers ALRs as targets for new interventions against genotoxic tissue injury and as possible biomarkers for predicting the outcome of radio/chemotherapy.
Collapse
Affiliation(s)
- Hui Jiang
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Patrycja Swacha
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| | - Nelson O. Gekara
- Department of Molecular BiosciencesThe Wenner‐Gren InstituteStockholm UniversityStockholm106 91Sweden
| |
Collapse
|
15
|
Pita-Thomas W, Gonçalves TM, Kumar A, Zhao G, Cavalli V. Genome-wide chromatin accessibility analyses provide a map for enhancing optic nerve regeneration. Sci Rep 2021; 11:14924. [PMID: 34290335 PMCID: PMC8295311 DOI: 10.1038/s41598-021-94341-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/05/2021] [Indexed: 11/21/2022] Open
Abstract
Retinal Ganglion Cells (RGCs) lose their ability to grow axons during development. Adult RGCs thus fail to regenerate their axons after injury, leading to vision loss. To uncover mechanisms that promote regeneration of RGC axons, we identified transcription factors (TF) and open chromatin regions that are enriched in rat embryonic RGCs (high axon growth capacity) compared to postnatal RGCs (low axon growth capacity). We found that developmental stage-specific gene expression changes correlated with changes in promoter chromatin accessibility. Binding motifs for TFs such as CREB, CTCF, JUN and YY1 were enriched in the regions of the chromatin that were more accessible in embryonic RGCs. Proteomic analysis of purified rat RGC nuclei confirmed the expression of TFs with potential role in axon growth such as CREB, CTCF, YY1, and JUND. The CREB/ATF binding motif was widespread at the open chromatin region of known pro-regenerative TFs, supporting a role of CREB in regulating axon regeneration. Consistently, overexpression of CREB fused to the VP64 transactivation domain in mouse RGCs promoted axon regeneration after optic nerve injury. Our study provides a map of the chromatin accessibility during RGC development and highlights that TF associated with developmental axon growth can stimulate axon regeneration in mature RGC.
Collapse
Affiliation(s)
- Wolfgang Pita-Thomas
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | | | - Ajeet Kumar
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Guoyan Zhao
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - Valeria Cavalli
- Department of Neuroscience, Washington University School of Medicine, St Louis, MO, 63110, USA. .,Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, 63110, USA. .,Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
16
|
Abstract
In eukaryotes, DNA is packed inside the cell nucleus in the form of chromatin, which consists of DNA, proteins such as histones, and RNA. Euchromatin, which is permissive for transcription, is spatially organized into transcriptionally inactive domains interspersed with pockets of transcriptional activity. While transcription and RNA have been implicated in euchromatin organization, it remains unclear how their interplay forms and maintains transcription pockets. Here we combine theory and experiment to analyze the dynamics of euchromatin organization as pluripotent zebrafish cells exit mitosis and begin transcription. We show that accumulation of RNA induces formation of transcription pockets which displace transcriptionally inactive chromatin. We propose that the accumulating RNA recruits RNA-binding proteins that together tend to separate from transcriptionally inactive euchromatin. Full phase separation is prevented because RNA remains tethered to transcribed euchromatin through RNA polymerases. Instead, smaller scale microphases emerge that do not grow further and form the typical pattern of euchromatin organization.
Collapse
|
17
|
Xu H, Wang J, Liang Y, Fu Y, Li S, Huang J, Xu H, Zou W, Chen B. TriTag: an integrative tool to correlate chromatin dynamics and gene expression in living cells. Nucleic Acids Res 2021; 48:e127. [PMID: 33104788 PMCID: PMC7736787 DOI: 10.1093/nar/gkaa906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 08/29/2020] [Accepted: 10/21/2020] [Indexed: 02/07/2023] Open
Abstract
A wealth of single-cell imaging studies have contributed novel insights into chromatin organization and gene regulation. However, a comprehensive understanding of spatiotemporal gene regulation requires developing tools to combine multiple monitoring systems in a single study. Here, we report a versatile tag, termed TriTag, which integrates the functional capabilities of CRISPR-Tag (DNA labeling), MS2 aptamer (RNA imaging) and fluorescent protein (protein tracking). Using this tag, we correlate changes in chromatin dynamics with the progression of endogenous gene expression, by recording both transcriptional bursting and protein production. This strategy allows precise measurements of gene expression at single-allele resolution across the cell cycle or in response to stress. TriTag enables capturing an integrated picture of gene expression, thus providing a powerful tool to study transcriptional heterogeneity and regulation.
Collapse
Affiliation(s)
- Haiyue Xu
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junyan Wang
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Liang
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yujuan Fu
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Sihui Li
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Jinghan Huang
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Heng Xu
- School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.,Institute of Natural Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wei Zou
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu 322000, China.,Insititute of Translational Medicine, Zhejiang University, Hangzhou 310003, China
| | - Baohui Chen
- Department of Cell Biology, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China.,Institute of Hematology, Zhejiang University & Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou 310058, China.,Zhejiang Laboratory for Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou 311121, China.,Zhejiang Provincial Key Laboratory of Genetic & Developmental Disorders, Hangzhou 310058, China
| |
Collapse
|
18
|
An Epigenetic Priming Mechanism Mediated by Nutrient Sensing Regulates Transcriptional Output during C. elegans Development. Curr Biol 2020; 31:809-826.e6. [PMID: 33357451 DOI: 10.1016/j.cub.2020.11.060] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/23/2022]
Abstract
Although precise tuning of gene expression levels is critical for most developmental pathways, the mechanisms by which the transcriptional output of dosage-sensitive molecules is established or modulated by the environment remain poorly understood. Here, we provide a mechanistic framework for how the conserved transcription factor BLMP-1/Blimp1 operates as a pioneer factor to decompact chromatin near its target loci during embryogenesis (hours prior to major transcriptional activation) and, by doing so, regulates both the duration and amplitude of subsequent target gene transcription during post-embryonic development. This priming mechanism is genetically separable from the mechanisms that establish the timing of transcriptional induction and functions to canalize aspects of cell-fate specification, animal size regulation, and molting. A key feature of the BLMP-1-dependent transcriptional priming mechanism is that chromatin decompaction is initially established during embryogenesis and maintained throughout larval development by nutrient sensing. This anticipatory mechanism integrates transcriptional output with environmental conditions and is essential for resuming normal temporal patterning after animals exit nutrient-mediated developmental arrests.
Collapse
|
19
|
Vazquez BN, Thackray JK, Simonet NG, Chahar S, Kane-Goldsmith N, Newkirk SJ, Lee S, Xing J, Verzi MP, An W, Vaquero A, Tischfield JA, Serrano L. SIRT7 mediates L1 elements transcriptional repression and their association with the nuclear lamina. Nucleic Acids Res 2019; 47:7870-7885. [PMID: 31226208 PMCID: PMC6735864 DOI: 10.1093/nar/gkz519] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/30/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023] Open
Abstract
Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression.
Collapse
Affiliation(s)
- Berta N Vazquez
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona 08916, Spain
| | - Joshua K Thackray
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Nicolas G Simonet
- Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Sanjay Chahar
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA.,Montpellier Institute of Molecular Genetics (IGMM), CNRS and the University of Montpellier, 34090, France
| | - Noriko Kane-Goldsmith
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Simon J Newkirk
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Suman Lee
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Jinchuan Xing
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael P Verzi
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Wenfeng An
- Department of Pharmaceutical Sciences, College of Pharmacy and Allied Health Professions, South Dakota State University, Brookings, SD 57007, USA
| | - Alejandro Vaquero
- Chromatin Biology Laboratory, Josep Carreras Leukaemia Research Institute, Badalona, Barcelona 08916, Spain.,Chromatin Biology Laboratory, Cancer Epigenetics and Biology Program (PEBC), Bellvitge Biomedical Research Institute (IDIBELL), Barcelona 08908, Spain
| | - Jay A Tischfield
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| | - Lourdes Serrano
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
20
|
Chromatin dynamics and the transcriptional competence of HSV-1 genomes during lytic infections. PLoS Pathog 2019; 15:e1008076. [PMID: 31725813 PMCID: PMC6855408 DOI: 10.1371/journal.ppat.1008076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/11/2019] [Indexed: 12/20/2022] Open
Abstract
During latent infections with herpes simplex virus 1 (HSV-1), viral transcription is restricted and the genomes are mostly maintained in silenced chromatin, whereas in lytically infected cells all viral genes are transcribed and the genomes are dynamically chromatinized. Histones in the viral chromatin bear markers of silenced chromatin at early times in lytic infection or of active transcription at later times. The virion protein VP16 activates transcription of the immediate-early (IE) genes by recruiting transcription activators and chromatin remodelers to their promoters. Two IE proteins, ICP0 and ICP4 which modulate chromatin epigenetics, then activate transcription of early and late genes. Although chromatin is involved in the mechanism of activation of HSV- transcription, its precise role is not entirely understood. In the cellular genome, chromatin dynamics often modulate transcription competence whereas promoter-specific transcription factors determine transcription activity. Here, biophysical fractionation of serially digested HSV-1 chromatin followed by short-read deep sequencing indicates that nuclear HSV-1 DNA has different biophysical properties than protein-free or encapsidated HSV-1 DNA. The entire HSV-1 genomes in infected cells were equally accessible. The accessibility of transcribed or non-transcribed genes under any given condition did not differ, and each gene was entirely sampled in both the most and least accessible chromatin. However, HSV-1 genomes fractionated differently under conditions of generalized or restricted transcription. Approximately 1/3 of the HSV-1 DNA including fully sampled genes resolved to the most accessible chromatin when HSV-1 transcription was active, but such enrichment was reduced to only 3% under conditions of restricted HSV-1 transcription. Short sequences of restricted accessibility separated genes with different transcription levels. Chromatin dynamics thus provide a first level of regulation on HSV-1 transcription, dictating the transcriptional competency of the genomes during lytic infections, whereas the transcription of individual genes is then most likely activated by specific transcription factors. Moreover, genes transcribed to different levels are separated by short sequences with limited accessibility. Although chromatin epigenetics modulate transcription of the nuclear replicating DNA viruses, and play major roles in the process of establishment of, and reactivation from, latency, the specific mechanisms of this modulation are not totally clear. Chromatin often regulates the transcriptional competency of cellular genes, rather than the actual level of transcription of individual genes. Here, we show that chromatin dynamics regulate the transcription competency of entire herpes simplex virus 1 (HSV-1) genomes, rather than the actual transcription level of individual genes. Moreover, CTCF/ insulator containing sequences flanking the immediate-early gene loci are more inaccessible when these genes are highly transcribed in a context of little transcription from the rest of the genome than when no gene was highly transcribed or all genes were. We postulate that chromatin dynamics modulate the transcriptional competency of the HSV-1 genome. Genes in genomes rendered transcriptionally inactive by chromatin dynamics cannot be transcribed, whereas transcription of individual genes, or of group of genes, is regulated separately in the transcriptionally competent genomes.
Collapse
|
21
|
Kuhn TM, Pascual-Garcia P, Gozalo A, Little SC, Capelson M. Chromatin targeting of nuclear pore proteins induces chromatin decondensation. J Cell Biol 2019; 218:2945-2961. [PMID: 31366666 PMCID: PMC6719443 DOI: 10.1083/jcb.201807139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 04/05/2019] [Accepted: 07/08/2019] [Indexed: 12/03/2022] Open
Abstract
Nuclear pore complexes have emerged in recent years as chromatin-binding nuclear scaffolds, able to influence target gene expression. However, how nucleoporins (Nups) exert this control remains poorly understood. Here we show that ectopically tethering Drosophila Nups, especially Sec13, to chromatin is sufficient to induce chromatin decondensation. This decondensation is mediated through chromatin-remodeling complex PBAP, as PBAP is both robustly recruited by Sec13 and required for Sec13-induced decondensation. This phenomenon is not correlated with localization of the target locus to the nuclear periphery, but is correlated with robust recruitment of Nup Elys. Furthermore, we identified a biochemical interaction between endogenous Sec13 and Elys with PBAP, and a role for endogenous Elys in global as well as gene-specific chromatin decompaction. Together, these findings reveal a functional role and mechanism for specific nuclear pore components in promoting an open chromatin state.
Collapse
Affiliation(s)
- Terra M Kuhn
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Pau Pascual-Garcia
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Alejandro Gozalo
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Shawn C Little
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| | - Maya Capelson
- Department of Cell and Developmental Biology, Penn Institute of Epigenetics, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
22
|
Liu G, Yin K, Zhang Q, Gao C, Qiu JL. Modulating chromatin accessibility by transactivation and targeting proximal dsgRNAs enhances Cas9 editing efficiency in vivo. Genome Biol 2019; 20:145. [PMID: 31349852 PMCID: PMC6660936 DOI: 10.1186/s13059-019-1762-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/13/2019] [Indexed: 12/14/2022] Open
Abstract
The CRISPR/Cas9 system is unable to edit all targetable genomic sites with full efficiency in vivo. We show that Cas9-mediated editing is more efficient in open chromatin regions than in closed chromatin regions in rice. A construct (Cas9-TV) formed by fusing a synthetic transcription activation domain to Cas9 edits target sites more efficiently, even in closed chromatin regions. Moreover, combining Cas9-TV with a proximally binding dead sgRNA (dsgRNA) further improves editing efficiency up to several folds. The use of Cas9-TV/dsgRNA thus provides a novel strategy for obtaining efficient genome editing in vivo, especially at nuclease-refractory target sites.
Collapse
Affiliation(s)
- Guanwen Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Kangquan Yin
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qianwei Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin-Long Qiu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
23
|
Cardozo Gizzi AM, Cattoni DI, Fiche JB, Espinola SM, Gurgo J, Messina O, Houbron C, Ogiyama Y, Papadopoulos GL, Cavalli G, Lagha M, Nollmann M. Microscopy-Based Chromosome Conformation Capture Enables Simultaneous Visualization of Genome Organization and Transcription in Intact Organisms. Mol Cell 2019; 74:212-222.e5. [DOI: 10.1016/j.molcel.2019.01.011] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 11/27/2018] [Accepted: 01/08/2019] [Indexed: 01/30/2023]
|
24
|
Nepon-Sixt BS, Bryant VL, Alexandrow MG. Myc-driven chromatin accessibility regulates Cdc45 assembly into CMG helicases. Commun Biol 2019; 2:110. [PMID: 30911685 PMCID: PMC6430796 DOI: 10.1038/s42003-019-0353-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 02/07/2019] [Indexed: 01/08/2023] Open
Abstract
Myc-driven tumorigenesis involves a non-transcriptional role for Myc in over-activating replication origins. We show here that the mechanism underlying this process involves a direct role for Myc in activation of Cdc45-MCM-GINS (CMG) helicases at Myc-targeted sites. Myc induces decondensation of higher-order chromatin at targeted sites and is required for chromatin access at a chromosomal origin. Myc-driven chromatin accessibility promotes Cdc45/GINS recruitment to resident MCMs, and activation of CMGs. Myc-Box II, which is necessary for Myc-driven transformation, is required for Myc-induced chromatin accessibility, Cdc45/GINS recruitment, and replication stimulation. Myc interactors GCN5, Tip60, and TRRAP are essential for chromatin unfolding and recruitment of Cdc45, and co-expression of GCN5 or Tip60 with MBII-deficient Myc rescues these events and promotes CMG activation. Finally, Myc and Cdc45 interact and physiologic conditions for CMG assembly require the functions of Myc, MBII, and GCN5 for Cdc45 recruitment and initiation of DNA replication.
Collapse
Affiliation(s)
- Brook S. Nepon-Sixt
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
| | - Victoria L. Bryant
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612 USA
- Present Address: AT Still University School of Osteopathic Medicine 27 5850 E Still Circle, Mesa, AZ 85206 USA
| | - Mark G. Alexandrow
- Department of Molecular Oncology, Moffitt Cancer Center and Research Institute, Tampa, FL 33612 USA
- University of South Florida Cancer Biology PhD Program, Tampa, FL 33612 USA
| |
Collapse
|
25
|
Sandoz J, Nagy Z, Catez P, Caliskan G, Geny S, Renaud JB, Concordet JP, Poterszman A, Tora L, Egly JM, Le May N, Coin F. Functional interplay between TFIIH and KAT2A regulates higher-order chromatin structure and class II gene expression. Nat Commun 2019; 10:1288. [PMID: 30894545 PMCID: PMC6426930 DOI: 10.1038/s41467-019-09270-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 03/01/2019] [Indexed: 12/21/2022] Open
Abstract
The TFIIH subunit XPB is involved in combined Xeroderma Pigmentosum and Cockayne syndrome (XP-B/CS). Our analyses reveal that XPB interacts functionally with KAT2A, a histone acetyltransferase (HAT) that belongs to the hSAGA and hATAC complexes. XPB interacts with KAT2A-containing complexes on chromatin and an XP-B/CS mutation specifically elicits KAT2A-mediated large-scale chromatin decondensation. In XP-B/CS cells, the abnormal recruitment of TFIIH and KAT2A to chromatin causes inappropriate acetylation of histone H3K9, leading to aberrant formation of transcription initiation complexes on the promoters of several hundred genes and their subsequent overexpression. Significantly, this cascade of events is similarly sensitive to KAT2A HAT inhibition or to the rescue with wild-type XPB. In agreement, the XP-B/CS mutation increases KAT2A HAT activity in vitro. Our results unveil a tight connection between TFIIH and KAT2A that controls higher-order chromatin structure and gene expression and provide new insights into transcriptional misregulation in a cancer-prone DNA repair-deficient disorder.
Collapse
Affiliation(s)
- Jérémy Sandoz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Zita Nagy
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Philippe Catez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Gizem Caliskan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Sylvain Geny
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Muséum national d'Histoire naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Jean-Baptiste Renaud
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Muséum national d'Histoire naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Jean-Paul Concordet
- Laboratoire Structure et Instabilité des Génomes, INSERM U1154, CNRS UMR7196, Muséum national d'Histoire naturelle, 43 rue Cuvier, 75005, Paris, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Laszlo Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Jean-Marc Egly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Nicolas Le May
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France
- Université de Strasbourg, 67404, Illkirch, France
| | - Frédéric Coin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire Illkirch Cedex, C.U. Strasbourg, France.
- Centre National de la Recherche Scientifique, UMR7104, 67404, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, U1258, 67404, Illkirch, France.
- Université de Strasbourg, 67404, Illkirch, France.
| |
Collapse
|
26
|
SerpinB2 is involved in cellular response upon UV irradiation. Sci Rep 2019; 9:2753. [PMID: 30808882 PMCID: PMC6391458 DOI: 10.1038/s41598-019-39073-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/10/2018] [Indexed: 01/01/2023] Open
Abstract
Ultraviolet light induced pyrimidine dimer is a helix distortion DNA damage type, which recruits repair complexes. However, proteins of these complexes that take part in both DNA damage recognition and repair have been well-described, the regulation of the downstream steps of nucleotide excision repair (NER) have not been clearly clarified yet. In a high-throughput screen, we identified SerpinB2 (SPB2) as one of the most dramatically upregulated gene in keratinocytes following UV irradiation. We found that both the mRNA and the protein levels of SPB2 were increased upon UV irradiation in various cell lines. Additionally, UV damage induced translocation of SPB2 from the cytoplasm to the nucleus as well as the damage induced foci formation of it. Here we show that SPB2 co-localizes with XPB involved in the NER pathway at UV-induced repair foci. Finally, we demonstrated that UV irradiation promoted the association of SPB2 with ubiquitylated proteins. In basal cell carcinoma tumour cells, we identified changes in the subcellular localization of SPB2. Based on our results, we conclude that SPB2 protein has a novel role in UV-induced NER pathway, since it regulates the removal of the repair complex from the damaged site leading to cancerous malformation.
Collapse
|
27
|
Wada T, Wallerich S, Becskei A. Synthetic Transcription Factors Switch from Local to Long-Range Control during Cell Differentiation. ACS Synth Biol 2019; 8:223-231. [PMID: 30624895 DOI: 10.1021/acssynbio.8b00369] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Genes, including promoters and enhancers, are regulated by short- and long-range interactions in higher eukaryotes. It is unclear how mammalian gene expression subject to such a combinatorial regulation can be controlled by synthetic transcription factors (TF). Here, we studied how synthetic TALE transcriptional activators and repressors affect the expression of genes in a gene array during cellular differentiation. The protocadherin gene array is silent in mouse embryonic stem (ES) and neuronal progenitor cells. The TALE transcriptional activator recruited to a promoter activates specifically the target gene in ES cells. Upon differentiation into neuronal progenitors, the transcriptional regulatory logic changes: the same activator behaves like an enhancer, activating distant genes in a correlated, stochastic fashion. The long-range effect is reflected by the alterations in CpG methylation. Our findings reveal the limits of precision and the opportunities in the control of gene expression for TF-based therapies in cells of various differentiation stages.
Collapse
Affiliation(s)
- Takeo Wada
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Sandrine Wallerich
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | - Attila Becskei
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| |
Collapse
|
28
|
Zhu L, Jones C. The canonical Wnt/β-catenin signaling pathway stimulates herpes simplex virus 1 productive infection. Virus Res 2018; 256:29-37. [PMID: 30077727 PMCID: PMC6261341 DOI: 10.1016/j.virusres.2018.07.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/28/2018] [Accepted: 07/30/2018] [Indexed: 01/29/2023]
Abstract
The ability of herpes simplex virus 1 (HSV-1) to replicate efficiently in differentiated cells is regulated by cellular factors that stimulate viral gene expression, cell survival, and viral morphogenesis. Activation of the canonical Wnt signaling pathway generally increases β-catenin protein levels, cell survival, and growth in dividing cells suggesting this important signaling pathway regulates productive infection. In this study, we demonstrated that a β-catenin specific small molecule inhibitor (iCRT14) reduced HSV-1 titers approximately 10-fold in primary human lung fibroblasts and Vero cells. Furthermore, β-catenin dependent transcription was increased at late times after infection and as expected iCRT14 reduced β-catenin dependent transcription. Although HSV-1 infection increased β-catenin steady state protein levels approximately 4-fold in Vero cells, there was only a nominal increase in human lung fibroblasts. We hypothesized that VP16 regulates β-catenin dependent transcription because VP16 is a viral regulatory protein expressed at late times after infection. In the absence of other viral proteins, VP16 increased β-catenin dependent transcription and β-catenin steady state protein levels. Collectively, these studies suggested the cellular transcription factor β-catenin stimulates productive infection, in part because VP16 enhances β-catenin dependent transcription.
Collapse
Affiliation(s)
- Liqian Zhu
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, 74078, United States; Yangzhou University, College of Veterinary Medicine and Jiangsu Co-innovation, Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, 48 Wenhui East Road, Yangzhou, 225009, China
| | - Clinton Jones
- Oklahoma State University, Center for Veterinary Health Sciences, Department of Veterinary Pathobiology, Stillwater, OK, 74078, United States.
| |
Collapse
|
29
|
Adenovirus E1A Activation Domain Regulates H3 Acetylation Affecting Varied Steps in Transcription at Different Viral Promoters. J Virol 2018; 92:JVI.00805-18. [PMID: 29976669 PMCID: PMC6146688 DOI: 10.1128/jvi.00805-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/26/2018] [Indexed: 01/06/2023] Open
Abstract
Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters. How histone acetylation promotes transcription is not clearly understood. Here, we confirm an interaction between p300 and the adenovirus 2 large E1A activation domain (AD) and map the interacting regions in E1A by observing colocalization at an integrated lacO array of fusions of LacI-mCherry to E1A fragments with YFP-p300. Viruses with mutations in E1A subdomains were constructed and analyzed for kinetics of early viral RNA expression and association of acetylated H3K9, K18, K27, TBP, and RNA polymerase II (Pol II) across the viral genome. The results indicate that this E1A interaction with p300 is required for H3K18 and H3K27 acetylation at the E2early, E3, and E4 promoters and is required for TBP and Pol II association with the E2early promoter. In contrast, H3K18/27 acetylation was not required for TBP and Pol II association with the E3 and E4 promoters but was required for E4 transcription at a step subsequent to Pol II preinitiation complex assembly. IMPORTANCE Despite a wealth of data associating promoter and enhancer region histone N-terminal tail lysine acetylation with transcriptional activity, there are relatively few examples of studies that establish causation between these histone posttranslational modifications and transcription. While hypoacetylation of histone H3 lysines 18 and 27 is associated with repression, the step(s) in the overall process of transcription that is blocked at a hypoacetylated promoter is not clearly established in most instances. Studies presented here confirm that the adenovirus 2 large E1A protein activation domain interacts with p300, as reported previously (P. Pelka, J. N. G. Ablack, J. Torchia, A. S. Turnell, R. J. A. Grand, J. S. Mymryk, Nucleic Acids Res 37:1095–1106, 2009, https://doi.org/10.1093/nar/gkn1057), and that the resulting acetylation of H3K18/27 affects varied steps in transcription at different viral promoters.
Collapse
|
30
|
Dultz E, Mancini R, Polles G, Vallotton P, Alber F, Weis K. Quantitative imaging of chromatin decompaction in living cells. Mol Biol Cell 2018; 29:1763-1777. [PMID: 29771637 DOI: 10.1101/219253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Chromatin organization is highly dynamic and regulates transcription. Upon transcriptional activation, chromatin is remodeled and referred to as "open," but quantitative and dynamic data of this decompaction process are lacking. Here, we have developed a quantitative high resolution-microscopy assay in living yeast cells to visualize and quantify chromatin dynamics using the GAL7-10-1 locus as a model system. Upon transcriptional activation of these three clustered genes, we detect an increase of the mean distance across this locus by >100 nm. This decompaction is linked to active transcription but is not sensitive to the histone deacetylase inhibitor trichostatin A or to deletion of the histone acetyl transferase Gcn5. In contrast, the deletion of SNF2 (encoding the ATPase of the SWI/SNF chromatin remodeling complex) or the deactivation of the histone chaperone complex FACT lead to a strongly reduced decompaction without significant effects on transcriptional induction in FACT mutants. Our findings are consistent with nucleosome remodeling and eviction activities being major contributors to chromatin reorganization during transcription but also suggest that transcription can occur in the absence of detectable decompaction.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberta Mancini
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Guido Polles
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Pascal Vallotton
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Frank Alber
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
31
|
Abstract
Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in
cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Ohlsson
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
32
|
Dultz E, Mancini R, Polles G, Vallotton P, Alber F, Weis K. Quantitative imaging of chromatin decompaction in living cells. Mol Biol Cell 2018; 29:1763-1777. [PMID: 29771637 PMCID: PMC6080713 DOI: 10.1091/mbc.e17-11-0648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin organization is highly dynamic and regulates transcription. Upon transcriptional activation, chromatin is remodeled and referred to as “open,” but quantitative and dynamic data of this decompaction process are lacking. Here, we have developed a quantitative high resolution–microscopy assay in living yeast cells to visualize and quantify chromatin dynamics using the GAL7-10-1 locus as a model system. Upon transcriptional activation of these three clustered genes, we detect an increase of the mean distance across this locus by >100 nm. This decompaction is linked to active transcription but is not sensitive to the histone deacetylase inhibitor trichostatin A or to deletion of the histone acetyl transferase Gcn5. In contrast, the deletion of SNF2 (encoding the ATPase of the SWI/SNF chromatin remodeling complex) or the deactivation of the histone chaperone complex FACT lead to a strongly reduced decompaction without significant effects on transcriptional induction in FACT mutants. Our findings are consistent with nucleosome remodeling and eviction activities being major contributors to chromatin reorganization during transcription but also suggest that transcription can occur in the absence of detectable decompaction.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberta Mancini
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Guido Polles
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Pascal Vallotton
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Frank Alber
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
33
|
Robson MI, de Las Heras JI, Czapiewski R, Sivakumar A, Kerr ARW, Schirmer EC. Constrained release of lamina-associated enhancers and genes from the nuclear envelope during T-cell activation facilitates their association in chromosome compartments. Genome Res 2017; 27:1126-1138. [PMID: 28424353 PMCID: PMC5495065 DOI: 10.1101/gr.212308.116] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 04/12/2017] [Indexed: 01/15/2023]
Abstract
The 3D organization of the genome changes concomitantly with expression changes during hematopoiesis and immune activation. Studies have focused either on lamina-associated domains (LADs) or on topologically associated domains (TADs), defined by preferential local chromatin interactions, and chromosome compartments, defined as higher-order interactions between TADs sharing functionally similar states. However, few studies have investigated how these affect one another. To address this, we mapped LADs using Lamin B1-DamID during Jurkat T-cell activation, finding significant genome reorganization at the nuclear periphery dominated by release of loci frequently important for T-cell function. To assess how these changes at the nuclear periphery influence wider genome organization, our DamID data sets were contrasted with TADs and compartments. Features of specific repositioning events were then tested by fluorescence in situ hybridization during T-cell activation. First, considerable overlap between TADs and LADs was observed with the TAD repositioning as a unit. Second, A1 and A2 subcompartments are segregated in 3D space through differences in proximity to LADs along chromosomes. Third, genes and a putative enhancer in LADs that were released from the periphery during T-cell activation became preferentially associated with A2 subcompartments and were constrained to the relative proximity of the lamina. Thus, lamina associations influence internal nuclear organization, and changes in LADs during T-cell activation may provide an important additional mode of gene regulation.
Collapse
Affiliation(s)
- Michael I Robson
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Jose I de Las Heras
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Rafal Czapiewski
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Aishwarya Sivakumar
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Alastair R W Kerr
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom
| |
Collapse
|
34
|
Pankert T, Jegou T, Caudron-Herger M, Rippe K. Tethering RNA to chromatin for fluorescence microscopy based analysis of nuclear organization. Methods 2017; 123:89-101. [DOI: 10.1016/j.ymeth.2017.01.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 01/23/2017] [Accepted: 01/30/2017] [Indexed: 12/22/2022] Open
|
35
|
Rademacher A, Erdel F, Trojanowski J, Schumacher S, Rippe K. Real-time observation of light-controlled transcription in living cells. J Cell Sci 2017. [DOI: 10.1242/jcs.205534] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Gene expression is tightly regulated in space and time. To dissect this process with high temporal resolution, we introduce an optogenetic tool termed BLInCR (Blue Light-Induced Chromatin Recruitment) that combines rapid and reversible light-dependent recruitment of effector proteins with a real-time readout for transcription. We used BLInCR to control the activity of a reporter gene cluster in the human osteosarcoma cell line U2OS by reversibly recruiting the viral transactivator VP16. RNA production was detectable ∼2 minutes after VP16 recruitment and readily decreased when VP16 dissociated from the cluster in the absence of light. Quantitative assessment of the activation process revealed biphasic activation kinetics with a pronounced early phase in cells treated with the histone deacetylase inhibitor SAHA. Comparison with kinetic models for transcription activation suggests that the gene cluster undergoes a maturation process when activated. We anticipate that BLInCR will facilitate the study of transcription dynamics in living cells.
Collapse
Affiliation(s)
- Anne Rademacher
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Fabian Erdel
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Jorge Trojanowski
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sabrina Schumacher
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Karsten Rippe
- German Cancer Research Center (DKFZ) and Bioquant, Division of Chromatin Networks, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| |
Collapse
|
36
|
Barnhart-Dailey MC, Trivedi P, Stukenberg PT, Foltz DR. HJURP interaction with the condensin II complex during G1 promotes CENP-A deposition. Mol Biol Cell 2016; 28:54-64. [PMID: 27807043 PMCID: PMC5221629 DOI: 10.1091/mbc.e15-12-0843] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 10/17/2016] [Accepted: 10/26/2016] [Indexed: 01/27/2023] Open
Abstract
Condensin II interacts with human CENP-A chaperone HJURP and is present at centromeres in early G1. Condensin II, but not condensin I, is required for efficient CENP-A deposition in human cells. HJURP-induced chromatin decondensation at de novo centromeres is counteracted by the activity of condensin II. Centromeric chromatin is required for kinetochore assembly during mitosis and accurate chromosome segregation. A unique nucleosome containing the histone H3–specific variant CENP-A is the defining feature of centromeric chromatin. In humans, CENP-A nucleosome deposition occurs in early G1 just after mitotic exit at the time when the CENP-A deposition machinery localizes to centromeres. The mechanism by which CENP-A is deposited onto an existing, condensed chromatin template is not understood. Here we identify the selective association of the CENP-A chaperone HJURP with the condensin II complex and not condensin I. We show CAPH2 is present at centromeres during early G1 at the time when CENP-A deposition is occurring. CAPH2 localization to early G1 centromeres is dependent on HJURP. The CENP-A chaperone and assembly factor HJURP induces decondensation of a noncentromeric LacO array, and this decondensation is modulated by the condensin II complex. We show that condensin II function at the centromere is required for new CENP-A deposition in human cells. These data demonstrate that HJURP selectively recruits the condensin II chromatin-remodeling complex to facilitate CENP-A deposition in human cells.
Collapse
Affiliation(s)
- Meghan C Barnhart-Dailey
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908
| | - Prasad Trivedi
- Department of Cell Biology, University of Virginia Medical School, Charlottesville, VA 22908
| | - P Todd Stukenberg
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908.,Department of Cell Biology, University of Virginia Medical School, Charlottesville, VA 22908
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, University of Virginia Medical School, Charlottesville, VA 22908 .,Department of Cell Biology, University of Virginia Medical School, Charlottesville, VA 22908.,Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
37
|
Vaňková Hausnerová V, Lanctôt C. Chromatin decondensation is accompanied by a transient increase in transcriptional output. Biol Cell 2016; 109:65-79. [PMID: 27633335 DOI: 10.1111/boc.201600032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 12/26/2022]
Abstract
BACKGROUND INFORMATION The levels of chromatin condensation usually correlate inversely with the levels of transcription. The mechanistic links between chromatin condensation and RNA polymerase II activity remain to be elucidated. In the present work, we sought to experimentally determine whether manipulation of chromatin condensation levels can have a direct effect on transcriptional activity. RESULTS We generated a U-2-OS cell line in which the nascent transcription of a reporter gene could be imaged alongside chromatin compaction levels in living cells. The transcripts were tagged at their 5' end with PP7 stem loops, which can be detected upon expression of a PP7 capsid protein fused to green fluorescent protein. Cycles of global chromatin hypercondensation and decondensation were performed by perfusing culture media of different osmolarities during imaging. We used the fluorescence recovery after photobleaching technique to analyse the transcriptional dynamics in both conditions. Surprisingly, we found that, despite a drop in signal intensity, nascent transcription appeared to continue at the same rate in hypercondensed chromatin. Furthermore, quantification of transcriptional profiles revealed that chromatin decondensation was accompanied by a brief and transient spike in transcriptional output. CONCLUSIONS We propose a model whereby the initiation of transcription is not impaired in condensed chromatin, but inefficient elongation in these conditions leads to the accumulation of RNA polymerase II at the transcription site. Upon chromatin decondensation, release of the RNA polymerase II halt triggers a wave of transcription, which we detect as a transient spike in activity. SIGNIFICANCE The results presented here shed light on the activity of RNA polymerase II during chromatin condensation and decondensation. As such, they point to a new level of transcriptional regulation.
Collapse
Affiliation(s)
- Viola Vaňková Hausnerová
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV and Department of Cell Biology, Faculty of Science, Charles University, Vestec u Prahy, 252 50, Czech Republic
| | - Christian Lanctôt
- Institute of Cellular Biology and Pathology, First Faculty of Medicine, Charles University, Prague, Czech Republic.,BIOCEV and Department of Cell Biology, Faculty of Science, Charles University, Vestec u Prahy, 252 50, Czech Republic
| |
Collapse
|
38
|
Kuznetsova MA, Sheval EV. Chromatin fibers: from classical descriptions to modern interpretation. Cell Biol Int 2016; 40:1140-1151. [PMID: 27569720 DOI: 10.1002/cbin.10672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 08/20/2016] [Indexed: 12/14/2022]
Abstract
The first description of intrachromosomal fibers was made by Baranetzky in 1880. Since that time, a plethora of fibrillar substructures have been described inside the mitotic chromosomes, and published data indicate that chromosomes may be formed as a result of the hierarchical folding of chromatin fibers. In this review, we examine the evolution and the current state of research on the morphological organization of mitotic chromosomes.
Collapse
Affiliation(s)
- Maria A Kuznetsova
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia.,A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia
| | - Eugene V Sheval
- A.N. Belozersky Institute of Physico-Chemical Biology, M.V. Lomonosov Moscow State University, 119992, Moscow, Russia. .,LIA1066 French-Russian Joint Cancer Research Laboratory, 119334, Moscow, Russia.
| |
Collapse
|
39
|
Pueschel R, Coraggio F, Meister P. From single genes to entire genomes: the search for a function of nuclear organization. Development 2016; 143:910-23. [PMID: 26980791 DOI: 10.1242/dev.129007] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The existence of different domains within the nucleus has been clear from the time, in the late 1920s, that heterochromatin and euchromatin were discovered. The observation that heterochromatin is less transcribed than euchromatin suggested that microscopically identifiable structures might correspond to functionally different domains of the nucleus. Until 15 years ago, studies linking gene expression and subnuclear localization were limited to a few genes. As we discuss in this Review, new genome-wide techniques have now radically changed the way nuclear organization is analyzed. These have provided a much more detailed view of functional nuclear architecture, leading to the emergence of a number of new paradigms of chromatin folding and how this folding evolves during development.
Collapse
Affiliation(s)
- Ringo Pueschel
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Francesca Coraggio
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland Graduate School for Cellular and Biomedical Sciences, University of Bern, Switzerland
| | - Peter Meister
- Cell Fate and Nuclear Organization, Institute of Cell Biology, University of Bern, 3012 Bern, Switzerland
| |
Collapse
|
40
|
Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X. Spatial organization of chromatin domains and compartments in single chromosomes. Science 2016; 353:598-602. [PMID: 27445307 DOI: 10.1126/science.aaf8084] [Citation(s) in RCA: 432] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 07/12/2016] [Indexed: 12/13/2022]
Abstract
The spatial organization of chromatin critically affects genome function. Recent chromosome-conformation-capture studies have revealed topologically associating domains (TADs) as a conserved feature of chromatin organization, but how TADs are spatially organized in individual chromosomes remains unknown. Here, we developed an imaging method for mapping the spatial positions of numerous genomic regions along individual chromosomes and traced the positions of TADs in human interphase autosomes and X chromosomes. We observed that chromosome folding deviates from the ideal fractal-globule model at large length scales and that TADs are largely organized into two compartments spatially arranged in a polarized manner in individual chromosomes. Active and inactive X chromosomes adopt different folding and compartmentalization configurations. These results suggest that the spatial organization of chromatin domains can change in response to regulation.
Collapse
Affiliation(s)
- Siyuan Wang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jun-Han Su
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Brian J Beliveau
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Bogdan Bintu
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Jeffrey R Moffitt
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA
| | - Chao-ting Wu
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Xiaowei Zhuang
- Howard Hughes Medical Institute, Department of Chemistry and Chemical Biology, Department of Physics, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
41
|
Miorin L, Maiuri P, Marcello A. Visual detection of Flavivirus RNA in living cells. Methods 2016; 98:82-90. [PMID: 26542763 PMCID: PMC7129942 DOI: 10.1016/j.ymeth.2015.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 12/24/2022] Open
Abstract
Flaviviruses include a wide range of important human pathogens delivered by insects or ticks. These viruses have a positive-stranded RNA genome that is replicated in the cytoplasm of the infected cell. The viral RNA genome is the template for transcription by the virally encoded RNA polymerase and for translation of the viral proteins. Furthermore, the double-stranded RNA intermediates of viral replication are believed to trigger the innate immune response through interaction with cytoplasmic cellular sensors. Therefore, understanding the subcellular distribution and dynamics of Flavivirus RNAs is of paramount importance to understand the interaction of the virus with its cellular host, which could be of insect, tick or mammalian, including human, origin. Recent advances on the visualization of Flavivirus RNA in living cells together with the development of methods to measure the dynamic properties of viral RNA are reviewed and discussed in this essay. In particular the application of bleaching techniques such as fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP) are analysed in the context of tick-borne encephalitis virus replication. Conclusions driven by this approached are discussed in the wider context Flavivirus infection.
Collapse
MESH Headings
- Animals
- Cell Line
- Cricetinae
- Encephalitis Viruses, Tick-Borne/genetics
- Encephalitis Viruses, Tick-Borne/metabolism
- Encephalitis Viruses, Tick-Borne/ultrastructure
- Fluorescence Recovery After Photobleaching
- Fluorescent Dyes/chemistry
- Gene Expression Regulation, Viral
- Host-Pathogen Interactions
- Humans
- Molecular Imaging/methods
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Staining and Labeling/methods
- Ticks/virology
- Transcription, Genetic
Collapse
Affiliation(s)
- Lisa Miorin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paolo Maiuri
- IFOM - Istituto FIRC di Oncologia Molecolare, via Adamello 16, 20139 Milan, Italy
| | - Alessandro Marcello
- Laboratory of Molecular Virology, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano 99, 34149 Trieste, Italy.
| |
Collapse
|
42
|
Liu W, Stewart CN. Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 2016; 37:36-44. [DOI: 10.1016/j.copbio.2015.10.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/06/2015] [Indexed: 10/22/2022]
|
43
|
Lee K, Kim JH, Kwon H. The Actin-Related Protein BAF53 Is Essential for Chromosomal Subdomain Integrity. Mol Cells 2015; 38:789-95. [PMID: 26242195 PMCID: PMC4588722 DOI: 10.14348/molcells.2015.0109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 05/26/2015] [Accepted: 05/28/2015] [Indexed: 01/09/2023] Open
Abstract
A chromosome territory is composed of chromosomal subdomains. The internal structure of chromosomal subdomains provides a structural framework for many genomic activities such as replication and DNA repair, and thus is key to determining the basis of their mechanisms. However, the internal structure and regulating proteins of a chromosomal subdomain remains elusive. Previously, we showed that the chromosome territory expanded after BAF53 knockdown. Because the integrity of chromosomal subdomains is a deciding factor of the volume of a chromosome territory, we examined here the effect of BAF53 knockdown on chromosomal subdomains. We found that BAF53 knockdown led to the disintegration of histone H2B-GFP-visualized chromosomal subdomains and BrdU-labeled replication foci. In addition, the size of DNA loops measured by the maximum fluorescent halo technique increased and became irregular after BAF53 knockdown, indicating DNA loops were released from the residual nuclear structure. These data can be accounted for by the model that BAF53 is prerequisite for maintaining the structural integrity of chromosomal subdomains.
Collapse
Affiliation(s)
- Kiwon Lee
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791,
Korea
| | - Ji Hye Kim
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791,
Korea
| | - Hyockman Kwon
- Department of Bioscience and Biotechnology and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin 449-791,
Korea
| |
Collapse
|
44
|
Abstract
Chromatin, once thought to serve only as a means to package DNA, is now recognized as a major regulator of gene activity. As a result of the wide range of methods used to describe the numerous levels of chromatin organization, the terminology that has emerged to describe these organizational states is often imprecise and sometimes misleading. In this review, we discuss our current understanding of chromatin architecture and propose terms to describe the various biochemical and structural states of chromatin.
Collapse
Affiliation(s)
- Liron Even-Faitelson
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | | | - Zahra Baghestani
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - David P Bazett-Jones
- Program in Genetics and Genome Biology, The Hospital for Sick Children, 686 Bay Street, Toronto, ON, M5G 0A4, Canada.
| |
Collapse
|
45
|
Normanno D, Boudarène L, Dugast-Darzacq C, Chen J, Richter C, Proux F, Bénichou O, Voituriez R, Darzacq X, Dahan M. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat Commun 2015; 6:7357. [PMID: 26151127 PMCID: PMC4507003 DOI: 10.1038/ncomms8357] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/30/2015] [Indexed: 12/17/2022] Open
Abstract
Many cellular functions rely on DNA-binding proteins finding and associating to specific sites in the genome. Yet the mechanisms underlying the target search remain poorly understood, especially in the case of the highly organized mammalian cell nucleus. Using as a model Tet repressors (TetRs) searching for a multi-array locus, we quantitatively analyse the search process in human cells with single-molecule tracking and single-cell protein–DNA association measurements. We find that TetRs explore the nucleus and reach their target by 3D diffusion interspersed with transient interactions with non-cognate sites, consistent with the facilitated diffusion model. Remarkably, nonspecific binding times are broadly distributed, underlining a lack of clear delimitation between specific and nonspecific interactions. However, the search kinetics is not determined by diffusive transport but by the low association rate to nonspecific sites. Altogether, our results provide a comprehensive view of the recruitment dynamics of proteins at specific loci in mammalian cells. During transcription, replication and repair, DNA-binding proteins must find specific interaction sites hidden within a vast excess of genomic DNA. Here the authors use single-molecule tracking to quantitatively determine the contributions of the different processes that underlie target search in human cells.
Collapse
Affiliation(s)
- Davide Normanno
- Laboratoire Kastler Brossel, CNRS UMR 8552, École normale supérieure, Université Pierre et Marie Curie, Paris 6, 46 rue d'Ulm, 75005 Paris, France.,Functional Imaging of Transcription, CNRS UMR 8197, École normale supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, 75005 Paris, France.,Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA.,Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, Paris 6, 26 rue d'Ulm, 75005 Paris, France
| | - Lydia Boudarène
- Laboratoire Kastler Brossel, CNRS UMR 8552, École normale supérieure, Université Pierre et Marie Curie, Paris 6, 46 rue d'Ulm, 75005 Paris, France.,Functional Imaging of Transcription, CNRS UMR 8197, École normale supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, 75005 Paris, France
| | - Claire Dugast-Darzacq
- Functional Imaging of Transcription, CNRS UMR 8197, École normale supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, 75005 Paris, France.,Université Paris-Diderot, Paris 7, 5 rue Thomas Mann, 75013 Paris, France
| | - Jiji Chen
- Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Christian Richter
- Laboratoire Kastler Brossel, CNRS UMR 8552, École normale supérieure, Université Pierre et Marie Curie, Paris 6, 46 rue d'Ulm, 75005 Paris, France
| | - Florence Proux
- Functional Imaging of Transcription, CNRS UMR 8197, École normale supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, 75005 Paris, France
| | - Olivier Bénichou
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris 6, 4 place Jussieu, 75005 Paris, France
| | - Raphaël Voituriez
- Laboratoire de Physique Théorique de la Matière Condensée, CNRS UMR 7600, Université Pierre et Marie Curie, Paris 6, 4 place Jussieu, 75005 Paris, France
| | - Xavier Darzacq
- Functional Imaging of Transcription, CNRS UMR 8197, École normale supérieure, Institut de Biologie de l'ENS, IBENS, 46 rue d'Ulm, 75005 Paris, France.,Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA
| | - Maxime Dahan
- Laboratoire Kastler Brossel, CNRS UMR 8552, École normale supérieure, Université Pierre et Marie Curie, Paris 6, 46 rue d'Ulm, 75005 Paris, France.,Transcription Imaging Consortium, Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia 20147, USA.,Physico-Chimie Curie, Institut Curie, CNRS UMR 168, Université Pierre et Marie Curie, Paris 6, 26 rue d'Ulm, 75005 Paris, France
| |
Collapse
|
46
|
Burman B, Zhang ZZ, Pegoraro G, Lieb JD, Misteli T. Histone modifications predispose genome regions to breakage and translocation. Genes Dev 2015; 29:1393-402. [PMID: 26104467 PMCID: PMC4511214 DOI: 10.1101/gad.262170.115] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/02/2015] [Indexed: 01/13/2023]
Abstract
Burman et al. find enrichment of several histone modifications over clinically relevant translocation-prone genome regions. Experimental modulation of histone marks sensitized genome regions to breakage by endonuclease challenge or irradiation and promoted formation of chromosome translocations. Chromosome translocations are well-established hallmarks of cancer cells and often occur at nonrandom sites in the genome. The molecular features that define recurrent chromosome breakpoints are largely unknown. Using a combination of bioinformatics, biochemical analysis, and cell-based assays, we identify here specific histone modifications as facilitators of chromosome breakage and translocations. We show enrichment of several histone modifications over clinically relevant translocation-prone genome regions. Experimental modulation of histone marks sensitizes genome regions to breakage by endonuclease challenge or irradiation and promotes formation of chromosome translocations of endogenous gene loci. Our results demonstrate that histone modifications predispose genome regions to chromosome breakage and translocations.
Collapse
Affiliation(s)
- Bharat Burman
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA; Program in Cell, Molecular, and Developmental Biology, Tufts University Sackler School of Biomedical Sciences, Boston, Massachusetts 02111, USA
| | - Zhuzhu Z Zhang
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Jason D Lieb
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA; Department of Human Genetics, University of Chicago, Chicago, Illinois 60637, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
47
|
Iezzi S, Fanciulli M. Discovering Che-1/AATF: a new attractive target for cancer therapy. Front Genet 2015; 6:141. [PMID: 25914721 PMCID: PMC4392318 DOI: 10.3389/fgene.2015.00141] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022] Open
Abstract
The transcriptional cofactor Che-1/AATF is currently emerging as an important component of the DNA damage response (DDR) machinery, the complex signaling network that maintains genome integrity and prevents tumorigenesis. Moreover this protein is involved in a wide range of cellular pathways, regulating proliferation and survival in both physiological and pathological conditions. Notably, some evidence indicates that dysregulation of Che-1/AATF levels are associated with the transformation process and elevated levels of Che-1/AATF are required for tumor cell survival. It is for these reasons that Che-1/AATF has been regarded as an attractive, still theoretical, therapeutic target for cancer treatments. In this review, we will provide an updated overview of Che-1/AATF activities, from transcriptional regulation to DDR.
Collapse
Affiliation(s)
- Simona Iezzi
- Laboratory of Epigenetics, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome Italy
| | - Maurizio Fanciulli
- Laboratory of Epigenetics, Molecular Medicine Area, Regina Elena National Cancer Institute, Rome Italy
| |
Collapse
|
48
|
Harr JC, Luperchio TR, Wong X, Cohen E, Wheelan SJ, Reddy KL. Directed targeting of chromatin to the nuclear lamina is mediated by chromatin state and A-type lamins. ACTA ACUST UNITED AC 2015; 208:33-52. [PMID: 25559185 PMCID: PMC4284222 DOI: 10.1083/jcb.201405110] [Citation(s) in RCA: 227] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nuclear organization has been implicated in regulating gene activity. Recently, large developmentally regulated regions of the genome dynamically associated with the nuclear lamina have been identified. However, little is known about how these lamina-associated domains (LADs) are directed to the nuclear lamina. We use our tagged chromosomal insertion site system to identify small sequences from borders of fibroblast-specific variable LADs that are sufficient to target these ectopic sites to the nuclear periphery. We identify YY1 (Ying-Yang1) binding sites as enriched in relocating sequences. Knockdown of YY1 or lamin A/C, but not lamin A, led to a loss of lamina association. In addition, targeted recruitment of YY1 proteins facilitated ectopic LAD formation dependent on histone H3 lysine 27 trimethylation and histone H3 lysine di- and trimethylation. Our results also reveal that endogenous loci appear to be dependent on lamin A/C, YY1, H3K27me3, and H3K9me2/3 for maintenance of lamina-proximal positioning.
Collapse
Affiliation(s)
- Jennifer C Harr
- Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205
| | - Teresa Romeo Luperchio
- Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205
| | - Xianrong Wong
- Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205
| | - Erez Cohen
- Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205
| | - Sarah J Wheelan
- Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205
| | - Karen L Reddy
- Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205 Department of Biological Chemistry, Center for Epigenetics, and Department of Oncology Biostatistics and Bioinformatics, Johns Hopkins University, Baltimore, MD 21205
| |
Collapse
|
49
|
Oh J, Sanders IF, Chen EZ, Li H, Tobias JW, Isett RB, Penubarthi S, Sun H, Baldwin DA, Fraser NW. Genome wide nucleosome mapping for HSV-1 shows nucleosomes are deposited at preferred positions during lytic infection. PLoS One 2015; 10:e0117471. [PMID: 25710170 PMCID: PMC4339549 DOI: 10.1371/journal.pone.0117471] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 12/23/2014] [Indexed: 01/01/2023] Open
Abstract
HSV is a large double stranded DNA virus, capable of causing a variety of diseases from the common cold sore to devastating encephalitis. Although DNA within the HSV virion does not contain any histone protein, within 1 h of infecting a cell and entering its nucleus the viral genome acquires some histone protein (nucleosomes). During lytic infection, partial micrococcal nuclease (MNase) digestion does not give the classic ladder band pattern, seen on digestion of cell DNA or latent viral DNA. However, complete digestion does give a mono-nucleosome band, strongly suggesting that there are some nucleosomes present on the viral genome during the lytic infection, but that they are not evenly positioned, with a 200 bp repeat pattern, like cell DNA. Where then are the nucleosomes positioned? Here we perform HSV-1 genome wide nucleosome mapping, at a time when viral replication is in full swing (6 hr PI), using a microarray consisting of 50mer oligonucleotides, covering the whole viral genome (152 kb). Arrays were probed with MNase-protected fragments of DNA from infected cells. Cells were not treated with crosslinking agents, thus we are only mapping tightly bound nucleosomes. The data show that nucleosome deposition is not random. The distribution of signal on the arrays suggest that nucleosomes are located at preferred positions on the genome, and that there are some positions that are not occupied (nucleosome free regions -NFR or Nucleosome depleted regions -NDR), or occupied at frequency below our limit of detection in the population of genomes. Occupancy of only a fraction of the possible sites may explain the lack of a typical MNase partial digestion band ladder pattern for HSV DNA during lytic infection. On average, DNA encoding Immediate Early (IE), Early (E) and Late (L) genes appear to have a similar density of nucleosomes.
Collapse
Affiliation(s)
- Jaewook Oh
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Iryna F. Sanders
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Eric Z. Chen
- Department of Chemical Pathology, The Chinese University of Hong Kong, Li Ka Shing Institute of Health Sciences, Hong Kong SAR, China
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - John W. Tobias
- Penn Molecular Profiling Facility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - R. Benjamin Isett
- Penn Molecular Profiling Facility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Sindura Penubarthi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
| | - Hao Sun
- Department of Chemical Pathology, The Chinese University of Hong Kong, Li Ka Shing Institute of Health Sciences, Hong Kong SAR, China
| | - Don A. Baldwin
- Pathonomics LLC, Philadelphia, PA, 19104, United States of America
| | - Nigel W. Fraser
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States of America
- * E-mail:
| |
Collapse
|
50
|
Analysis of DNA replication associated chromatin decondensation: in vivo assay for understanding chromatin remodeling mechanisms of selected proteins. Methods Mol Biol 2015; 1288:289-303. [PMID: 25827886 DOI: 10.1007/978-1-4939-2474-5_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Of critical importance to many of the events underlying transcriptional control of gene expression are modifications to core and linker histones that regulate the accessibility of trans-acting factors to the DNA substrate within the context of chromatin. Likewise, control over the initiation of DNA replication, as well as the ability of the replication machinery to proceed during elongation through the multiple levels of chromatin condensation that are likely to be encountered, is known to involve the creation of chromatin accessibility. In the latter case, chromatin access will likely need to be a transient event so as to prevent total genomic unraveling of the chromatin that would be deleterious to cells. While there are many molecular and biochemical approaches in use to study histone changes and their relationship to transcription and chromatin accessibility, few techniques exist that allow a molecular dissection of the events underlying DNA replication control as it pertains to chromatin changes and accessibility. Here, we outline a novel experimental strategy for addressing the ability of specific proteins to induce large-scale chromatin unfolding (decondensation) in vivo upon site-specific targeting to an engineered locus. Our laboratory has used this powerful system in novel ways to directly address the ability of DNA replication proteins to create chromatin accessibility, and have incorporated modifications to the basic approach that allow for a molecular genetic analysis of the mechanisms and associated factors involved in causing chromatin decondensation by a protein of interest. Alternative approaches involving co-expression of other proteins (competitors or stimulators), concurrent drug treatments, and analysis of co-localizing histone modifications are also addressed, all of which are illustrative of the utility of this experimental system for extending basic findings to physiologically relevant mechanisms. Although used by our group to analyze mechanisms underlying DNA replication associated chromatin accessibility, this unique and powerful experimental system has the propensity to be a valuable tool for understanding chromatin remodeling mechanisms orchestrated by other cellular processes such as DNA repair, recombination, mitotic chromosome condensation, or other chromosome dynamics involving chromatin alterations and accessibility.
Collapse
|