1
|
Singh S, Rani H, Sharma N, Behl T, Zahoor I, Makeen HA, Albratty M, Alhazm HA, Aleya L. Targeting multifunctional magnetic nanowires for drug delivery in cancer cell death: an emerging paradigm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:57219-57235. [PMID: 37010687 DOI: 10.1007/s11356-023-26650-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2023] [Indexed: 05/10/2023]
Abstract
Apoptosis, often known as programmed cell death is a mechanism used by numerous species to maintain tissue homeostasis. The process leading to cell death is complicated because it requires the stimulation of caspases. According to several studies, nanowires have important medical benefits, can kill cells by adhering to cancer cells, destroying them, and killing the entire cell using a triple attack that integrates vibration, heat, and drug delivery to trigger apoptosis. The sewage effluents and industrial, fertilizer and organic wastes decomposition can produce elevated levels of chemicals in the environment which may interrupt the cell cycle and activate apoptosis. The purpose of this review is to give a thorough summary of the evidence that is currently available on apoptosis. Current review discussed topics like the morphological and biochemical alterations that occur during apoptosis, as well as the various mechanisms that cause cell death, including the intrinsic (or mitochondrial), extrinsic (or death receptor), and intrinsic endoplasmic reticulum pathway. The apoptosis reduction in cancer development is mediated by (i) an imbalance between pro- and anti-apoptotic proteins, such as members of the B-cell lymphoma-2 (BCL2) family of proteins, tumour protein 53 and inhibitor of apoptosis proteins, (ii) a reduction in caspase activity, and (iii) impaired death receptor signalling. This review does an excellent task of outlining the function of nanowires in both apoptosis induction and targeted drug delivery for cancer cells. A comprehensive summary of the relevance of nanowires synthesised for the purpose of inducing apoptosis in cancer cells has been compiled collectively.
Collapse
Affiliation(s)
- Sukhbir Singh
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hema Rani
- GHG Khalsa College of Pharmacy, Gurusar Sadhar, Ludhiana, 141104, India
| | - Neelam Sharma
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India.
| | - Tapan Behl
- School of Health Sciences &Technology, University of Petroleum and Energy Studies, Bidholi, Uttarakhand, 248007, Dehradun, India
| | - Ishrat Zahoor
- Department of Pharmaceutics, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana, 133207, India
| | - Hafiz A Makeen
- Pharmacy Practice Research Unit, Clinical Pharmacy Department, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Mohammed Albratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Hassan A Alhazm
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan, Saudi Arabia
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| |
Collapse
|
2
|
King LE, Rodriguez-Enriquez R, Pedley R, Mellor CEL, Wang P, Zindy E, White MRH, Brennan K, Gilmore AP. Apoptotic priming is defined by the dynamic exchange of Bcl-2 proteins between mitochondria and cytosol. Cell Death Differ 2022; 29:2262-2274. [PMID: 35585181 PMCID: PMC9613888 DOI: 10.1038/s41418-022-01013-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 11/15/2022] Open
Abstract
Apoptosis is regulated by interactions between the BH3-only and multi-domain Bcl-2 family proteins. These interactions are integrated on the outer mitochondrial membrane (OMM) where they set the threshold for apoptosis, known as mitochondrial priming. However, how mitochondrial priming is controlled at the level of single cells remains unclear. Retrotranslocation of Bcl-XL has been proposed as one mechanism, removing pro-apoptotic Bcl-2 proteins from the OMM, thus reducing priming. Contrary to this view, we now show that Bcl-XL retrotranslocation is inhibited by binding to its BH3-only partners, resulting in accumulation of these protein complexes on mitochondria. We find that Bcl-XL retrotranslocation dynamics are tightly coupled to mitochondrial priming. Quantifying these dynamics indicates the heterogeneity in priming between cells within a population and predicts how they subsequently respond to a pro-apoptotic signal.
Collapse
Affiliation(s)
- Louise E King
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
- Institute for Genetics, CECAD Research Center, University of Cologne, Cologne, Germany
| | - Ricardo Rodriguez-Enriquez
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert Pedley
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Charlotte E L Mellor
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Pengbo Wang
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Cancer Research UK Manchester Institute, Manchester, UK
| | - Egor Zindy
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
- Center for Microscopy and Molecular Imaging (CMMI), Université libre de Bruxelles (ULB), Gosselies, B-6041, Belgium
| | - Michael R H White
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, Manchester Academic Health Sciences Centre, University of Manchester, Manchester, UK
| | - Keith Brennan
- Division of Cancer Sciences, University of Manchester, Manchester, UK
| | - Andrew P Gilmore
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
3
|
Suraweera CD, Banjara S, Hinds MG, Kvansakul M. Metazoans and Intrinsic Apoptosis: An Evolutionary Analysis of the Bcl-2 Family. Int J Mol Sci 2022; 23:ijms23073691. [PMID: 35409052 PMCID: PMC8998228 DOI: 10.3390/ijms23073691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/12/2023] Open
Abstract
The B-cell lymphoma-2 (Bcl-2) family is a group of genes regulating intrinsic apoptosis, a process controlling events such as development, homeostasis and the innate and adaptive immune responses in metazoans. In higher organisms, Bcl-2 proteins coordinate intrinsic apoptosis through their regulation of the integrity of the mitochondrial outer membrane; this function appears to have originated in the basal metazoans. Bcl-2 genes predate the cnidarian-bilaterian split and have been identified in porifera, placozoans and cnidarians but not ctenophores and some nematodes. The Bcl-2 family is composed of two groups of proteins, one with an α-helical Bcl-2 fold that has been identified in porifera, placozoans, cnidarians, and almost all higher bilaterians. The second group of proteins, the BH3-only group, has little sequence conservation and less well-defined structures and is found in cnidarians and most bilaterians, but not porifera or placozoans. Here we examine the evolutionary relationships between Bcl-2 proteins. We show that the structures of the Bcl-2-fold proteins are highly conserved over evolutionary time. Some metazoans such as the urochordate Oikopleura dioica have lost all Bcl-2 family members. This gene loss indicates that Bcl-2 regulated apoptosis is not an absolute requirement in metazoans, a finding mirrored in recent gene deletion studies in mice. Sequence analysis suggests that at least some Bcl-2 proteins lack the ability to bind BH3-only antagonists and therefore potentially have other non-apoptotic functions. By examining the foundations of the Bcl-2 regulated apoptosis, functional relationships may be clarified that allow us to understand the role of specific Bcl-2 proteins in evolution and disease.
Collapse
Affiliation(s)
- Chathura D. Suraweera
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Suresh Banjara
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
| | - Mark G. Hinds
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3052, Australia
- Correspondence: (M.G.H.); (M.K.)
| | - Marc Kvansakul
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia; (C.D.S.); (S.B.)
- Correspondence: (M.G.H.); (M.K.)
| |
Collapse
|
4
|
Roy MJ, Vom A, Okamoto T, Smith BJ, Birkinshaw RW, Yang H, Abdo H, White CA, Segal D, Huang DCS, Baell JB, Colman PM, Czabotar PE, Lessene G. Structure-Guided Development of Potent Benzoylurea Inhibitors of BCL-X L and BCL-2. J Med Chem 2021; 64:5447-5469. [PMID: 33904752 DOI: 10.1021/acs.jmedchem.0c01771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The BCL-2 family of proteins (including the prosurvival proteins BCL-2, BCL-XL, and MCL-1) is an important target for the development of novel anticancer therapeutics. Despite the challenges of targeting protein-protein interaction (PPI) interfaces with small molecules, a number of inhibitors (called BH3 mimetics) have entered the clinic and the BCL-2 inhibitor, ABT-199/venetoclax, is already proving transformative. For BCL-XL, new validated chemical series are desirable. Here, we outline the crystallography-guided development of a structurally distinct series of BCL-XL/BCL-2 inhibitors based on a benzoylurea scaffold, originally proposed as α-helix mimetics. We describe structure-guided exploration of a cryptic "p5" pocket identified in BCL-XL. This work yields novel inhibitors with submicromolar binding, with marked selectivity toward BCL-XL. Extension into the hydrophobic p2 pocket yielded the most potent inhibitor in the series, binding strongly to BCL-XL and BCL-2 (nanomolar-range half-maximal inhibitory concentration (IC50)) and displaying mechanism-based killing in cells engineered to depend on BCL-XL for survival.
Collapse
Affiliation(s)
- Michael J Roy
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Amelia Vom
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Toru Okamoto
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Brian J Smith
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Richard W Birkinshaw
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Hong Yang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Houda Abdo
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Christine A White
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Jonathan B Baell
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Peter M Colman
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Peter E Czabotar
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3050, Australia
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC 3050, Australia
| |
Collapse
|
5
|
BCL-w: apoptotic and non-apoptotic role in health and disease. Cell Death Dis 2020; 11:260. [PMID: 32317622 PMCID: PMC7174325 DOI: 10.1038/s41419-020-2417-0] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 12/17/2022]
Abstract
The BCL-2 family of proteins integrates signals that trigger either cell survival or apoptosis. The balance between pro-survival and pro-apoptotic proteins is important for tissue development and homeostasis, while impaired apoptosis contributes to several pathologies and can be a barrier against effective treatment. BCL-w is an anti-apoptotic protein that shares a sequence similarity with BCL-XL, and exhibits a high conformational flexibility. BCL-w level is controlled by a number of signaling pathways, and the repertoire of transcriptional regulators largely depends on the cellular and developmental context. As only a few disease-relevant genetic alterations of BCL2L2 have been identified, increased levels of BCL-w might be a consequence of abnormal activation of signaling cascades involved in the regulation of BCL-w expression. In addition, BCL-w transcript is a target of a plethora of miRNAs. Besides its originally recognized pro-survival function during spermatogenesis, BCL-w has been envisaged in different types of normal and diseased cells as an anti-apoptotic protein. BCL-w contributes to survival of senescent and drug-resistant cells. Its non-apoptotic role in the promotion of cell migration and invasion has also been elucidated. Growing evidence indicates that a high BCL-w level can be therapeutically relevant in neurodegenerative disorders, neuron dysfunctions and after small intestinal resection, whereas BCL-w inhibition can be beneficial for cancer patients. Although several drugs and natural compounds can bi-directionally affect BCL-w level, agents that selectively target BCL-w are not yet available. This review discusses current knowledge on the role of BCL-w in health, non-cancerous diseases and cancer.
Collapse
|
6
|
The Bcl-2 Family: Ancient Origins, Conserved Structures, and Divergent Mechanisms. Biomolecules 2020; 10:biom10010128. [PMID: 31940915 PMCID: PMC7022251 DOI: 10.3390/biom10010128] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 01/09/2020] [Indexed: 12/13/2022] Open
Abstract
Intrinsic apoptosis, the response to intracellular cell death stimuli, is regulated by the interplay of the B-cell lymphoma 2 (Bcl-2) family and their membrane interactions. Bcl-2 proteins mediate a number of processes including development, homeostasis, autophagy, and innate and adaptive immune responses and their dysregulation underpins a host of diseases including cancer. The Bcl-2 family is characterized by the presence of conserved sequence motifs called Bcl-2 homology motifs, as well as a transmembrane region, which form the interaction sites and intracellular location mechanism, respectively. Bcl-2 proteins have been recognized in the earliest metazoans including Porifera (sponges), Placozoans, and Cnidarians (e.g., Hydra). A number of viruses have gained Bcl-2 homologs and subvert innate immunity and cellular apoptosis for their replication, but they frequently have very different sequences to their host Bcl-2 analogs. Though most mechanisms of apoptosis initiation converge on activation of caspases that destroy the cell from within, the numerous gene insertions, deletions, and duplications during evolution have led to a divergence in mechanisms of intrinsic apoptosis. Currently, the action of the Bcl-2 family is best understood in vertebrates and nematodes but new insights are emerging from evolutionarily earlier organisms. This review focuses on the mechanisms underpinning the activity of Bcl-2 proteins including their structures and interactions, and how they have changed over the course of evolution.
Collapse
|
7
|
Hantusch A, Rehm M, Brunner T. Counting on Death – Quantitative aspects of Bcl‐2 family regulation. FEBS J 2018; 285:4124-4138. [DOI: 10.1111/febs.14516] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 04/27/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Annika Hantusch
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| | - Markus Rehm
- Department of Physiology & Medical Physics Royal College of Surgeons in Ireland Dublin 2 Ireland
- Centre for Systems Medicine Royal College of Surgeons in Ireland Dublin 2 Ireland
- Institute of Cell Biology and Immunology University of Stuttgart Germany
- Stuttgart Research Center Systems Biology University of Stuttgart Germany
| | - Thomas Brunner
- Department of Biology Chair of Biochemical Pharmacology University of Konstanz Germany
- Konstanz Research School Chemical Biology University of Konstanz Germany
| |
Collapse
|
8
|
Chen Y, Wang J, Zhang J, Wang W. Binding modes of Bcl-2 homology 3 (BH3) peptides with anti-apoptotic protein A1 and redesign of peptide inhibitors: a computational study. J Biomol Struct Dyn 2017; 36:3967-3977. [DOI: 10.1080/07391102.2017.1404933] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yantao Chen
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jun Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Jian Zhang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- National Laboratory of Solid State Microstructure, Department of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
9
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
10
|
Anasir MI, Caria S, Skinner MA, Kvansakul M. Structural basis of apoptosis inhibition by the fowlpox virus protein FPV039. J Biol Chem 2017; 292:9010-9021. [PMID: 28411240 DOI: 10.1074/jbc.m116.768879] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 04/13/2017] [Indexed: 11/06/2022] Open
Abstract
Programmed cell death or apoptosis of infected host cells is an important defense mechanism in response to viral infections. This process is regulated by proapoptotic and prosurvival members of the B-cell lymphoma 2 (Bcl-2) protein family. To counter premature death of a virus-infected cell, poxviruses use a range of different molecular strategies including the mimicry of prosurvival Bcl-2 proteins. One such viral prosurvival protein is the fowlpox virus protein FPV039, which is a potent apoptosis inhibitor, but the precise molecular mechanism by which FPV039 inhibits apoptosis is unknown. To understand how fowlpox virus inhibits apoptosis, we examined FPV039 using isothermal titration calorimetry, small-angle X-ray scattering, and X-ray crystallography. Here, we report that the fowlpox virus prosurvival protein FPV039 promiscuously binds to cellular proapoptotic Bcl-2 and engages all major proapoptotic Bcl-2 proteins. Unlike other identified viral Bcl-2 proteins to date, FPV039 engaged with cellular proapoptotic Bcl-2 with affinities comparable with those of Bcl-2's endogenous cellular counterparts. Structural studies revealed that FPV039 adopts the conserved Bcl-2 fold observed in cellular prosurvival Bcl-2 proteins and closely mimics the structure of the prosurvival Bcl-2 family protein Mcl-1. Our findings suggest that FPV039 is a pan-Bcl-2 protein inhibitor that can engage all host BH3-only proteins, as well as Bcl-2-associated X, apoptosis regulator (Bax) and Bcl-2 antagonist/killer (Bak) proteins to inhibit premature apoptosis of an infected host cell. This work therefore provides a mechanistic platform to better understand FPV039-mediated apoptosis inhibition.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Sofia Caria
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| | - Michael A Skinner
- Section of Virology, Faculty of Medicine, Imperial College London, London W2 1PZ, United Kingdom
| | - Marc Kvansakul
- From the Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia and
| |
Collapse
|
11
|
A Small-Molecule Inhibitor of Bax and Bak Oligomerization Prevents Genotoxic Cell Death and Promotes Neuroprotection. Cell Chem Biol 2017; 24:493-506.e5. [PMID: 28392146 DOI: 10.1016/j.chembiol.2017.03.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 12/29/2016] [Accepted: 03/13/2017] [Indexed: 11/24/2022]
Abstract
Aberrant apoptosis can lead to acute or chronic degenerative diseases. Mitochondrial outer membrane permeabilization (MOMP) triggered by the oligomerization of the Bcl-2 family proteins Bax/Bak is an irreversible step leading to execution of apoptosis. Here, we describe the discovery of small-molecule inhibitors of Bax/Bak oligomerization that prevent MOMP. We demonstrate that these molecules disrupt multiple, but not all, interactions between Bax dimer interfaces thereby interfering with the formation of higher-order oligomers in the MOM, but not recruitment of Bax to the MOM. Small-molecule inhibition of Bax/Bak oligomerization allowed cells to evade apoptotic stimuli and rescued neurons from death after excitotoxicity, demonstrating that oligomerization of Bax is essential for MOMP. Our discovery of small-molecule Bax/Bak inhibitors provides novel tools for the investigation of the mechanisms leading to MOMP and will ultimately facilitate development of compounds inhibiting Bax/Bak in acute and chronic degenerative diseases.
Collapse
|
12
|
Maes ME, Schlamp CL, Nickells RW. BAX to basics: How the BCL2 gene family controls the death of retinal ganglion cells. Prog Retin Eye Res 2017; 57:1-25. [PMID: 28064040 DOI: 10.1016/j.preteyeres.2017.01.002] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/22/2016] [Accepted: 01/03/2017] [Indexed: 12/19/2022]
Abstract
Retinal ganglion cell (RGC) death is the principal consequence of injury to the optic nerve. For several decades, we have understood that the RGC death process was executed by apoptosis, suggesting that there may be ways to therapeutically intervene in this cell death program and provide a more direct treatment to the cells and tissues affected in diseases like glaucoma. A major part of this endeavor has been to elucidate the molecular biological pathways active in RGCs from the point of axonal injury to the point of irreversible cell death. A major component of this process is the complex interaction of members of the BCL2 gene family. Three distinct family members of proteins orchestrate the most critical junction in the apoptotic program of RGCs, culminating in the activation of pro-apoptotic BAX. Once active, BAX causes irreparable damage to mitochondria, while precipitating downstream events that finish off a dying ganglion cell. This review is divided into two major parts. First, we summarize the extent of knowledge of how BCL2 gene family proteins interact to facilitate the activation and function of BAX. This area of investigation has rapidly changed over the last few years and has yielded a dramatically different mechanistic understanding of how the intrinsic apoptotic program is run in mammalian cells. Second, we provided a comprehensive analysis of nearly two decades of investigation of the role of BAX in the process of RGC death, much of which has provided many important insights into the overall pathophysiology of diseases like glaucoma.
Collapse
Affiliation(s)
- Margaret E Maes
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Cassandra L Schlamp
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Robert W Nickells
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
13
|
Miao Y, Cui L, Chen Z, Zhang L. Gene expression profiling of DMU-212-induced apoptosis and anti-angiogenesis in vascular endothelial cells. PHARMACEUTICAL BIOLOGY 2015; 54:660-666. [PMID: 26428916 DOI: 10.3109/13880209.2015.1071414] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
CONTEXT trans-3,4,5,4'-Tetramethoxystilbene (DMU-212), an derivative of resveratrol, shows strong antiproliferative activities against many cancer cells. In our previous study, we demonstrated that DMU-212 possesses potent proapoptosis and antiangiogenesis effects on vascular endothelial cells (VECs), which made it a promising agent for the treatment of angiogenesis-related diseases. OBJECTIVE We studied the gene expression profile of DMU-212-treated VECs to gain further insight into the mechanisms by which DMU-212 exerts its potent pro-apoptosis and antiangiogenesis effects. MATERIALS AND METHODS The potential changes in the gene expression of VECs incubated with DMU-212 were identified and analyzed using the Affymetrix HG-U133 Plus 1.0 array. In addition, the gene expression profile was validated by quantitative real-time PCR (qRT-PCR) analysis for seven of those altered genes. RESULTS AND CONCLUSION DMU-212 was found to regulate a diverse range of genes, including cytokines (IL8, selectin E, MPZL2, EGR1, CCL20, ITGB8, CXCL1, VCAM1, KITLG, and AREG), transport proteins (TRPC4, SLC41A2, SLC17A5, and CREB5), metabolism (CYP1B1, CYP1A1, PDK4, CSNK1G1, MVK, TCEB3C, and CDKN3), enzymes (RAB23, SPHK1, CHSY3, PLAU, PLA2G4C, and MMP10), and genes involved in signal transduction (TMEM217, DUSP8, and SPRY4), chromosome organization (HIST1H2BH and GEM), cell migration and angiogenesis (ERRFI1, HBEGF, and NEDD9), and apoptosis (TNFSF15, TNFRSF9, CD274, BCL2L11, BIRC3, TNFAIP3, and TIFA), as well as other genes with unknown function (PGM5P2, SNORD1142, LOC151760, KRTAP5-2, C1orf110, SNORA14A, MIR31, C2CD4B, SCARNA4, C2orf66, SC4MOL, LOC644714, and LOC283392). This is the first application of microarray technique to investigate and analyze the profile of genes regulated by DMU-212 in VECs. Our results lead to an increased understanding of the signaling pathways involved in DMU-212-induced apoptosis and antiangiogenesis.
Collapse
Affiliation(s)
- YiMing Miao
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| | - LiuQing Cui
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| | - ZhiQiang Chen
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| | - Lu Zhang
- a College of Bioengineering, Henan University of Technology , Zhengzhou , China
| |
Collapse
|
14
|
Kvansakul M, Hinds MG. The Bcl-2 family: structures, interactions and targets for drug discovery. Apoptosis 2015; 20:136-50. [PMID: 25398535 DOI: 10.1007/s10495-014-1051-7] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Two phylogenetically and structurally distinct groups of proteins regulate stress induced intrinsic apoptosis, the programmed disassembly of cells. Together they form the B cell lymphoma-2 (Bcl-2) family. Bcl-2 proteins appeared early in metazoan evolution and are identified by the presence of up to four short conserved sequence blocks known as Bcl-2 homology (BH) motifs, or domains. The simple BH3-only proteins bear only a BH3-motif and are intrinsically disordered proteins and antagonize or activate the other group, the multi-motif Bcl-2 proteins that have up to four BH motifs, BH1-BH4. Multi-motif Bcl-2 proteins are either pro-survival or pro-apoptotic in action and have remarkably similar α-helical bundle structures that provide a binding groove formed from the BH1, BH2, and BH3-motifs for their BH3-bearing antagonists. In mammals a network of interactions between Bcl-2 members regulates mitochondrial outer membrane permeability (MOMP) and efflux of cytochrome c and other death inducing factors from mitochondria to initiate the apoptotic caspase cascade, but the molecular events leading to MOMP are uncertain. Dysregulation of the Bcl-2 family occurs in many diseases and pathogenic viruses have assimilated pro-survival Bcl-2 proteins to evade immune responses. Their role in disease has made the Bcl-2 family the focus of drug design attempts and clinical trials are showing promise for 'BH3-mimics', drugs that mimic the ability of BH3-only proteins to neutralize selected pro-survival proteins to induce cell death in tumor cells. This review focuses on the structural biology of Bcl-2 family proteins, their interactions and attempts to harness them as targets for drug design.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, 3086, Australia,
| | | |
Collapse
|
15
|
Chi X, Kale J, Leber B, Andrews DW. Regulating cell death at, on, and in membranes. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1843:2100-13. [PMID: 24927885 DOI: 10.1016/j.bbamcr.2014.06.002] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/29/2014] [Accepted: 06/03/2014] [Indexed: 11/17/2022]
Abstract
Bcl-2 family proteins are central regulators of apoptosis. Various family members are located in the cytoplasm, endoplasmic reticulum, and mitochondrial outer membrane in healthy cells. However during apoptosis most of the interactions between family members that determine the fate of the cell occur at the membranes of intracellular organelles. It has become evident that interactions with membranes play an active role in the regulation of Bcl-2 family protein interactions. Here we provide an overview of various models proposed to explain how the Bcl-2 family regulates apoptosis and discuss how membrane binding affects the structure and function of each of the three categories of Bcl-2 proteins (pro-apoptotic, pore-forming, and anti-apoptotic). We also examine how the Bcl-2 family regulates other aspects of mitochondrial and ER physiology relevant to cell death.
Collapse
Affiliation(s)
- Xiaoke Chi
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Justin Kale
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Brian Leber
- Department of Medicine, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - David W Andrews
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario M4N 3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Stadler LKJ, Tomlinson DC, Lee T, Knowles MA, Ko Ferrigno P. The use of a neutral peptide aptamer scaffold to anchor BH3 peptides constitutes a viable approach to studying their function. Cell Death Dis 2014; 5:e1037. [PMID: 24481451 PMCID: PMC4040713 DOI: 10.1038/cddis.2013.564] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 11/11/2022]
Abstract
The B-cell CLL/lymphoma-2 (Bcl-2) family of proteins are important regulators of the intrinsic pathway of apoptosis, and their interactions, driven by Bcl-2 homology (BH) domains, are of great interest in cancer research. Particularly, the BH3 domain is of clinical relevance, as it promotes apoptosis through activation of Bcl-2-associated x protein (Bax) and Bcl-2 antagonist killer (Bak), as well as by antagonising the anti-apoptotic Bcl-2 family members. Although investigated extensively in vitro, the study of the BH3 domain alone inside cells is more problematic because of diminished secondary structure of the unconstrained peptide and a lack of stability. In this study, we report the successful use of a novel peptide aptamer scaffold – Stefin A quadruple mutant – to anchor and present the BH3 domains from Bcl-2-interacting mediator of cell death (Bim), p53 upregulated modulator of apoptosis (Puma), Bcl-2-associated death promoter (Bad) and Noxa, and demonstrate its usefulness in the study of the BH3 domains in vivo. When expressed intracellularly, anchored BH3 peptides exhibit much the same binding specificities previously established in vitro, however, we find that, at endogenous expression levels, Bcl-2 does not bind to any of the anchored BH3 domains tested. Nonetheless, when expressed inside cells the anchored PUMA and Bim BH3 α-helices powerfully induce cell death in the absence of efficient targeting to the mitochondrial membrane, whereas the Noxa helix requires a membrane insertion domain in order to kill Mcl-1-dependent myeloma cells. Finally, the binding of the Bim BH3 peptide to Bax was the only interaction with a pro-apoptotic effector protein observed in this study.
Collapse
Affiliation(s)
- L K J Stadler
- 1] Section of Experimental Therapeutics, Leeds LS9 7TF, UK [2] Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - D C Tomlinson
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - T Lee
- Section of Experimental Therapeutics, Leeds LS9 7TF, UK
| | - M A Knowles
- Section of Experimental Oncology, Leeds Institute of Molecular Medicine, St James's University Hospital, Beckett Street, Leeds LS9 7TF, UK
| | - P Ko Ferrigno
- Section of Experimental Therapeutics, Leeds LS9 7TF, UK
| |
Collapse
|
17
|
Abstract
B-cell lymphoma-2 (Bcl-2) homology-3 (BH3)-only proteins are considered members of the Bcl-2 family, though they bear little sequence or structural identity with the multi-BH motif prosurvival or proapoptotic Bcl-2 proteins like Bcl-2 or Bax. They are better considered a separate phylogenetic entity. In combination, results from biophysical, biochemical, cell biological, and animal studies in conjunction with structural investigations have elucidated the function and mechanism of action of these proteins. Either by antagonizing prosurvival Bcl-2 proteins or directly activating proapoptotic Bcl-2 proteins (Bax or Bak) they initiate apoptosis. BH3-only proteins are intrinsically disordered and fold and bind into a groove provided by their cognate receptor Bcl-2 family proteins. Our detailed molecular understanding of BH3-only protein action has aided the development of novel chemical entities that initiate cell death by mimicking the properties of BH3-only proteins.
Collapse
Affiliation(s)
- Marc Kvansakul
- La Trobe Institute for Medical Science, La Trobe University, Bundoora, Victoria, Australia.
| | - Mark G Hinds
- School of Chemistry, The University of Melbourne, Parkville, Victoria, Australia; Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
18
|
Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 2013; 21:196-205. [PMID: 24162660 DOI: 10.1038/cdd.2013.139] [Citation(s) in RCA: 315] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022] Open
Abstract
The central role of the Bcl-2 family in regulating apoptotic cell death was first identified in the 1980s. Since then, significant in-roads have been made in identifying the multiple members of this family, characterizing their form and function and understanding how their interactions determine whether a cell lives or dies. In this review we focus on the recent progress made in characterizing the proapoptotic Bcl-2 family members, Bax and Bak. This progress has resolved longstanding controversies, but has also challenged established theories in the apoptosis field. We will discuss different models of how these two proteins become activated and different 'modes' by which they are inhibited by other Bcl-2 family members. We will also discuss novel conformation changes leading to Bak and Bax oligomerization and speculate how these oligomers might permeabilize the mitochondrial outer membrane.
Collapse
|
19
|
Meller R, Galvan L, Lan JQ, Han E, Bauer J, Morris KT. Programmed cell death in a patient with hepatocellular carcinoma treated with yttrium-90 and doxorubicin-loaded beads. J Vasc Interv Radiol 2013; 24:1537-42.e2. [PMID: 24070510 DOI: 10.1016/j.jvir.2013.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/28/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022] Open
Abstract
Molecular analysis of apoptosis and autophagy pathways was performed from a single hepatocellular carcinoma treated with yttrium-90 and doxorubicin-loaded beads before resection and compared with normal liver tissue from the margins. Both bead formulations activated apoptosis-associated mechanisms and increased autophagy pathway protein levels. Increased DNA fragmentation and autophagy markers were seen in tumor treated with drug-eluting beads compared with yttrium-90-treated tumor. These results suggest that both microembolic therapies activate cell death signaling, although differences in apoptosis and autophagy pathways were seen in this patient. Knowledge of mechanisms of action for each treatment may enhance future therapeutic strategies.
Collapse
Affiliation(s)
- Robert Meller
- Robert S. Dow Neurobiology Laboratories, Portland, Oregon; Cancer Research Laboratories, Portland, Oregon; Department of Neurobiology, Morehouse School of Medicine, Atlanta, Georgia
| | | | | | | | | | | |
Collapse
|
20
|
Beaumont TE, Shekhar TM, Kaur L, Pantaki-Eimany D, Kvansakul M, Hawkins CJ. Yeast techniques for modeling drugs targeting Bcl-2 and caspase family members. Cell Death Dis 2013; 4:e619. [PMID: 23640461 PMCID: PMC3674352 DOI: 10.1038/cddis.2013.143] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Development of drugs targeting Bcl-2 relatives and caspases, for treating diseases including cancer and inflammatory disorders, often involves measuring interactions with recombinant target molecules, and/or monitoring cancer cell killing in vitro. Here, we present yeast-based methods for evaluating drug-mediated inhibition of Bcl-2 relatives or caspases. Active Bax and caspases kill Saccharomyces cerevisiae, and pro-survival Bcl-2 proteins can inhibit Bax-induced yeast death. By measuring the growth or adenosine triphosphate content of transformants co-expressing Bax with pro-survival Bcl-2 relatives, we found that the Bcl-2 antagonist drugs ABT-737 or ABT-263 abolished Bcl-2 or Bcl-xL function and reduced Bcl-w activity, but failed to inhibit Mcl-1, A1 or the poxvirus orthologs DPV022 and SPPV14. Using this technique, we also demonstrated that adenoviral E1B19K was resistant to these agents. The caspase inhibitor Q-VD-OPh suppressed yeast death induced by caspases 1 and 3. Yeast engineered to express human apoptotic regulators enable simple, automatable assessment of the activity and specificity of candidate drugs targeting Bcl-2 relatives or caspases.
Collapse
Affiliation(s)
- T E Beaumont
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
21
|
Shamas-Din A, Kale J, Leber B, Andrews DW. Mechanisms of action of Bcl-2 family proteins. Cold Spring Harb Perspect Biol 2013; 5:a008714. [PMID: 23545417 DOI: 10.1101/cshperspect.a008714] [Citation(s) in RCA: 521] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Bcl-2 family of proteins controls a critical step in commitment to apoptosis by regulating permeabilization of the mitochondrial outer membrane (MOM). The family is divided into three classes: multiregion proapoptotic proteins that directly permeabilize the MOM; BH3 proteins that directly or indirectly activate the pore-forming class members; and the antiapoptotic proteins that inhibit this process at several steps. Different experimental approaches have led to several models, each proposed to explain the interactions between Bcl-2 family proteins. The discovery that many of these interactions occur at or in membranes as well as in the cytoplasm, and are governed by the concentrations and relative binding affinities of the proteins, provides a new basis for rationalizing these models. Furthermore, these dynamic interactions cause conformational changes in the Bcl-2 proteins that modulate their apoptotic function, providing additional potential modes of regulation.
Collapse
Affiliation(s)
- Aisha Shamas-Din
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S4K1, Canada
| | | | | | | |
Collapse
|
22
|
Anastasio TJ. Exploring the contribution of estrogen to amyloid-Beta regulation: a novel multifactorial computational modeling approach. Front Pharmacol 2013; 4:16. [PMID: 23459573 PMCID: PMC3585711 DOI: 10.3389/fphar.2013.00016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 01/31/2013] [Indexed: 11/23/2022] Open
Abstract
According to the amyloid hypothesis, Alzheimer Disease results from the accumulation beyond normative levels of the peptide amyloid-β (Aβ). Perhaps because of its pathological potential, Aβ and the enzymes that produce it are heavily regulated by the molecular interactions occurring within cells, including neurons. This regulation involves a highly complex system of intertwined normative and pathological processes, and the sex hormone estrogen contributes to it by influencing the Aβ-regulation system at many different points. Owing to its high complexity, Aβ regulation and the contribution of estrogen are very difficult to reason about. This report describes a computational model of the contribution of estrogen to Aβ regulation that provides new insights and generates experimentally testable and therapeutically relevant predictions. The computational model is written in the declarative programming language known as Maude, which allows not only simulation but also analysis of the system using temporal-logic. The model illustrates how the various effects of estrogen could work together to reduce Aβ levels, or prevent them from rising, in the presence of pathological triggers. The model predicts that estrogen itself should be more effective in reducing Aβ than agonists of estrogen receptor α (ERα), and that agonists of ERβ should be ineffective. The model shows how estrogen itself could dramatically reduce Aβ, and predicts that non-steroidal anti-inflammatory drugs should provide a small additional benefit. It also predicts that certain compounds, but not others, could augment the reduction in Aβ due to estrogen. The model is intended as a starting point for a computational/experimental interaction in which model predictions are tested experimentally, the results are used to confirm, correct, and expand the model, new predictions are generated, and the process continues, producing a model of ever increasing explanatory power and predictive value.
Collapse
Affiliation(s)
- Thomas J Anastasio
- Computational Neurobiology Laboratory, Beckman Institute, Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign Urbana, IL, USA
| |
Collapse
|
23
|
Abstract
Proapoptotic B-cell lymphoma 2 (BCL-2) antagonist/killer (BAK) and BCL-2-associated X (BAX) form toxic mitochondrial pores in response to cellular stress. Whereas BAX resides predominantly in the cytosol, BAK is constitutively localized to the outer mitochondrial membrane. Select BCL-2 homology domain 3 (BH3) helices activate BAX directly by engaging an α1/α6 trigger site. The inability to express full-length BAK has hampered full dissection of its activation mechanism. Here, we report the production of full-length, monomeric BAK by mutagenesis-based solubilization of its C-terminal α-helical surface. Recombinant BAK autotranslocates to mitochondria but only releases cytochrome c upon BH3 triggering. A direct activation mechanism was explicitly demonstrated using a liposomal system that recapitulates BAK-mediated release upon addition of BH3 ligands. Photoreactive BH3 helices mapped both triggering and autointeractions to the canonical BH3-binding pocket of BAK, whereas the same ligands crosslinked to the α1/α6 site of BAX. Thus, activation of both BAK and BAX is initiated by direct BH3-interaction but at distinct trigger sites. These structural and biochemical insights provide opportunities for developing proapoptotic agents that activate the death pathway through direct but differential engagement of BAK and BAX.
Collapse
|
24
|
Rautureau GJP, Yabal M, Yang H, Huang DCS, Kvansakul M, Hinds MG. The restricted binding repertoire of Bcl-B leaves Bim as the universal BH3-only prosurvival Bcl-2 protein antagonist. Cell Death Dis 2012; 3:e443. [PMID: 23235460 PMCID: PMC3542614 DOI: 10.1038/cddis.2012.178] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
B-cell lymphoma-2 (Bcl-2) proteins mediate intrinsic-, or mitochondrial-, initiated apoptosis. We have investigated the structure and function of the least characterized Bcl-2 family member, Bcl-B, solving the crystal structure of a Bcl-B:Bim complex to 1.9 Å resolution. Bcl-B is distinguished from other Bcl-2 family members through an insertion of an unstructured loop between helices α5 and α6. Probing Bcl-B interactions with Bcl-2 homology (BH)3 motifs using a combination of biophysical- and cell-based assays revealed a unique BH3-only protein binding profile. Bcl-B has high-affinity interactions with Bim and Bik only. Our results not only delineate the mode of action of Bcl-B but also complete our understanding of the specific interactions between BH3-only proteins and their prosurvival Bcl-2 counterparts. Notably, we conclude that Bim is the universal prosurvival antagonist as no other BH3-only protein binds all six prosurvival proteins and that Mcl-1 and Bcl-xL form a distinct prosurvival dyad.
Collapse
Affiliation(s)
- G J P Rautureau
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Espada L, Meo-Evoli N, Sancho P, Real S, Fabregat I, Ambrosio S, Tauler A. ROS production is essential for the apoptotic function of E2F1 in pheochromocytoma and neuroblastoma cell lines. PLoS One 2012; 7:e51544. [PMID: 23251571 PMCID: PMC3520901 DOI: 10.1371/journal.pone.0051544] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 11/02/2012] [Indexed: 12/04/2022] Open
Abstract
In this study we demonstrate that accumulation of reactive oxygen species (ROS) is essential for E2F1 mediated apoptosis in ER-E2F1 PC12 pheochromocytoma, and SH-SY5Y and SK-N-JD neuroblastoma stable cell lines. In these cells, the ER-E2F1 fusion protein is expressed in the cytosol; the addition of 4-hydroxytamoxifen (OHT) induces its translocation to the nucleus and activation of E2F1target genes. Previously we demonstrated that, in ER-E2F1 PC12 cells, OHT treatment induced apoptosis through activation of caspase-3. Here we show that caspase-8 activity did not change upon treatment with OHT. Moreover, over-expression of Bcl-xL arrested OHT-induced apoptosis; by contrast, over-expression of c-FLIP, did not have any effect on OHT-induced apoptosis. OHT addition induces BimL expression, its translocation to mitochondria and activation of Bax, which is paralleled by diminished mitochondrial enrichment of Bcl-xL. Treatment with a Bax-inhibitory peptide reduced OHT-induced apoptosis. These results point out the essential role of mitochondria on the apoptotic process driven by E2F1. ROS accumulation followed E2F1 induction and treatment with the antioxidant N-acetylcysteine, inhibited E2F1-induced Bax translocation to mitochondria and subsequent apoptosis. The role of ROS in mediating OHT-induced apoptosis was also studied in two neuroblastoma cell lines, SH-SY5Y and SK-N-JD. In SH-SY5Y cells, activation of E2F1 by the addition of OHT induced ROS production and apoptosis, whereas over-expression of E2F1 in SK-N-JD cells failed to induce either response. Transcriptional profiling revealed that many of the genes responsible for scavenging ROS were down-regulated following E2F1-induction in SH-SY5Y, but not in SK-N-JD cells. Finally, inhibition of GSK3β blocked ROS production, Bax activation and the down regulation of ROS scavenging genes. These findings provide an explanation for the apparent contradictory role of E2F1 as an apoptotic agent versus a cell cycle activator.
Collapse
Affiliation(s)
- Lilia Espada
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Nathalie Meo-Evoli
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
- Cancer and Metabolism Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
| | - Patricia Sancho
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
| | - Sebastian Real
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
| | - Isabel Fabregat
- Biological Clues of the Invasive and Metastatic Phenotype Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Facultat de Medicina, Campus Universitaride Bellvitge - IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Santiago Ambrosio
- Unitat de Bioquímica, Departament de Ciències Fisiològiques II, Facultat de Medicina, Campus Universitaride Bellvitge - IDIBELL, Universitat de Barcelona, L’Hospitalet de Llobregat, Catalunya, Spain
| | - Albert Tauler
- Departament de Bioquímica i Biologia Molecular, Facultat de Farmàcia. Universitat de Barcelona, Barcelona, Catalunya, Spain
- Cancer and Metabolism Group, Bellvitge Biomedical Research Institute (IDIBELL), L’Hospitalet de Llobregat, Catalunya, Spain
- * E-mail:
| |
Collapse
|
26
|
Ottina E, Tischner D, Herold MJ, Villunger A. A1/Bfl-1 in leukocyte development and cell death. Exp Cell Res 2012; 318:1291-303. [PMID: 22342458 PMCID: PMC3405526 DOI: 10.1016/j.yexcr.2012.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
The function of the anti-apoptotic Bcl-2 family member Bcl2a1/Bfl-1/A1 is poorly understood due to the lack of appropriate loss-of-function mouse models and redundant effects with other Bcl-2 pro-survival proteins upon overexpression. Expression analysis of A1 suggests predominant roles in leukocyte development, their survival upon viral or bacterial infection, as well as during allergic reactions. In addition, A1 has been implicated in autoimmunity and the pathology and therapy resistance of hematological as well as solid tumors that may aberrantly express this protein. In this review, we aim to summarize current knowledge on A1 biology, focusing on its role in the immune system and compare it to that of other pro-survival Bcl-2 proteins.
Collapse
Affiliation(s)
- Eleonora Ottina
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- Corresponding author at: Division of Developmental Immunology, BIOCENTER, Innsbruck Medical University, A-6020 Innsbruck, Austria. Fax: + 43 512 9003 73960.
| |
Collapse
|
27
|
Lee EF, Fairlie WD. Structural biology of the intrinsic cell death pathway: what do we know and what is missing? Comput Struct Biotechnol J 2012; 1:e201204007. [PMID: 24688636 PMCID: PMC3962096 DOI: 10.5936/csbj.201204007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 04/01/2012] [Accepted: 04/05/2012] [Indexed: 11/22/2022] Open
Affiliation(s)
- Erinna F Lee
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - W Douglas Fairlie
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia and Department of Medical Biology, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
28
|
Bhat V, McDonald CB, Mikles DC, Deegan BJ, Seldeen KL, Bates ML, Farooq A. Ligand binding and membrane insertion compete with oligomerization of the BclXL apoptotic repressor. J Mol Biol 2011; 416:57-77. [PMID: 22197371 DOI: 10.1016/j.jmb.2011.12.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 12/05/2011] [Accepted: 12/07/2011] [Indexed: 01/19/2023]
Abstract
B-cell lymphoma extra large (BclXL) apoptotic repressor plays a central role in determining the fate of cells to live or die during physiological processes such as embryonic development and tissue homeostasis. Herein, using a myriad of biophysical techniques, we provide evidence that ligand binding and membrane insertion compete with oligomerization of BclXL in solution. Of particular importance is the observation that such oligomerization is driven by the intermolecular binding of its C-terminal transmembrane (TM) domain to the canonical hydrophobic groove in a domain-swapped trans fashion, whereby the TM domain of one monomer occupies the canonical hydrophobic groove within the other monomer and vice versa. Binding of BH3 ligands to the canonical hydrophobic groove displaces the TM domain in a competitive manner, allowing BclXL to dissociate into monomers upon hetero-association. Remarkably, spontaneous insertion of BclXL into DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine) bicelles results in a dramatic conformational change such that it can no longer recognize the BH3 ligands in what has come to be known as the "hit-and-run" mechanism. Collectively, our data suggest that oligomerization of a key apoptotic repressor serves as an allosteric switch that fine-tunes its ligand binding and membrane insertion pertinent to the regulation of apoptotic machinery.
Collapse
Affiliation(s)
- Vikas Bhat
- Department of Biochemistry and Molecular Biology and USylvester Braman Family Breast Cancer Institute, Leonard Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Crystal Structure of a BCL-W Domain-Swapped Dimer: Implications for the Function of BCL-2 Family Proteins. Structure 2011; 19:1467-76. [DOI: 10.1016/j.str.2011.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 07/08/2011] [Accepted: 07/24/2011] [Indexed: 11/20/2022]
|
30
|
Bahar MW, Graham SC, Chen RAJ, Cooray S, Smith GL, Stuart DI, Grimes JM. How vaccinia virus has evolved to subvert the host immune response. J Struct Biol 2011; 175:127-34. [PMID: 21419849 PMCID: PMC3477310 DOI: 10.1016/j.jsb.2011.03.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 01/06/2023]
Abstract
Viruses are obligate intracellular parasites and are some of the most rapidly evolving and diverse pathogens encountered by the host immune system. Large complicated viruses, such as poxviruses, have evolved a plethora of proteins to disrupt host immune signalling in their battle against immune surveillance. Recent X-ray crystallographic analysis of these viral immunomodulators has helped form an emerging picture of the molecular details of virus-host interactions. In this review we consider some of these immune evasion strategies as they apply to poxviruses, from a structural perspective, with specific examples from the European SPINE2-Complexes initiative. Structures of poxvirus immunomodulators reveal the capacity of viruses to mimic and compete against the host immune system, using a diverse range of structural folds that are unique or acquired from their hosts with both enhanced and unexpectedly divergent functions.
Collapse
Key Words
- bcl-2, b-cell lymphoma-2
- cpxv, cowpox virus
- dsdna, double-stranded dna
- ectv, ectromelia virus
- gags, glycosaminoglycans
- gpcrs, g-protein coupled receptors
- ifn, interferon
- ig, immunoglobulin
- pdb, protein data bank
- rpxv, rabbitpox virus
- r.m.s.d., root mean square deviation
- spine, structural proteomics in europe
- tlr, toll-like receptors
- tnf, tumour necrosis factor
- tnfr, tumour necrosis factor receptor
- vacv, vaccinia virus
- vcci, viral cc-chemokine inhibitor
- eif2α, eukaryotic translation initiation factor 2 alpha
- traf6, tnf-receptor-associated factor 6
- iraks, il-1 receptor associated kinases
- ikk, iκb kinase
- structural virology
- innate immunity
- cell signalling
- x-ray crystallography
- surface receptors
Collapse
Affiliation(s)
- Mohammad W. Bahar
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Stephen C. Graham
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
| | - Ron A.-J. Chen
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Samantha Cooray
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - Geoffrey L. Smith
- Department of Virology, Faculty of Medicine, Imperial College London, St. Mary’s Campus, Norfolk Place, London W2 1PG, United Kingdom
| | - David I. Stuart
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire 0X11 0DE, United Kingdom
| | - Jonathan M. Grimes
- Division of Structural Biology and Oxford Protein Production Facility, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, United Kingdom
- Science Division, Diamond Light Source Ltd., Diamond House, Harwell Science and Innovation Campus, Didcot, Oxfordshire 0X11 0DE, United Kingdom
| |
Collapse
|
31
|
Abstract
The pro-apoptototic protein Bax (Bcl-2 Associated protein X) plays a central role in the mitochondria-dependent apoptotic pathway. In healthy mammalian cells, Bax is essentially cytosolic and inactive. Following a death signal, the protein is translocated to the outer mitochondrial membrane, where it promotes a permeabilization that favors the release of different apoptogenic factors, such as cytochrome c. The regulation of Bax translocation is associated to conformational changes that are under the control of different factors. The evidences showing the involvement of different Bax domains in its mitochondrial localization are presented. The interactions between Bax and its different partners are described in relation to their ability to promote (or prevent) Bax conformational changes leading to mitochondrial addressing and to the acquisition of the capacity to permeabilize the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Thibaud T Renault
- CNRS, Institut de Biochimie et de Génétique Cellulaires, UMR5095, F-33000 Bordeaux, France
| | | |
Collapse
|
32
|
In vivo contributions of BH3-only proteins to neuronal death following seizures, ischemia, and traumatic brain injury. J Cereb Blood Flow Metab 2011; 31:1196-210. [PMID: 21364604 PMCID: PMC3099642 DOI: 10.1038/jcbfm.2011.26] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Bcl-2 homology (BH) domain 3-only proteins are a proapoptotic subgroup of the Bcl-2 gene family, which regulate cell death via effects on mitochondria. The BH3-only proteins react to various cell stressors and promote cell death by binding and inactivating antiapoptotic Bcl-2 family members and direct activation of proapoptotic multi-BH domain proteins such as Bax. Here, we review the in vivo evidence for their involvement in the pathophysiology of status epilepticus and contrast it to ischemia and traumatic brain injury. Seizures in rodents activate three potent proapoptotic BH3-only proteins: Bid, Bim, and Puma. Analysis of damage after seizures in mice singly deficient for each BH3-only protein supports a causal role for Puma and to a lesser extent Bim but, surprisingly, not Bid. In ischemia and trauma, where core aspects of the pathophysiology of cell death overlap, multiple BH3-only proteins are also activated and Bid has been shown to be required for neuronal death. The findings suggest that while each neurologic insult activates multiple BH3-only proteins, there may be specificity in their functional contribution. Future challenges include evaluating the remaining BH3-only proteins, explaining different causal contributions, and, if possible, exploring neurologic outcomes in mouse models deficient for multiple BH3-only proteins.
Collapse
|
33
|
Zhang S, Link AJ. Bcl-2 family interactome analysis using bacterial surface display. Integr Biol (Camb) 2011; 3:823-31. [DOI: 10.1039/c1ib00023c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
34
|
Structural basis for apoptosis inhibition by Epstein-Barr virus BHRF1. PLoS Pathog 2010; 6:e1001236. [PMID: 21203485 PMCID: PMC3009601 DOI: 10.1371/journal.ppat.1001236] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 11/22/2010] [Indexed: 01/19/2023] Open
Abstract
Epstein-Barr virus (EBV) is associated with human malignancies, especially those affecting the B cell compartment such as Burkitt lymphoma. The virally encoded homolog of the mammalian pro-survival protein Bcl-2, BHRF1 contributes to viral infectivity and lymphomagenesis. In addition to the pro-apoptotic BH3-only protein Bim, its key target in lymphoid cells, BHRF1 also binds a selective sub-set of pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents and in particular, we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current small organic antagonists of Bcl-2 do not target BHRF1, the structures of it in complex with Bim or Bak shown here will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes. Altruistic suicide of infected host cells is a key defense mechanism to combat viral infection. To ensure their own survival and proliferation, certain viruses, including Epstein-Barr virus (EBV), have mechanisms to subvert apoptosis, including the expression of homologs of the mammalian pro-survival protein Bcl-2. EBV was first identified in association with Burkitt lymphoma and it is also linked to certain Hodgkin's lymphomas and nasopharyngeal carcinoma. Whereas increased expression of Bcl-2 promotes malignancies such as human follicular lymphoma, the precise role of the EBV encoded Bcl-2 homolog BHRF1 in EBV-associated malignancies is less well defined. BHRF1 is known to bind the pro-apoptotic BH3-only protein Bim, and here we demonstrate that it also binds other pro-apoptotic proteins (Bid, Puma, Bak) expressed by host cells. Crystal structures of BHRF1 with the BH3 regions of Bim and Bak illustrate these interactions in atomic detail. A consequence of BHRF1 expression is marked resistance to a range of cytotoxic agents, and we show that its expression renders a mouse model of Burkitt lymphoma untreatable. As current antagonists of Bcl-2 do not target BHRF1, our crystal structures will be useful to guide efforts to target BHRF1 in EBV-associated malignancies, which are usually associated with poor clinical outcomes.
Collapse
|
35
|
Rautureau GJP, Day CL, Hinds MG. The structure of Boo/Diva reveals a divergent Bcl-2 protein. Proteins 2010; 78:2181-6. [PMID: 20455273 DOI: 10.1002/prot.22728] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Gilles J P Rautureau
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville 3052, Australia
| | | | | |
Collapse
|
36
|
Intrinsically disordered proteins in bcl-2 regulated apoptosis. Int J Mol Sci 2010; 11:1808-24. [PMID: 20480043 PMCID: PMC2871139 DOI: 10.3390/ijms11041808] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 03/23/2010] [Accepted: 04/14/2010] [Indexed: 12/11/2022] Open
Abstract
Intrinsic cell death is mediated by interaction between pro-apoptotic and pro-survival proteins of the B-cell lymphoma-2 (Bcl-2) family. Members of this family are either intrinsically disordered or contain intrinsically disordered regions/domains that are critical to their function. Alternate splicing and post-translational modifications can determine the extent of these disordered regions and are critical for regulating Bcl-2 proteins. Conformational plasticity and structural transitions characterize the interactions within the Bcl-2 family, with conserved sequence motifs on both binding partners required for their molecular recognition.
Collapse
|
37
|
García-Sáez AJ, Fuertes G, Suckale J, Salgado J. Permeabilization of the Outer Mitochondrial Membrane by Bcl-2 Proteins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 677:91-105. [DOI: 10.1007/978-1-4419-6327-7_8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
38
|
Brien G, Debaud AL, Robert X, Oliver L, Trescol-Biemont MC, Cauquil N, Geneste O, Aghajari N, Vallette FM, Haser R, Bonnefoy-Berard N. C-terminal residues regulate localization and function of the antiapoptotic protein Bfl-1. J Biol Chem 2009; 284:30257-63. [PMID: 19759007 DOI: 10.1074/jbc.m109.040824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unlike other antiapoptotic members of the Bcl-2 family, Bfl-1 does not contain a well defined C-terminal transmembrane domain, and whether the C-terminal tail of Bfl-1 functions as a membrane anchor is not yet clearly established. The molecular modeling study of the full-length Bfl-1 performed within this work suggests that Bfl-1 may co-exist in two distinct conformational states: one in which its C-terminal helix alpha9 is inserted in the hydrophobic groove formed by the BH1-3 domains of Bfl-1 and one with its C terminus. Parallel analysis of the subcellular localization of Bfl-1 indicates that even if Bfl-1 may co-exist in two distinct conformational states, most of the endogenous protein is tightly associated with the mitochondria by its C terminus in both healthy and apoptotic peripheral blood lymphocytes as well as in malignant B cell lines. However, the helix alpha9 of Bfl-1, and therefore the binding of Bfl-1 to mitochondria, is not absolutely required for the antiapoptotic activity of Bfl-1. A particular feature of Bfl-1 is the amphipathic character of its C-terminal helix alpha9. Our data clearly indicate that this property of helix alpha9 is required for the anchorage of Bfl-1 to the mitochondria but also regulates the antiapoptotic function Bfl-1.
Collapse
|
39
|
Mason KD, Khaw SL, Rayeroux KC, Chew E, Lee EF, Fairlie WD, Grigg AP, Seymour JF, Szer J, Huang DCS, Roberts AW. The BH3 mimetic compound, ABT-737, synergizes with a range of cytotoxic chemotherapy agents in chronic lymphocytic leukemia. Leukemia 2009; 23:2034-41. [DOI: 10.1038/leu.2009.151] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
40
|
Salvetti NR, Panzani CG, Gimeno EJ, Neme LG, Alfaro NS, Ortega HH. An imbalance between apoptosis and proliferation contributes to follicular persistence in polycystic ovaries in rats. Reprod Biol Endocrinol 2009; 7:68. [PMID: 19570211 PMCID: PMC2713246 DOI: 10.1186/1477-7827-7-68] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2009] [Accepted: 07/01/2009] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cystic ovarian disease is an important cause of infertility that affects bovine, ovine, caprine and porcine species and even human beings. Alterations in the ovarian micro-environment of females with follicular cysts could alter the normal processes of proliferation and programmed cell death in ovarian cells. Thus, our objective was to evaluate apoptosis and proliferation in ovarian cystic follicles in rats in order to investigate the cause of cystic follicle formation and persistence. METHODS We compared the number of in situ apoptotic cells by TUNEL assay, expression of active caspase-3 and members of Bcl-2 family by immunohistochemistry; and cell proliferation by the expression of the proliferation markers: PCNA and Ki-67. RESULTS The proliferation index was low in granulosa of tertiary and cystic follicles of light exposed rats when compared with tertiary follicles of control animals, while in theca interna only cystic follicles presented low proliferation index when compared with tertiary follicles (p < 0.05). The granulosa of cysts exhibited a similar cell DNA fragmentation to early atretic follicles. In the granulosa and theca interna, active caspase-3 shown similar immunostaining levels in tertiary and cystic follicles (p < 0.05). The granulosa cells presented high expression of Bcl-2, Bcl-xL and Bcl-w in the tertiary and cystic follicles with diminishing intensity in the atretic follicles, except with Bcl-w where the intensity was maintained in the atretic follicles (p < 0.05). The expression of Bax was weak in the healthy and cystic follicles. In the theca interna, Bcl-2 expression was the same as the pattern found in the granulosa; no differences were found between tertiary and cystic follicles from both groups for Bcl-xL and Bcl-w. The expression of Bax in this layer was higher in the tertiary follicles of the treated animals (p < 0.05) while the values for cystic follicles were similar to those in the tertiary follicles of controls. The theca externa showed low expression of the pro and anti-apoptotic proteins. CONCLUSION These results show that the combination of weak proliferation indices and low apoptosis observed in follicular cysts, could explain the cause of the slow growth of cystic follicles and the maintenance of a static condition without degeneration, which leads to their persistence. These alterations may be due to structural and functional modifications that take place in these cells and could be related to hormonal changes in animals with this condition.
Collapse
Affiliation(s)
- Natalia R Salvetti
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
- Centro de Experimentaciones Biológicas y Bioterio, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Carolina G Panzani
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
- Centro de Experimentaciones Biológicas y Bioterio, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Eduardo J Gimeno
- Instituto de Patología, Facultad de Ciencias Veterinarias, Universidad Nacional de la Plata, Argentina
| | - Leandro G Neme
- Centro de Experimentaciones Biológicas y Bioterio, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Natalia S Alfaro
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| | - Hugo H Ortega
- Departamento de Ciencias Morfológicas, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
- Centro de Experimentaciones Biológicas y Bioterio, Facultad de Ciencias Veterinarias, Universidad Nacional del Litoral, Argentina
| |
Collapse
|
41
|
Moroy G, Martin E, Dejaegere A, Stote RH. Molecular basis for Bcl-2 homology 3 domain recognition in the Bcl-2 protein family: identification of conserved hot spot interactions. J Biol Chem 2009; 284:17499-511. [PMID: 19293158 DOI: 10.1074/jbc.m805542200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The proteins of the Bcl-2 family are important regulators of apoptosis, or programmed cell death. These proteins regulate this fundamental biological process via the formation of heterodimers involving both pro- and anti-apoptotic family members. Disruption of the balance between anti- and pro-apoptotic Bcl-2 proteins is the cause of numerous pathologies. Bcl-xl, an anti-apoptotic protein of this family, is known to form heterodimers with multiple pro-apoptotic proteins, such as Bad, Bim, Bak, and Bid. To elucidate the molecular basis of this recognition process, we used molecular dynamics simulations coupled with the Molecular Mechanics/Poisson-Boltzmann Surface Area approach to identify the amino acids that make significant energetic contributions to the binding free energy of four complexes formed between Bcl-xl and pro-apoptotic Bcl-2 homology 3 peptides. A fifth protein-peptide complex composed of another anti-apoptotic protein, Bcl-w, in complex with the peptide from Bim was also studied. The results identified amino acids of both the anti-apoptotic proteins as well as the Bcl-2 homology 3 (BH3) domains of the pro-apoptotic proteins that make strong, recurrent interactions in the protein complexes. The calculations show that the two anti-apoptotic proteins, Bcl-xl and Bcl-w, share a similar recognition mechanism. Our results provide insight into the molecular basis for the promiscuous nature of this molecular recognition process by members of the Bcl-2 protein family. These amino acids could be targeted in the design of new mimetics that serve as scaffolds for new antitumoral molecules.
Collapse
Affiliation(s)
- Gautier Moroy
- Laboratoire de Biophysicochimie Moléculaire, Institut de Chimie, UMR 7177, Université de Strasbourg, F-67000 Strasbourg, France
| | | | | | | |
Collapse
|
42
|
Xu H, Yang JN, Li XK, Zheng Q, Zhao W, Su ZJ, Huang YD. Retina protective effect of acidic fibroblast growth factor after canceling its mitogenic activity. J Ocul Pharmacol Ther 2008; 24:445-51. [PMID: 18788994 DOI: 10.1089/jop.2007.0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The aim of this study was to investigate the effect of mutant of acidic fibroblast growth factor (MaFGF) on N-methyl-N-nitrosourea (MNU)-induced retinal degeneration in Sprague-Dawley rats. METHODS Fifty (50)-day-old female Sprague-Dawley rats were given a single intraperitoneal injection of normal saline (NS) or 60 mg x kg(-1) body weight of MNU, and then NS or different doses of MaFGF were injected intravitreally twice at 0 and 12 h after NS or MNU treatment. After NS or MNU treatment for different times, the apoptotic index of the photoreceptor cell was detected by TUNEL labeling, whereas the mRNA expressions and the protein levels of antiapoptotic Bcl-2 and proapoptotic Bax were determined by reverse transcriptase polymerase chain reaction and Western blotting, respectively. Retinal damage was evaluated based on retinal thickness. RESULTS MNU-induced retinal damage was partially protected by MaFGF in a dose-independent manner in rats. MaFGF at doses of 1.25 and 2.5 microg could partially suppress photoreceptor cell loss, whereas MaFGF at a dose of 5.0 mug had no protective effect on photoreceptor cell. The apoptotic index at 24 h post-MNU in the peripheral retina was 38.1 +/- 3.6%, whereas 1.25 and 2.5 mug MaFGF markedly reduced it to 27.5 +/- 2.0 and 21.1 +/- 1.9% (P = <0.001), respectively. As compared with the MNU-treated group, MaFGF significantly upregulated the expression of Bcl-2 mRNA and protein and downregulated the expression of Bax mRNA and protein (P = <0.001). CONCLUSION MaFGF could counteract MNU-induced retinal damage and may be a therapeutic agent for the treatment of retinal degeneration.
Collapse
Affiliation(s)
- Hua Xu
- Pharmacy College, Jinan University, Guangzhou, China.
| | | | | | | | | | | | | |
Collapse
|
43
|
Janssen CO, Lim S, Lo EP, Wan KF, Yu VC, Lee MA, Ng SB, Everett MJ, Buss AD, Lane DP, Boyce RS. Interaction of kendomycin and semi-synthetic analogues with the anti-apoptotic protein Bcl-xl. Bioorg Med Chem Lett 2008; 18:5771-3. [DOI: 10.1016/j.bmcl.2008.09.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2008] [Revised: 09/04/2008] [Accepted: 09/19/2008] [Indexed: 10/21/2022]
|
44
|
Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW. Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 2008; 6:e147. [PMID: 18547146 PMCID: PMC2422857 DOI: 10.1371/journal.pbio.0060147] [Citation(s) in RCA: 247] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 05/02/2008] [Indexed: 11/23/2022] Open
Abstract
Although Bcl-XL and Bax are structurally similar, activated Bax forms large oligomers that permeabilize the outer mitochondrial membrane, thereby committing cells to apoptosis, whereas Bcl-XL inhibits this process. Two different models of Bcl-XL function have been proposed. In one, Bcl-XL binds to an activator, thereby preventing Bax activation. In the other, Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, as all three proteins are present simultaneously. We examined the mechanism of Bax activation by tBid and its inhibition by Bcl-XL using full-length recombinant proteins and measuring permeabilization of liposomes and mitochondria in vitro. Our results demonstrate that Bcl-XL and Bax are functionally similar. Neither protein bound to membranes alone. However, the addition of tBid recruited molar excesses of either protein to membranes, indicating that tBid activates both pro- and antiapoptotic members of the Bcl-2 family. Bcl-XL competes with Bax for the activation of soluble, monomeric Bax through interaction with membranes, tBid, or t-Bid-activated Bax, thereby inhibiting Bax binding to membranes, oligomerization, and membrane permeabilization. Experiments in which individual interactions were abolished by mutagenesis indicate that both Bcl-XL–tBid and Bcl-XL–Bax binding contribute to the antiapoptotic function of Bcl-XL. By out-competing Bax for the interactions leading to membrane permeabilization, Bcl-XL ties up both tBid and Bax in nonproductive interactions and inhibits Bax binding to membranes. We propose that because Bcl-XL does not oligomerize it functions like a dominant-negative Bax in the membrane permeabilization process. During development and under stress, cells can become committed to die via programmed cell death (apoptosis). In most cases, the permeabilization of the outer mitochondrial membrane is a key component of this commitment. The membrane permeablization step is both positively and negatively regulated by members of the Bcl-2 family of proteins. One member of this protein family with only a BH3 region, such as tBid, activates another family member, Bax, causing it to form large complexes that generate membrane-spanning pores, hence making the membrane permeable. Antiapoptotic members of the Bcl-2 family, such as Bcl-XL, are structurally similar to Bax but inhibit the membrane permeabilization process by an unknown mechanism. Two mutually exclusive models have been proposed to explain how the Bcl-2 family is operating: one states that Bcl-XL binds to tBid, thereby preventing Bax activation, while the second suggests that Bcl-XL binds directly to activated Bax. It has been difficult to sort out which interaction is important in cells, where multiple members of all three protein families are present simultaneously. Here, we describe an in vitro system containing the three recombinant proteins and the use of mutagenesis to selectively remove individual interactions. We show that Bcl-XL inhibits Bax by competing with it for binding to membranes, tBid, and activated Bax. Because Bcl-XL does not form pores, it inhibits apoptosis by acting as if it is a dominant-negative version of Bax. Bcl-XL and Bax are structurally similar members of the Bcl-2 family of cell-death-related proteins, and they compete for binding to membranes, as well as to Bcl-2 family member tBid and activated Bax. Unlike Bax, Bcl-XL is unable to oligomerize and form pores in membranes, so it inhibits membrane permeabilization--a key step during commitment to apoptosis--by functioning like a dominant-negative Bax.
Collapse
Affiliation(s)
- Lieven P Billen
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Candis L Kokoski
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Jonathan F Lovell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian Leber
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - David W Andrews
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
45
|
Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci U S A 2008; 105:14509-14. [PMID: 18799734 DOI: 10.1073/pnas.0806727105] [Citation(s) in RCA: 163] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Although CD8(+) T cells do not contribute to protection against the blood stage of Plasmodium infection, there is mounting evidence that they are principal mediators of murine experimental cerebral malaria (ECM). At present, there is no direct evidence that the CD8(+) T cells mediating ECM are parasite-specific or, for that matter, whether parasite-specific CD8(+) T cells are generated in response to blood-stage infection. To resolve this and to define the cellular requirements for such priming, we generated transgenic P. berghei parasites expressing model T cell epitopes. This approach was necessary as MHC class I-restricted antigens to blood-stage infection have not been defined. Here, we show that blood-stage infection leads to parasite-specific CD8(+) and CD4(+) T cell responses. Furthermore, we show that P. berghei-expressed antigens are cross-presented by the CD8alpha(+) subset of dendritic cells (DC), and that this induces pathogen-specific cytotoxic T lymphocytes (CTL) capable of lysing cells presenting antigens expressed by blood-stage parasites. Finally, using three different experimental approaches, we provide evidence that CTL specific for parasite-expressed antigens contribute to ECM.
Collapse
|
46
|
Wan KF, Chan SL, Sukumaran SK, Lee MC, Yu VC. Chelerythrine induces apoptosis through a Bax/Bak-independent mitochondrial mechanism. J Biol Chem 2008; 283:8423-33. [PMID: 18230621 PMCID: PMC2417179 DOI: 10.1074/jbc.m707687200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2007] [Revised: 12/17/2007] [Indexed: 12/16/2022] Open
Abstract
Although murine embryonic fibroblasts (MEFs) with Bax or Bak deleted displayed no defect in apoptosis signaling, MEFs with Bax and Bak double knock-out (DKO) showed dramatic resistance to diverse apoptotic stimuli, suggesting that Bax and Bak are redundant but essential regulators for apoptosis signaling. Chelerythrine has recently been identified as a Bcl-xL inhibitor that is capable of triggering apoptosis via direct action on mitochondria. Here we report that in contrast to classic apoptotic stimuli, chelerythrine is fully competent in inducing apoptosis in the DKO MEFs. Wild-type and DKO MEFs are equally sensitive to chelerythrine-induced morphological and biochemical changes associated with apoptosis phenotype. Interestingly, chelerythrine-mediated release of cytochrome c is rapid and precedes Bax translocation and integration. Although the BH3 peptide of Bim is totally inactive in releasing cytochrome c from isolated mitochondria of DKO MEFs, chelerythrine maintains its potency and efficacy in inducing direct release of cytochrome c from these mitochondria. Furthermore, chelerythrine-mediated mitochondrial swelling and loss in mitochondrial membrane potential (DeltaPsi(m)) are inhibited by cyclosporine A, suggesting that mitochondrial permeability transition pore is involved in chelerythrine-induced apoptosis. Although certain apoptotic stimuli have been shown to elicit cytotoxic effect in the DKO MEFs through alternate death mechanisms, chelerythrine does not appear to engage necrotic or autophagic death mechanism to trigger cell death in the DKO MEFs. These results, thus, argue for the existence of an alternative Bax/Bak-independent apoptotic mechanism that involves cyclosporine A-sensitive mitochondrial membrane permeability.
Collapse
Affiliation(s)
- Kah Fei Wan
- Institute of Molecular and Cell Biology, ASTAR (Agency for Science, Technology, and Research), 61 Biopolis Dr. (Proteos), Singapore
| | | | | | | | | |
Collapse
|
47
|
Wang WL, Yeh SF, Huang EYK, Lu YL, Wang CF, Huang CYF, Lin WJ. Mitochondrial anchoring of PKCalpha by PICK1 confers resistance to etoposide-induced apoptosis. Apoptosis 2008; 12:1857-71. [PMID: 17610064 DOI: 10.1007/s10495-007-0098-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Various pathways, including regulation of functions of the Bcl-2 family, are implicated in the survival promotion by PKCalpha, however the molecular mechanisms are still obscure. We have previously demonstrated that PKCalpha is selectively anchored to mitochondria by PICK1 in fibroblasts NIH 3T3. In this study, we show that over-expression of PICK1 in leukemia REH confers resistance to etoposide-induced apoptosis, which requires an interaction with PKCalpha as the non-interacting mutant PICK1 loses the pro-survival activity. The PKCalpha selective inhibitor Gö6976 also abolishes the anti-apoptotic effect indicating a requirement for PKC activity. Disruption of PICK1/PKCalpha interactions by inhibitory peptides significantly increases cellular susceptibility to etoposide. Similar effects are also observed in HL60 cells, which exhibit an intrinsic resistance to etoposide. Molecular analysis shows that the wild type PICK1, but not the non-interacting mutant, prevents the loss of mitochondrial membrane potential with a coincident increase in phosphorylation of the anti-apoptotic Bcl-2(Ser70) and a decrease in dimerization of the pro-apoptotic Bax. PICK1 may provide the spatial proximity for phosphorylation of Bcl-2(Ser70) by PKCalpha which then leads to a higher survival. Taken together, our results suggest that PICK1 may mediate the pro-survival activity of PKCalpha by serving as a molecular link between PKCalpha and mitochondria.
Collapse
Affiliation(s)
- Wei-Li Wang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, and Department of Education and Research, Taipei City Hospital, 112, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
BCL-2 family proteins, which have either pro- or anti-apoptotic activities, have been studied intensively for the past decade owing to their importance in the regulation of apoptosis, tumorigenesis and cellular responses to anti-cancer therapy. They control the point of no return for clonogenic cell survival and thereby affect tumorigenesis and host-pathogen interactions and regulate animal development. Recent structural, phylogenetic and biological analyses, however, suggest the need for some reconsideration of the accepted organizational principles of the family and how the family members interact with one another during programmed cell death. Although these insights into interactions among BCL-2 family proteins reveal how these proteins are regulated, a unifying hypothesis for the mechanisms they use to activate caspases remains elusive.
Collapse
|
49
|
Germain M, Duronio V. The N Terminus of the Anti-apoptotic BCL-2 Homologue MCL-1 Regulates Its Localization and Function. J Biol Chem 2007; 282:32233-42. [PMID: 17823113 DOI: 10.1074/jbc.m706408200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The BCL-2 homologue MCL-1 plays an important role in the regulation of cell fate by blocking apoptosis as well as regulating cell cycle. MCL-1 has an unusual N-terminal extension, which contains a PEST domain and several phosphorylation sites that have been suggested to regulate its turnover. Here we report that the first 79 amino acids of MCL-1 regulate its subcellular localization. Deletion of this domain impairs both its mitochondrial localization and its anti-apoptotic activity. Conversely, expression of the N terminus of MCL-1 promotes both the association of MCL-1 with mitochondria and cell survival in a fashion that is dependent on the presence of endogenous MCL-1. In addition, the N terminus of MCL-1 has an antagonistic effect on proliferation. Although MCL-1 decreases proliferation through binding to proliferating cell nuclear antigen and cyclin-dependent kinase 1 in the nucleus, the N terminus of MCL-1 accelerates cell division. On the other hand, deletion of this region further increases the anti-proliferative activity of MCL-1. These results suggest that the N terminus of MCL-1 plays a major regulatory role, regulating coordinately the mitochondrial (anti-apoptotic) and nuclear (anti-proliferative) functions of MCL-1.
Collapse
Affiliation(s)
- Marc Germain
- Department of Medicine, University of British Columbia and Vancouver Coastal Health Research Institute, Jack Bell Research Centre, Vancouver, British Columbia V6H 3Z6, Canada.
| | | |
Collapse
|
50
|
Murphy B, Dunleavy M, Shinoda S, Schindler C, Meller R, Bellver-Estelles C, Hatazaki S, Dicker P, Yamamoto A, Koegel I, Chu X, Wang W, Xiong Z, Prehn J, Simon R, Henshall D. Bcl-w protects hippocampus during experimental status epilepticus. THE AMERICAN JOURNAL OF PATHOLOGY 2007; 171:1258-68. [PMID: 17702891 PMCID: PMC1988875 DOI: 10.2353/ajpath.2007.070269] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Experimentally evoked seizures can activate the intrinsic mitochondrial cell death pathway, components of which are modulated in the hippocampus of patients with temporal lobe epilepsy. Bcl-2 family proteins are critical regulators of mitochondrial dysfunction, but their significance in this setting remains primarily untested. Presently, we investigated the mitochondrial pathway and role of anti-apoptotic Bcl-2 proteins using a mouse model of seizure-induced neuronal death. Status epilepticus was evoked in mice by intra-amygdala kainic acid, causing cytochrome c release, processing of caspases 9 and 7, and death of ipsilateral hippocampal pyramidal neurons. Seizures caused a rapid decline in hippocampal Bcl-w levels not seen for either Bcl-2 or Bcl-xl. To test whether endogenous Bcl-w was functionally significant for neuronal survival, we investigated hippocampal injury after seizures in Bcl-w-deficient mice. Seizures induced significantly more hippocampal CA3 neuronal loss and DNA fragmentation in Bcl-w-deficient mice compared with wild-type mice. Quantitative electroencephalography analysis also revealed that Bcl-w-deficient mice display a neurophysiological phenotype whereby there was earlier polyspike seizure onset. Finally, we detected higher levels of Bcl-w in hippocampus from temporal lobe epilepsy patients compared with autopsy controls. These data identify Bcl-w as an endogenous neuroprotectant that may have seizure-suppressive functions.
Collapse
Affiliation(s)
- Brona Murphy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 123 St. Stephen's Green, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|