1
|
Lei G, Sun M, Cheng J, Ye R, Lu Z, Horbath A, Huo D, Wu S, Alapati A, Aggarwal S, Xu Z, Mao C, Yan Y, Yao J, Li Q, Chen X, Lee H, Zhuang L, Jiang D, Pataer A, Roth JA, Navin N, Koong AC, You MJ, Lin SH, Gan B. Radiotherapy promotes cuproptosis and synergizes with cuproptosis inducers to overcome tumor radioresistance. Cancer Cell 2025:S1535-6108(25)00132-1. [PMID: 40215978 DOI: 10.1016/j.ccell.2025.03.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/10/2025] [Accepted: 03/27/2025] [Indexed: 05/15/2025]
Abstract
Cuproptosis is a recently identified form of copper-dependent cell death. Here, we reveal that radiotherapy (RT) induces cuproptosis in cancer cells, independent of apoptosis and ferroptosis, and depletes lipoylated proteins and iron-sulfur (Fe-S) cluster proteins-both hallmarks of cuproptosis-in patient tumors. Mechanistically, RT elevates mitochondrial copper levels by upregulating copper transporter 1 (CTR1) and depleting mitochondrial glutathione, a copper chelator, thereby triggering cuproptosis. Integrated analyses of RNA sequencing (RNA-seq) from radioresistant esophageal cancer cells and single-cell RNA-seq from esophageal tumors of patients unresponsive to RT link radioresistance to the downregulation of BTB and CNC homology 1 (BACH1). This downregulation de-represses the expression of copper-sequestering metallothionein (MT) 1E/X, thereby mitigating cuproptosis and contributing to radioresistance. Copper ionophore treatment sensitizes radioresistant cancer cells and cell line- and patient-derived xenografts to RT by potentiating cuproptosis. Our findings unveil a link between RT and cuproptosis and inform a therapeutic strategy to overcome tumor radioresistance by targeting cuproptosis.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingchuang Sun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Ye
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengze Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amber Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Huo
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shengrong Wu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anagha Alapati
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sadhna Aggarwal
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhihao Xu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qidong Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiong Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dadi Jiang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Apar Pataer
- Department of Thoracic and Cardiovascular Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jack A Roth
- Department of Thoracic and Cardiovascular Surgery, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nicholas Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Albert C Koong
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingjian James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Steven H Lin
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
2
|
Lappas AS, Ioannou M, Christodoulou NG. Histopathological evidence of cellular alterations in the dentate gyrus is associated with aberrant RB1CC1-ATG16L1 expression in the hippocampus among older adults with chronic schizophrenia: A pilot post-mortem study. Schizophr Res 2025; 275:14-24. [PMID: 39612766 DOI: 10.1016/j.schres.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/08/2024] [Accepted: 11/22/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Recent evidence brings autophagy, and specifically the RB1CC1 gene into sharp focus as aetiologically relevant to Schizophrenia. Our understanding of whether and how these genetic signatures translate to cellular functions remains limited. MATERIAL AND METHODS Post-mortem study of 10 individuals with Schizophrenia and 18 individuals without any neurological/psychiatric disorder, matched for age, sex, post-mortem-interval, pH and BRAAK score. Formalin-fixed, paraffin-embedded, 6 μm sections cut through segments of the anterior, middle and posterior left or right hippocampus were examined for histopathological differences and immunohistochemical expression of RB1CC1 and ATG16L1 proteins. RESULTS Dentate gyrus (DG) granule cells area (p = 0.005) and circularity (p = 0.012) were significantly lower among Schizophrenia vs. controls. Antipsychotics were associated with lower circularity (p = 0.007). RB1CC1 and ATG16L1 immunoexpression were positively correlated (p < 0.001) and significantly lower in the CA1 (p = 0.047, p = 0.005, respectively). RB1CC1 immunoexpression was significantly higher in the DG among Schizophrenia vs. controls (p = 0.047,). The latter was more pronounced among donors treated with antipsychotics. Lower ATG16L1 CA1 immunoreactivity was correlated with lower granule cell area (p < 0.001). CONCLUSIONS For the first time, we present histopathological evidence of morphological alterations in the DG of the human brain in Schizophrenia. We propose that these changes indicate DG developmental arrest, which is associated with diminished RB1CC1-ATG16L1-mediated autophagy initiation in the CA1. We suggest that this is a pathological process, whereas RB1CC1-ATG16L1 upregulation in the DG, and possibly in the CA4, may represent a compensatory/restorative mechanism. Antipsychotics may upregulate RB1CC1-ATG16L1 autophagy initiation. Larger studies are required to validate these findings and explore clinical correlations.
Collapse
Affiliation(s)
- Andreas S Lappas
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece; Aneurin Bevan University Health Board, United Kingdom.
| | - Maria Ioannou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Nikos G Christodoulou
- Department of Psychiatry, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larisa, Greece
| |
Collapse
|
3
|
Liu X, Chen Z, Yan Y, Zandkarimi F, Nie L, Li Q, Horbath A, Olszewski K, Kondiparthi L, Mao C, Lee H, Zhuang L, Poyurovsky M, Stockwell BR, Chen J, Gan B. Proteomic analysis of ferroptosis pathways reveals a role of CEPT1 in suppressing ferroptosis. Protein Cell 2024; 15:686-703. [PMID: 38430542 PMCID: PMC11365556 DOI: 10.1093/procel/pwae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/31/2024] [Indexed: 03/04/2024] Open
Abstract
Ferroptosis has been recognized as a unique cell death modality driven by excessive lipid peroxidation and unbalanced cellular metabolism. In this study, we established a protein interaction landscape for ferroptosis pathways through proteomic analyses, and identified choline/ethanolamine phosphotransferase 1 (CEPT1) as a lysophosphatidylcholine acyltransferase 3 (LPCAT3)-interacting protein that regulates LPCAT3 protein stability. In contrast to its known role in promoting phospholipid synthesis, we showed that CEPT1 suppresses ferroptosis potentially by interacting with phospholipases and breaking down certain pro-ferroptotic polyunsaturated fatty acid (PUFA)-containing phospholipids. Together, our study reveals a previously unrecognized role of CEPT1 in suppressing ferroptosis.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhen Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fereshteh Zandkarimi
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qidong Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amber Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kellen Olszewski
- Kadmon Corporation, LLC (A Sanofi Company), New York, NY 10016, USA
- The Barer Institute, Philadelphia, PA 19104, USA
| | | | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Masha Poyurovsky
- Kadmon Corporation, LLC (A Sanofi Company), New York, NY 10016, USA
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Liu H, Su P, Li Y, Hoover A, Hu S, King SA, Zhao J, Guan JL, Chen SY, Zhao Y, Tan M, Wu X. VAMP2 controls murine epidermal differentiation and carcinogenesis by regulation of nucleophagy. Dev Cell 2024; 59:2005-2016.e4. [PMID: 38810653 PMCID: PMC11303110 DOI: 10.1016/j.devcel.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/16/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Differentiation of murine epidermal stem/progenitor cells involves the permanent withdrawal from the cell cycle, the synthesis of various protein and lipid components for the cornified envelope, and the controlled dissolution of cellular organelles and nuclei. Deregulated epidermal differentiation contributes to the development of various skin diseases, including skin cancers. With a genome-wide shRNA screen, we identified vesicle-associated membrane protein 2 (VAMP2) as a critical factor involved in skin differentiation. Deletion of VAMP2 leads to aberrant skin stratification and enucleation in vivo. With quantitative proteomics, we further identified an autophagy protein, focal adhesion kinase family interacting protein of 200 kDa (FIP200), as a binding partner of VAMP2. Additionally, we showed that both VAMP2 and FIP200 are critical for murine keratinocyte enucleation and epidermal differentiation. Loss of VAMP2 or FIP200 enhances cutaneous carcinogenesis in vivo. Together, our findings identify important molecular mechanisms underlying epidermal differentiation and skin tumorigenesis.
Collapse
Affiliation(s)
- Han Liu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Peihong Su
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Yuanyuan Li
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sophie Hu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Sarah A King
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jing Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Yingming Zhao
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
| | - Minjia Tan
- The Chemical Proteomics Center and State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, P.R. China
| | - Xiaoyang Wu
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
5
|
Lei G, Mao C, Horbath AD, Yan Y, Cai S, Yao J, Jiang Y, Sun M, Liu X, Cheng J, Xu Z, Lee H, Li Q, Lu Z, Zhuang L, Chen MK, Alapati A, Yap TA, Hung MC, You MJ, Piwnica-Worms H, Gan B. BRCA1-Mediated Dual Regulation of Ferroptosis Exposes a Vulnerability to GPX4 and PARP Co-Inhibition in BRCA1-Deficient Cancers. Cancer Discov 2024; 14:1476-1495. [PMID: 38552003 PMCID: PMC11296921 DOI: 10.1158/2159-8290.cd-23-1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/07/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Resistance to poly (ADP-ribose) polymerase inhibitors (PARPi) limits the therapeutic efficacy of PARP inhibition in treating breast cancer susceptibility gene 1 (BRCA1)-deficient cancers. Here we reveal that BRCA1 has a dual role in regulating ferroptosis. BRCA1 promotes the transcription of voltage-dependent anion channel 3 (VDAC3) and glutathione peroxidase 4 (GPX4); consequently, BRCA1 deficiency promotes cellular resistance to erastin-induced ferroptosis but sensitizes cancer cells to ferroptosis induced by GPX4 inhibitors (GPX4i). In addition, nuclear receptor coactivator 4 (NCOA4)-mediated ferritinophagy and defective GPX4 induction unleash potent ferroptosis in BRCA1-deficient cancer cells upon PARPi and GPX4i co-treatment. Finally, we show that xenograft tumors derived from patients with BRCA1-mutant breast cancer with PARPi resistance exhibit decreased GPX4 expression and high sensitivity to PARP and GPX4 co-inhibition. Our results show that BRCA1 deficiency induces a ferroptosis vulnerability to PARP and GPX4 co-inhibition and inform a therapeutic strategy for overcoming PARPi resistance in BRCA1-deficient cancers. Significance: BRCA1 deficiency promotes resistance to erastin-induced ferroptosis via blocking VDAC3 yet renders cancer cells vulnerable to GPX4i-induced ferroptosis via inhibiting GPX4. NCOA4 induction and defective GPX4 further synergizes GPX4i with PARPi to induce ferroptosis in BRCA1-deficient cancers and targeting GPX4 mitigates PARPi resistance in those cancers. See related commentary by Alborzinia and Friedmann Angeli, p. 1372.
Collapse
Affiliation(s)
- Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Amber D Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shirong Cai
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Yao
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yan Jiang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mingchuang Sun
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jun Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhihao Xu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Qidong Li
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhengze Lu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mei-Kuang Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Anagha Alapati
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Timothy A Yap
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Current address: Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung 406, Taiwan
| | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Helen Piwnica-Worms
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Molecular and Cellular Oncology, Division of Basic Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA
- Lead contact
| |
Collapse
|
6
|
Sen MG, Sanislav O, Fisher PR, Annesley SJ. The Multifaceted Interactions of Dictyostelium Atg1 with Mitochondrial Function, Endocytosis, Growth, and Development. Cells 2024; 13:1191. [PMID: 39056773 PMCID: PMC11274416 DOI: 10.3390/cells13141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne 3086, Australia; (M.G.S.); (O.S.); (P.R.F.)
| |
Collapse
|
7
|
Rigato A, Meng H, Chardes C, Runions A, Abouakil F, Smith RS, LeGoff L. A mechanical transition from tension to buckling underlies the jigsaw puzzle shape morphogenesis of histoblasts in the Drosophila epidermis. PLoS Biol 2024; 22:e3002662. [PMID: 38870210 PMCID: PMC11175506 DOI: 10.1371/journal.pbio.3002662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/03/2024] [Indexed: 06/15/2024] Open
Abstract
The polygonal shape of cells in proliferating epithelia is a result of the tensile forces of the cytoskeletal cortex and packing geometry set by the cell cycle. In the larval Drosophila epidermis, two cell populations, histoblasts and larval epithelial cells, compete for space as they grow on a limited body surface. They do so in the absence of cell divisions. We report a striking morphological transition of histoblasts during larval development, where they change from a tensed network configuration with straight cell outlines at the level of adherens junctions to a highly folded morphology. The apical surface of histoblasts shrinks while their growing adherens junctions fold, forming deep lobules. Volume increase of growing histoblasts is accommodated basally, compensating for the shrinking apical area. The folded geometry of apical junctions resembles elastic buckling, and we show that the imbalance between the shrinkage of the apical domain of histoblasts and the continuous growth of junctions triggers buckling. Our model is supported by laser dissections and optical tweezer experiments together with computer simulations. Our analysis pinpoints the ability of histoblasts to store mechanical energy to a much greater extent than most other epithelial cell types investigated so far, while retaining the ability to dissipate stress on the hours time scale. Finally, we propose a possible mechanism for size regulation of histoblast apical size through the lateral pressure of the epidermis, driven by the growth of cells on a limited surface. Buckling effectively compacts histoblasts at their apical plane and may serve to avoid physical harm to these adult epidermis precursors during larval life. Our work indicates that in growing nondividing cells, compressive forces, instead of tension, may drive cell morphology.
Collapse
Affiliation(s)
- Annafrancesca Rigato
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center for Living Systems, Marseille, France
| | - Huicheng Meng
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Claire Chardes
- Aix Marseille Univ, CNRS, IBDM UMR7288, Turing Center for Living Systems, Marseille, France
| | - Adam Runions
- Department of Computer Science, University of Calgary, Calgary, Canada
| | - Faris Abouakil
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| | - Richard S. Smith
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Loïc LeGoff
- Aix Marseille Univ, CNRS, Centrale Marseille, Institut Fresnel UMR7249, Turing Center for Living Systems, Marseille, France
| |
Collapse
|
8
|
Liu X, Nie L, Zhang Y, Yan Y, Wang C, Colic M, Olszewski K, Horbath A, Chen X, Lei G, Mao C, Wu S, Zhuang L, Poyurovsky MV, James You M, Hart T, Billadeau DD, Chen J, Gan B. Actin cytoskeleton vulnerability to disulfide stress mediates disulfidptosis. Nat Cell Biol 2023; 25:404-414. [PMID: 36747082 PMCID: PMC10027392 DOI: 10.1038/s41556-023-01091-2] [Citation(s) in RCA: 553] [Impact Index Per Article: 276.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/12/2023] [Indexed: 02/08/2023]
Abstract
SLC7A11-mediated cystine uptake suppresses ferroptosis yet promotes cell death under glucose starvation; the nature of the latter cell death remains unknown. Here we show that aberrant accumulation of intracellular disulfides in SLC7A11high cells under glucose starvation induces a previously uncharacterized form of cell death distinct from apoptosis and ferroptosis. We term this cell death disulfidptosis. Chemical proteomics and cell biological analyses showed that glucose starvation in SLC7A11high cells induces aberrant disulfide bonds in actin cytoskeleton proteins and F-actin collapse in a SLC7A11-dependent manner. CRISPR screens and functional studies revealed that inactivation of the WAVE regulatory complex (which promotes actin polymerization and lamellipodia formation) suppresses disulfidptosis, whereas constitutive activation of Rac promotes disulfidptosis. We further show that glucose transporter inhibitors induce disulfidptosis in SLC7A11high cancer cells and suppress SLC7A11high tumour growth. Our results reveal that the susceptibility of the actin cytoskeleton to disulfide stress mediates disulfidptosis and suggest a therapeutic strategy to target disulfidptosis in cancer treatment.
Collapse
Affiliation(s)
- Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Litong Nie
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuelong Yan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Wang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Medina Colic
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kellen Olszewski
- Kadmon Corporation (A Sanofi Company), LLC, New York, NY, USA
- The Barer Institute, Philadelphia, PA, USA
| | - Amber Horbath
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiong Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shiqi Wu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - M James You
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Traver Hart
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Junjie Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
9
|
Guo A, Lun P, Chen J, Li Q, Chang K, Li T, Pan D, Zhang J, Zhou J, Wang K, Zhang Q, Yang Q, Gao C, Wu C, Jian X, Wen Y, Wang Z, Shi Y, Zhao X, Sun P, Li Z. Association analysis of risk genes identified by SCHEMA with schizophrenia in the Chinese Han population. Psychiatr Genet 2022; 32:188-193. [PMID: 36125369 DOI: 10.1097/ypg.0000000000000321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND Schizophrenia is a chronic brain disorder. Previously, the Schizophrenia Exome Sequencing Meta-analysis consortium identified 10 highest risk genes related to schizophrenia. This study aimed to analyze the relationship between the 10 highest risk genes identified by the SCHEMA and schizophrenia in a Chinese population. METHODS A total of 225 variants in 10 genes were screened in a Chinese population of 6836 using a customized array. All variants were annotated through the Variant Effect Predictor tool, and the functional impacts of missense variants were assessed based on sorting intolerant from tolerant and PolyPhen-2 scores. The SHEsisPlus tool was used to analyze the association between risk genes and schizophrenia at the locus and gene levels. RESULTS At the locus level, no missense variants significantly related to schizophrenia were found, but we detected three missense variants that appeared only in cases, including TRIO p. Arg1185Gln, RB1CC1 p. Arg1514Cys, and HERC1 p. Val4517Leu. At the gene level, five genes (TRIO, RB1CC1, HERC1, GRIN2A, and CACAN1G) with more than one variant analyzed were kept for the gene-level association analysis. Only the association between RB1CC1 and schizophrenia reached a significant level (OR = 1.634; 95% CI, 1.062-2.516; P = 0.025). CONCLUSION In this study, we determined that RB1CC1 might be a risk gene for schizophrenia in the Chinese population. Our results provide new evidence for recognizing the correlation of these risk genes with the Chinese schizophrenia population.
Collapse
Affiliation(s)
- Aiguo Guo
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Peng Lun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Qinghua Li
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Kaihui Chang
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Teng Li
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- School of Public Health, Qingdao University, Qingdao
| | - Dun Pan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Jinmai Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Ke Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Qian Zhang
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Qiangzhen Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Chengwen Gao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Chuanhong Wu
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Xuemin Jian
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Yanqin Wen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Zhuo Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
| | - Yongyong Shi
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiangzhong Zhao
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao
| | - Zhiqiang Li
- School of Basic Medicine, Qingdao University
- The Affiliated Hospital of Qingdao University and Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai
- School of Public Health, Qingdao University, Qingdao
- Institute of Social Cognitive and Behavioral Sciences, Shanghai Jiao Tong University
- Institute of Neuropsychiatric Science and Systems Biological Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Yi YW, You KS, Park JS, Lee SG, Seong YS. Ribosomal Protein S6: A Potential Therapeutic Target against Cancer? Int J Mol Sci 2021; 23:ijms23010048. [PMID: 35008473 PMCID: PMC8744729 DOI: 10.3390/ijms23010048] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Ribosomal protein S6 (RPS6) is a component of the 40S small ribosomal subunit and participates in the control of mRNA translation. Additionally, phospho (p)-RPS6 has been recognized as a surrogate marker for the activated PI3K/AKT/mTORC1 pathway, which occurs in many cancer types. However, downstream mechanisms regulated by RPS6 or p-RPS remains elusive, and the therapeutic implication of RPS6 is underappreciated despite an approximately half a century history of research on this protein. In addition, substantial evidence from RPS6 knockdown experiments suggests the potential role of RPS6 in maintaining cancer cell proliferation. This motivates us to investigate the current knowledge of RPS6 functions in cancer. In this review article, we reviewed the current information about the transcriptional regulation, upstream regulators, and extra-ribosomal roles of RPS6, with a focus on its involvement in cancer. We also discussed the therapeutic potential of RPS6 in cancer.
Collapse
Affiliation(s)
- Yong Weon Yi
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Kyu Sic You
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
| | - Jeong-Soo Park
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
| | - Seok-Geun Lee
- Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| | - Yeon-Sun Seong
- Department of Biochemistry, College of Medicine, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea; (Y.W.Y.); (K.S.Y.); (J.-S.P.)
- Graduate School of Convergence Medical Science, Dankook University, Cheonan 31116, Chungcheongnam-do, Korea
- Correspondence: (S.-G.L.); (Y.-S.S.); Tel.: +82-2-961-2355 (S.-G.L.); +82-41-550-3875 (Y.-S.S.); Fax: +82-2-961-9623 (S.-G.L.)
| |
Collapse
|
11
|
Holm TM, Bian ZC, Manupati K, Guan JL. Inhibition of autophagy mitigates cell migration and invasion in thyroid cancer. Surgery 2021; 171:235-244. [PMID: 34565609 DOI: 10.1016/j.surg.2021.08.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Autophagy is a highly conserved process for maintaining cellular homeostasis. Upregulation of autophagy promotes metastasis by promoting the cancer stem cell state while also stimulating tumor cell migration and invasion. We hypothesized that autophagy upregulation would be critical for cancer stem cell maintenance as well as cellular migration and invasion in thyroid cancer. METHODS Validated papillary (MDA-T32, MDA-T68), follicular (FTC-133), and anaplastic (ATC-8505c) human thyroid cancer cell lines in culture were first assessed for autophagic capacity after bafilomycin clamping. Cancer stem cells were quantified by flow cytometry for aldehyde dehydrogenase and thyrosphere formation assay. Scratch migration and Matrigel invasion assays were performed in the presence of known autophagy inhibitors: Lys05, chloroquine, and FIP200siRNA. RESULTS Autophagy activity was observed across all cell lines. Thyrosphere formation, aldehyde dehydrogenase activity, and CD44 expression were reduced with inhibition of autophagy in MDA-T32, MDA-T68, FTC-133, and 8505c cells. Similarly, cell migration and invasion were attenuated: 42% (FIP200siRNA), 78% (Lys05), P < .001 in MDA-T32 cells; 54% (FIP200siRNA), 67% (Lys05), P < .001 in MDA-T68 cells; 73% (FIP200siRNA), 71% (Lys05), P < .001) in FTC-133 cells; and 60% (FIP200siRNA), 90% (Lys05), P < .001 in 8505c cells. Invasion assays demonstrated a 73%, 39%, 75%, and 65.1% reduction in the presence of Lys05 in T32, T68, FTC-133, and 8505c cells, respectively. We observed similar reductions in invasion with FIP200siRNA: 61%, 62%, 55%, and 81.4% in T32, T68, FTC-133, and 8505c cells. CONCLUSION Autophagy is upregulated across multiple thyroid cancer subtypes. In thyroid cancer cell lines, inhibition of autophagy attenuates cancer stem cell viability, cell migration, and invasion suggesting a role for autophagy in the progression of thyroid cancer. Greater understanding of autophagy regulation in thyroid cancer will aid in developing targeted therapeutics.
Collapse
Affiliation(s)
- Tammy M Holm
- Department of Surgery, The University of Cincinnati, Cincinnati, OH; Department of Cancer Biology, Vontz Center for Molecular Studies, The University of Cincinnati, Cincinnati, OH.
| | - Z Christine Bian
- Department of Surgery, The University of Cincinnati, Cincinnati, OH
| | - Kanakaraju Manupati
- Department of Cancer Biology, Vontz Center for Molecular Studies, The University of Cincinnati, Cincinnati, OH
| | - Jun-Lin Guan
- Department of Surgery, The University of Cincinnati, Cincinnati, OH; Department of Cancer Biology, Vontz Center for Molecular Studies, The University of Cincinnati, Cincinnati, OH
| |
Collapse
|
12
|
Chen S, Wang W, Tan HY, Lu Y, Li Z, Qu Y, Wang N, Wang D. Role of Autophagy in the Maintenance of Stemness in Adult Stem Cells: A Disease-Relevant Mechanism of Action. Front Cell Dev Biol 2021; 9:715200. [PMID: 34414192 PMCID: PMC8369482 DOI: 10.3389/fcell.2021.715200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/15/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy is an intracellular scavenging mechanism induced to eliminate damaged, denatured, or senescent macromolecular substances and organelles in the body. The regulation of autophagy plays essential roles in the processes of cellular homeostasis and senescence. Dysregulated autophagy is a common feature of several human diseases, including cancers and neurodegenerative disorders. The initiation and development of these disorders have been shown to be associated with the maintenance of disease-specific stem cell compartments. In this review, we summarize recent advances in our understanding of the role of autophagy in the maintenance of stemness. Specifically, we focus on the intersection between autophagy and adult stem cells in the initiation and progression of specific diseases. Accordingly, this review highlights the role of autophagy in stemness maintenance from the perspective of disease-associated mechanisms, which may be fundamental to our understanding of the pathogeneses of human diseases and the development of effective therapies.
Collapse
Affiliation(s)
- Shanshan Chen
- School of Life Sciences, Jilin University, Changchun, China
| | - Wenqi Wang
- School of Life Sciences, Jilin University, Changchun, China
| | - Hor-Yue Tan
- Centre for Chinese Herbal Medicine Drug Development, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Zhiping Li
- School of Life Sciences, Jilin University, Changchun, China
| | - Yidi Qu
- School of Life Sciences, Jilin University, Changchun, China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| |
Collapse
|
13
|
Impact of Hypoxia over Human Viral Infections and Key Cellular Processes. Int J Mol Sci 2021; 22:ijms22157954. [PMID: 34360716 PMCID: PMC8347150 DOI: 10.3390/ijms22157954] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Oxygen is essential for aerobic cells, and thus its sensing is critical for the optimal maintenance of vital cellular and tissue processes such as metabolism, pH homeostasis, and angiogenesis, among others. Hypoxia-inducible factors (HIFs) play central roles in oxygen sensing. Under hypoxic conditions, the α subunit of HIFs is stabilized and forms active heterodimers that translocate to the nucleus and regulate the expression of important sets of genes. This process, in turn, will induce several physiological changes intended to adapt to these new and adverse conditions. Over the last decades, numerous studies have reported a close relationship between viral infections and hypoxia. Interestingly, this relation is somewhat bidirectional, with some viruses inducing a hypoxic response to promote their replication, while others inhibit hypoxic cellular responses. Here, we review and discuss the cellular responses to hypoxia and discuss how HIFs can promote a wide range of physiological and transcriptional changes in the cell that modulate numerous human viral infections.
Collapse
|
14
|
Hao M, Yeo SK, Turner K, Harold A, Yang Y, Zhang X, Guan JL. Autophagy Blockade Limits HER2+ Breast Cancer Tumorigenesis by Perturbing HER2 Trafficking and Promoting Release Via Small Extracellular Vesicles. Dev Cell 2021; 56:341-355.e5. [PMID: 33472043 DOI: 10.1016/j.devcel.2020.12.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/05/2020] [Accepted: 12/18/2020] [Indexed: 01/04/2023]
Abstract
Autophagy modulation is an emerging strategy for cancer therapy. By deleting an essential autophagy gene or disrupting its autophagy function, we determined a mechanism of HER2+ breast cancer tumorigenesis by directly regulating the oncogenic driver. Disruption of FIP200-mediated autophagy reduced HER2 expression on the tumor cell surface and abolished mammary tumorigenesis in MMTV-Neu mice. Decreased HER2 surface expression was due to trafficking from the Golgi to the endocytic pathways instead of the plasma membrane. Autophagy inhibition led to HER2 accumulation in early and late endosomes associated with intraluminal vesicles and released from tumor cells in small extracellular vesicles (sEVs). Increased HER2 release from sEVs correlated with reduced tumor cell surface levels. Blocking sEVs secretion rescued HER2 levels in tumor cells. Our results demonstrate a role for autophagy to promote tumorigenesis in HER2+ breast cancer. This suggests that blocking autophagy could supplement current anti-HER2 agents for treating the disease.
Collapse
Affiliation(s)
- Mingang Hao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Kevin Turner
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA; Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Alexis Harold
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Yongguang Yang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiaoting Zhang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| |
Collapse
|
15
|
Errichiello E, Giorda R, Gambale A, Iolascon A, Zuffardi O, Giglio S. RB1CC1 duplication and aberrant overexpression in a patient with schizophrenia: further phenotype delineation and proposal of a pathogenetic mechanism. Mol Genet Genomic Med 2020; 9:e1561. [PMID: 33340270 PMCID: PMC7963413 DOI: 10.1002/mgg3.1561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/20/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
Background Copy number variants in coding and noncoding genomic regions have been implicated as risk factor for schizophrenia (SCZ). Rare duplications of the RB1CC1 gene were found enriched in SCZ patients. Considering that the effect of such duplications on RB1CC1 expression has never been evaluated and partial gene duplications of RB1CC1 have also been reported in SCZ patients, it is unclear whether the pathogenesis is mediated by haploinsufficiency rather than genuine overexpression of the gene. Methods and Results We studied a patient with schizophrenia, suicidality, and obesity, who carried a de novo RB1CC1 complete duplication, as assessed by high‐resolution array‐CGH. Molecular breakpoint cloning allowed to identify nonhomologous end joining (NHEJ) as driving mechanism in this rearrangement. On the contrary, trio‐based whole‐exome sequencing excluded other potential causative variants related to the phenotype. Functional assays showed significant overexpression of RB1CC1 in the peripheral blood lymphocytes of the proband compared to control subjects, suggesting overdosage as leading mechanism in SCZ pathophysiology. Conclusion We hypothesized a pathogenetic model that might explain the correlation between RB1CC1 overexpression and schizophrenia by altering different cell signaling pathways, including autophagy, a promising therapeutic target for schizophrenic patients.
Collapse
Affiliation(s)
- Edoardo Errichiello
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Roberto Giorda
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Antonella Gambale
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II" of Naples, Naples, Italy.,CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Achille Iolascon
- Department of Molecular Medicine and Medical Biotechnologies, University "Federico II" of Naples, Naples, Italy.,CEINGE, Advanced Biotechnologies, Naples, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Unit of Medical Genetics, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
16
|
Dampened VEPH1 activates mTORC1 signaling by weakening the TSC1/TSC2 association in hepatocellular carcinoma. J Hepatol 2020; 73:1446-1459. [PMID: 32610114 DOI: 10.1016/j.jhep.2020.06.027] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 06/10/2020] [Accepted: 06/16/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND & AIMS Abnormal activation of mTORC1 signaling occurs at high frequency in hepatocellular carcinoma (HCC). However, the underlying causes of this aberrant activation remain elusive. In this study, we identified ventricular zone expressed pleckstrin homology domain-containing 1 (VEPH1) as a novel tumor suppressor that acts via the mTORC1 axis. METHODS We performed quantitative reverse-transcription PCR (92 pairs), western blot (30 pairs), and immunostaining (225 cases) assays in HCC tissue samples to evaluate VEPH1 expression. We explored the functional effects of VEPH1 on tumor growth and metastasis. Molecular and biochemical strategies were used to gain insight into mechanisms underlying the tumor-suppressive function of VEPH1. RESULTS VEPH1 is frequently silenced in HCC tissues, primarily resulting from let-7d upregulation. Decreased VEPH1 expression is associated with poor prognosis and aggressive tumor phenotypes in patients with HCC. VEPH1 mediates its tumor-suppressing activity through regulation of cell proliferation, migration and invasion in vitro and in vivo. The VEPH1 fragments 580-625aa and 447-579 aa bind directly to TSC1 (719-1,164aa) and TSC2 (1-420 aa), respectively, enhancing TSC1/TCS2 binding and promoting translocation of TSC2 to the membrane, which leads to increased TSC2 Ser1387 phosphorylation. Subsequently, Rheb is inactivated by the GTPase activity of TSC2, inhibiting mTORC1 signaling and contributing to changes in HCC carcinogenesis and metastasis. Rapamycin, the mTOR inhibitor, can inhibit the pro-tumorigenic effect of VEPH1 knockdown. Loss of VEPH1 correlates with decreased TSC2 Ser1387 phosphorylation and increased mTOR activity in HCC specimens. CONCLUSIONS The loss of VEPH1 leads to aberrantly activated mTORC1 signaling in HCC; rapamycin (or rapalogs) may serve as an effective treatment option for patients with HCC and dampened VEPH1 expression. LAY SUMMARY Abnormally activated mammalian target of rapamycin (mTOR) signaling is associated with poor tumor differentiation, early tumor recurrence and worse overall survival in patients with hepatocellular carcinoma. Herein, we identify low VEPH1 expression as a potential cause of abnormally activated mTOR signaling in hepatocellular carcinoma tissues. mTOR inhibitors could thus be an effective treatment option for patients with HCC and low VEPH1 expression.
Collapse
|
17
|
Yeo SK, Wang C, Guan JL. Role of FIP200 in inflammatory processes beyond its canonical autophagy function. Biochem Soc Trans 2020; 48:1599-1607. [PMID: 32662824 DOI: 10.1042/bst20191156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/17/2022]
Abstract
FIP200 (RB1CC1) is a critical regulator of canonical macroautophagy and has also emerged as a crucial regulator of selective autophagy as well as inflammatory processes. The illumination of FIP200's role in autophagy at the molecular level has been accompanied by studies demonstrating the importance of its autophagy function in physiological processes in mammals and pathological contexts such as cancer. However, there is an increasing appreciation that most, if not all of the autophagy genes, also play a role in other processes such as LC3-associated phagocytosis, vesicle trafficking and protein secretion. Consequently, this has led to efforts in generating specific mutants of autophagy genes that are more amenable to dissecting their autophagy versus non-autophagy functions. In this aspect, we have generated a FIP200 knock-in mouse allele that is defective for canonical macroautophagy. This has revealed a canonical-autophagy-independent function of FIP200 that is responsible for limiting pro-inflammatory signaling. In this review, we will discuss FIP200's role in this process, the implications with regards to cancer immunotherapy and highlight key prospective avenues to specifically dissect the distinct functions of FIP200.
Collapse
Affiliation(s)
- Syn Kok Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, U.S.A
| |
Collapse
|
18
|
Zhang Y, Shi J, Liu X, Xiao Z, Lei G, Lee H, Koppula P, Cheng W, Mao C, Zhuang L, Ma L, Li W, Gan B. H2A Monoubiquitination Links Glucose Availability to Epigenetic Regulation of the Endoplasmic Reticulum Stress Response and Cancer Cell Death. Cancer Res 2020; 80:2243-2256. [PMID: 32273282 DOI: 10.1158/0008-5472.can-19-3580] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 03/11/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
Epigenetic regulation of gene transcription has been shown to coordinate with nutrient availability, yet the mechanisms underlying this coordination remain incompletely understood. Here, we show that glucose starvation suppresses histone 2A K119 monoubiquitination (H2Aub), a histone modification that correlates with gene repression. Glucose starvation suppressed H2Aub levels independently of energy stress-mediated AMP-activated protein kinase activation and possibly through NADPH depletion and subsequent inhibition of BMI1, an integral component of polycomb-repressive complex 1 (PRC1) that catalyzes H2Aub on chromatin. Integrated transcriptomic and epigenomic analyses linked glucose starvation-mediated H2Aub repression to the activation of genes involved in the endoplasmic reticulum (ER) stress response. We further showed that this epigenetic mechanism has a role in glucose starvation-induced cell death and that pharmacologic inhibition of glucose transporter 1 and PRC1 synergistically promoted ER stress and suppressed tumor growth in vivo. Together, these results reveal a hitherto unrecognized epigenetic mechanism coupling glucose availability to the ER stress response. SIGNIFICANCE: These findings link glucose deprivation and H2A ubiquitination to regulation of the ER stress response in tumor growth and demonstrate pharmacologic susceptibility to inhibition of polycomb and glucose transporters.
Collapse
Affiliation(s)
- Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiejun Shi
- Department of Biological Chemistry, University of California, Irvine, Irvine, California.,Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Xiaoguang Liu
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zhenna Xiao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guang Lei
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Pranavi Koppula
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Weijie Cheng
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Chao Mao
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Wei Li
- Department of Biological Chemistry, University of California, Irvine, Irvine, California. .,Division of Biostatistics, Dan L. Duncan Cancer Center and Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. .,The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| |
Collapse
|
19
|
Eickhorst C, Licheva M, Kraft C. Scaffold proteins in bulk and selective autophagy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 172:15-35. [PMID: 32620241 DOI: 10.1016/bs.pmbts.2020.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Autophagy is a crucial cellular degradation and recycling pathway. During autophagy double-membrane vesicles, called autophagosomes, encapsulate cellular components and deliver their cargo to the lytic compartment for degradation. Formation of autophagosomes is regulated by the Atg1 kinase complex in yeast and the homologous ULK1 kinase complex in mammals. While research on Atg1 and ULK1 has advanced our understanding of how these protein kinases function in autophagy, the other Atg1/ULK1 kinase complex members have received much less attention. Here, we focus on the functions of the Atg1 kinase complex members Atg11 and Atg17 as well as the ULK1 kinase complex member FIP200 in autophagy. These three proteins act as scaffolds in their respective complexes. Recent studies have made it evident that they have similar but also distinct functions. In this article, we review our current understanding of how these scaffold proteins function from autophagosome formation to fusion and also discuss their possible roles in diseases.
Collapse
Affiliation(s)
- Christopher Eickhorst
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
20
|
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, Nakada D, Stockwell BR, Gan B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol 2020; 22:225-234. [PMID: 32029897 PMCID: PMC7008777 DOI: 10.1038/s41556-020-0461-8] [Citation(s) in RCA: 750] [Impact Index Per Article: 150.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 01/03/2020] [Indexed: 02/08/2023]
Abstract
Energy stress depletes ATP and induces cell death. Here, we identify an unexpected inhibitory role of energy stress on ferroptosis, a form of regulated cell death induced by iron-dependent lipid peroxidation. We found that ferroptotic cell death and lipid peroxidation can be inhibited by treatments that induce or mimic energy stress. Inactivation of AMP-activated protein kinase (AMPK), a sensor of cellular energy status, largely abolishes the protective effects of energy stress on ferroptosis in vitro and on ferroptosis-associated renal ischemia/reperfusion injury in vivo. Cancer cells with high basal AMPK activation are resistant to ferroptosis, and AMPK inactivation sensitizes these cells to ferroptosis. Functional and lipidomic analyses further link AMPK regulation of ferroptosis to AMPK-mediated phosphorylation of acetyl-CoA carboxylase (ACC) and polyunsaturated fatty acid biosynthesis. Together, our study demonstrates that energy stress inhibits ferroptosis partly through AMPK, and reveals an unexpected coupling between ferroptosis and AMPK-mediated energy stress signaling.
Collapse
Affiliation(s)
- Hyemin Lee
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Yilei Zhang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jitendra Kumar Meena
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Jongchan Kim
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,School of Natural Sciences, Department of Life Sciences, Sogang University, Seoul, Republic of Korea
| | - Li Zhuang
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siddhartha Tyagi
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Li Ma
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Thomas F Westbrook
- Verna & Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Therapeutic Innovation Center (THINC), Baylor College of Medicine, Houston, TX, USA
| | - Gregory R Steinberg
- Centre for Metabolism, Obesity and Diabetes Research, Department of Medicine and Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Brent R Stockwell
- Department of Biological Sciences, Columbia University, New York, NY, USA. .,Department of Chemistry, Columbia University, New York, NY, USA.
| | - Boyi Gan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA. .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA. .,Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
21
|
Zhang Y, Koppula P, Gan B. Regulation of H2A ubiquitination and SLC7A11 expression by BAP1 and PRC1. Cell Cycle 2019; 18:773-783. [PMID: 30907299 DOI: 10.1080/15384101.2019.1597506] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
SLC7A11 (or xCT) imports extracellular cystine into cells to promote glutathione synthesis, thus inhibiting ferroptosis. SLC7A11 expression is tightly controlled in normal cells and its dysregulation results in aberrant expression of SLC7A11 in human cancers. We recently discovered that tumor suppressor BAP1, a H2A deubiquitinase, represses SLC7A11 expression by reducing H2A ubiquitination (H2Aub) on the SLC7A11 promoter. BAP1 inactivation in cancer cells leads to SLC7A11 de-repression, ferroptosis resistance, and tumor development. Here we show that BAP1 promotes ferroptosis induced by class I ferroptosis inducer (FIN) erastin but not by class II FIN RSL3, further supporting that BAP1 regulates ferroptosis through SLC7A11. In addition, we studied how BAP1 coordinates with other transcription factors to regulate SLC7A11 expression and show that BAP1-mediated SLC7A11 repression does not require NRF2 and ATF4 transcription factors. Finally, we show that, while BAP1 decreases whereas PRC1 (a major H2Aub ubiquitin ligase) increases H2Aub binding on the SLC7A11 promoter, both BAP1 and PRC1 represses SLC7A11 expression, suggesting that a dynamic regulation of H2Aub is important for SLC7A11 repression. Together, our data provide additional insights on epigenetic regulation of SLC7A11 expression in cancer cells.
Collapse
Affiliation(s)
- Yilei Zhang
- a Department of Experimental Radiation Oncology , the University of Texas MD Anderson Cancer Center , Houston , TX , USA
| | - Pranavi Koppula
- a Department of Experimental Radiation Oncology , the University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Experimental Radiation Oncology , The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| | - Boyi Gan
- a Department of Experimental Radiation Oncology , the University of Texas MD Anderson Cancer Center , Houston , TX , USA.,b Department of Experimental Radiation Oncology , The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences , Houston , TX , USA
| |
Collapse
|
22
|
Intracellular signaling of the AMP-activated protein kinase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 116:171-207. [DOI: 10.1016/bs.apcsb.2018.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
23
|
Li L, Wang G, Hu JS, Zhang GQ, Chen HZ, Yuan Y, Li YL, Lv XJ, Tian FY, Pan SH, Bai XW, Sun B. RB1CC1-enhanced autophagy facilitates PSCs activation and pancreatic fibrogenesis in chronic pancreatitis. Cell Death Dis 2018; 9:952. [PMID: 30237496 PMCID: PMC6147947 DOI: 10.1038/s41419-018-0980-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/13/2022]
Abstract
Chronic pancreatitis (CP) is described as a progressive fibro-inflammatory disorder of the exocrine disease, which eventually leads to damage of the gland. Excessive activation of pancreatic stellate cells (PSCs) is a critical participant in the initiation of CP. Autophagy is involved in multiple degeneration and inflammation in acute pancreatitis and CP. In our study, we report that retinoblastoma coiled coil protein 1 (RB1CC1) expression and the autophagic level are elevated in activated PSCs. RB1CC1 is positively correlated with pancreatic fibrogenesis in tissues and plasma of CP patients. Knockdown of RB1CC1 restrains alpha smooth muscle actin (α-SMA) and collagen expressions, and autophagy in activated PSCs in vitro. Furthermore, we show that RB1CC1 induces PSC activation via binding to ULK1 promoter and the direct interaction with ULK1 protein. These suppress ULK1 expression and its kinase activity. In mice, knockdown of RB1CC1 blocks autophagy and then inhibits the pancreatic duct ligation-induced pancreatic fibrosis. Consequently, our study highlights that RB1CC1-mediated autophagy is a key event for the activation of PSCs. Inhibition of RB1CC1 alleviates autophagy, which plays a critical role in anti-fibrotic activation in PSCs and CP progression. RB1CC1 could be a novel strategy for the treatment of pancreatic fibrosis.
Collapse
Affiliation(s)
- Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Gang Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ji-Sheng Hu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Guang-Quan Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hong-Ze Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Yuan
- Department of Cardiology, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yi-Long Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xin-Jian Lv
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Feng-Yu Tian
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shang-Ha Pan
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue-Wei Bai
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China.
| |
Collapse
|
24
|
BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat Cell Biol 2018; 20:1181-1192. [PMID: 30202049 PMCID: PMC6170713 DOI: 10.1038/s41556-018-0178-0] [Citation(s) in RCA: 682] [Impact Index Per Article: 97.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 07/26/2018] [Indexed: 12/29/2022]
Abstract
The roles and regulatory mechanisms of ferroptosis, a non-apoptotic form of cell death, in cancer remain unclear. The tumor suppressor BRCA1-associated protein 1 (BAP1) encodes a nuclear de-ubiquitinating (DUB) enzyme to reduce histone 2A ubiquitination (H2Aub) on chromatin. Here integrated transcriptomic, epigenomic, and cancer genomic analyses link BAP1 to metabolism-related biological processes, and identify cystine transporter SLC7A11 as a key BAP1 target gene in human cancers. Functional studies reveal that BAP1 decreases H2Aub occupancy on the SLC7A11 promoter and represses SLC7A11 expression in a DUB-dependent manner and that BAP1 inhibits cystine uptake through repressing SLC7A11 expression, leading to elevated lipid peroxidation and ferroptosis. Furthermore, we show that BAP1 inhibits tumor development partly through SLC7A11 and ferroptosis and that cancer-associated BAP1 mutants lose their abilities to repress SLC7A11 and to promote ferroptosis. Together, our results uncover a previously unappreciated epigenetic mechanism coupling ferroptosis to tumor suppression.
Collapse
|
25
|
Fontana R, Vivo M. Dynamics of p14ARF and Focal Adhesion Kinase-Mediated Autophagy in Cancer. Cancers (Basel) 2018; 10:cancers10070221. [PMID: 29966311 PMCID: PMC6071150 DOI: 10.3390/cancers10070221] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/22/2018] [Accepted: 06/26/2018] [Indexed: 12/23/2022] Open
Abstract
It has been widely shown that the focal adhesion kinase (FAK) is involved in nearly every aspect of cancer, from invasion to metastasis to epithelial–mesenchymal transition and maintenance of cancer stem cells. FAK has been shown to interact with p14ARF (alternative reading frame)—a well-established tumor suppressor—and functions in the negative regulation of cancer through both p53-dependent and -independent pathways. Interestingly, both FAK and ARF (human and mouse counterpart) proteins, as well as p53, are involved in autophagy—a process of “self-digestion”—whose main function is the recycling of cellular components and quality control of proteins and organelles. In the last years, an unexpected role of p14ARF in the survival of cancer cells has been underlined in different cellular contexts, suggesting a novel pro-oncogenic function of this protein. In this review, the mechanisms whereby ARF and FAK control autophagy are presented, as well as the role of autophagy in cell migration and spreading. Integrated investigation of these cell functions is extremely important to understand the mechanism of the basis of cell transformation and migration and thus cancer development.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| | - Maria Vivo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy.
| |
Collapse
|
26
|
Mowers EE, Sharifi MN, Macleod KF. Functions of autophagy in the tumor microenvironment and cancer metastasis. FEBS J 2018; 285:1751-1766. [PMID: 29356327 DOI: 10.1111/febs.14388] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 01/07/2018] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Macro-autophagy is an ancient and highly conserved self-degradative process that plays a homeostatic role in normal cells by eliminating organelles, pathogens, and protein aggregates. Autophagy, as it is routinely referred to, also allows cells to maintain metabolic sufficiency and survive under conditions of nutrient stress by recycling the by-products of autophagic degradation, such as fatty acids, amino acids, and nucleotides. Tumor cells are more reliant than normal cells on autophagy for survival in part due to their rapid growth rate, altered metabolism, and nutrient-deprived growth environment. How this dependence of tumor cells on autophagy affects their progression to malignancy and metastatic disease is an area of increasing research focus. Here, we review recent work identifying critical functions for autophagy in tumor cell migration and invasion, tumor stem cell maintenance and therapy resistance, and cross-talk between tumor cells and their microenvironment.
Collapse
Affiliation(s)
- Erin E Mowers
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,Inter-disciplinary Scientist Training Program, Chicago, IL, USA
| | - Marina N Sharifi
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,Medical Scientist Training Program, Chicago, IL, USA
| | - Kay F Macleod
- The Ben May Department for Cancer Research, University of Chicago, IL, USA.,The Committee on Cancer Biology, Chicago, IL, USA.,The University of Chicago, IL, USA
| |
Collapse
|
27
|
Bakula D, Müller AJ, Zuleger T, Takacs Z, Franz-Wachtel M, Thost AK, Brigger D, Tschan MP, Frickey T, Robenek H, Macek B, Proikas-Cezanne T. WIPI3 and WIPI4 β-propellers are scaffolds for LKB1-AMPK-TSC signalling circuits in the control of autophagy. Nat Commun 2017; 8:15637. [PMID: 28561066 PMCID: PMC5460038 DOI: 10.1038/ncomms15637] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Autophagy is controlled by AMPK and mTOR, both of which associate with ULK1 and control the production of phosphatidylinositol 3-phosphate (PtdIns3P), a prerequisite for autophagosome formation. Here we report that WIPI3 and WIPI4 scaffold the signal control of autophagy upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes. In response to LKB1-mediated AMPK stimulation, WIPI4-ATG2 is released from a WIPI4-ATG2/AMPK-ULK1 complex and translocates to nascent autophagosomes, controlling their size, to which WIPI3, in complex with FIP200, also contributes. Upstream, WIPI3 associates with AMPK-activated TSC complex at lysosomes, regulating mTOR. Our WIPI interactome analysis reveals the scaffold functions of WIPI proteins interconnecting autophagy signal control and autophagosome formation. Our functional kinase screen uncovers a novel regulatory link between LKB1-mediated AMPK stimulation that produces a direct signal via WIPI4, and we show that the AMPK-related kinases NUAK2 and BRSK2 regulate autophagy through WIPI4. During autophagy, AMPK and mTOR associate with ULK1 and regulate phosphatidylinositol 3-phosphate (PtdIns3P) production that mediates autophagosome formation via WIPI proteins. Here the authors show WIPI3 and WIPI4 have a scaffolding function upstream of PtdIns3P production and have a role in the PtdIns3P effector function of WIPI1-WIPI2 at nascent autophagosomes.
Collapse
Affiliation(s)
- Daniela Bakula
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Amelie J Müller
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Theresia Zuleger
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Zsuzsanna Takacs
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tuebingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Ann-Katrin Thost
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Daniel Brigger
- Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Mario P Tschan
- Division of Experimental Pathology, Institute of Pathology, University of Bern, CH-3008 Bern, Switzerland
| | - Tancred Frickey
- Department of Biology, Applied Bioinformatics, Konstanz University, D-78457 Konstanz, Germany
| | - Horst Robenek
- Institute of Experimental Musculoskeletal Medicine, University Hospital Muenster, D-48149 Muenster, Germany
| | - Boris Macek
- International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,Proteome Center Tuebingen, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| | - Tassula Proikas-Cezanne
- Department of Molecular Biology, Interfaculty Institute of Cell Biology, Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany.,International Max Planck Research School 'From Molecules to Organisms', Max Planck Institute for Developmental Biology and Eberhard Karls University Tuebingen, D-72076 Tuebingen, Germany
| |
Collapse
|
28
|
|
29
|
Autophagy in cancer metastasis. Oncogene 2016; 36:1619-1630. [PMID: 27593926 PMCID: PMC5337449 DOI: 10.1038/onc.2016.333] [Citation(s) in RCA: 358] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Revised: 07/25/2016] [Accepted: 07/31/2016] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved self-degradative process that has a key role in cellular stress responses and survival. Recent work has begun to explore the function of autophagy in cancer metastasis, which is of particular interest given the dearth of effective therapeutic options for metastatic disease. Autophagy is induced upon progression of various human cancers to metastasis and together with data from genetically engineered mice and experimental metastasis models, a role for autophagy at nearly every phase of the metastatic cascade has been identified. Specifically, autophagy has been shown to be involved in modulating tumor cell motility and invasion, cancer stem cell viability and differentiation, resistance to anoikis, epithelial-to-mesenchymal transition, tumor cell dormancy and escape from immune surveillance, with emerging functions in establishing the pre-metastatic niche and other aspects of metastasis. In this review, we provide a general overview of how autophagy modulates cancer metastasis and discuss the significance of new findings for disease management.
Collapse
|
30
|
Boya P, Esteban-Martínez L, Serrano-Puebla A, Gómez-Sintes R, Villarejo-Zori B. Autophagy in the eye: Development, degeneration, and aging. Prog Retin Eye Res 2016; 55:206-245. [PMID: 27566190 DOI: 10.1016/j.preteyeres.2016.08.001] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023]
Abstract
Autophagy is a catabolic pathway that promotes the degradation and recycling of cellular components. Proteins, lipids, and even whole organelles are engulfed in autophagosomes and delivered to the lysosome for elimination. In response to stress, autophagy mediates the degradation of cell components, which are recycled to generate the nutrients and building blocks required to sustain cellular homeostasis. Moreover, it plays an important role in cellular quality control, particularly in neurons, in which the total burden of altered proteins and damaged organelles cannot be reduced by redistribution to daughter cells through cell division. Research has only begun to examine the role of autophagy in the visual system. The retina, a light-sensitive tissue, detects and transmits electrical impulses through the optic nerve to the visual cortex in the brain. Both the retina and the eye are exposed to a variety of environmental insults and stressors, including genetic mutations and age-associated alterations that impair their function. Here, we review the main studies that have sought to explain autophagy's importance in visual function. We describe the role of autophagy in retinal development and cell differentiation, and discuss the implications of autophagy dysregulation both in physiological aging and in important diseases such as age-associated macular degeneration and glaucoma. We also address the putative role of autophagy in promoting photoreceptor survival and discuss how selective autophagy could provide alternative means of protecting retinal cells. The findings reviewed here underscore the important role of autophagy in maintaining proper retinal function and highlight novel therapeutic approaches for blindness and other diseases of the eye.
Collapse
Affiliation(s)
- Patricia Boya
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain.
| | - Lorena Esteban-Martínez
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Ana Serrano-Puebla
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Raquel Gómez-Sintes
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Autophagy Lab, Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040, Madrid, Spain
| |
Collapse
|
31
|
Chen S, Wang C, Yeo S, Liang CC, Okamoto T, Sun S, Wen J, Guan JL. Distinct roles of autophagy-dependent and -independent functions of FIP200 revealed by generation and analysis of a mutant knock-in mouse model. Genes Dev 2016; 30:856-69. [PMID: 27013233 PMCID: PMC4826400 DOI: 10.1101/gad.276428.115] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 02/29/2016] [Indexed: 12/19/2022]
Abstract
Chen et al. generated a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. Autophagy is an evolutionarily conserved cellular process controlled through a set of essential autophagy genes (Atgs). However, there is increasing evidence that most, if not all, Atgs also possess functions independent of their requirement in canonical autophagy, making it difficult to distinguish the contributions of autophagy-dependent or -independent functions of a particular Atg to various biological processes. To distinguish these functions for FIP200 (FAK family-interacting protein of 200 kDa), an Atg in autophagy induction, we examined FIP200 interaction with its autophagy partner, Atg13. We found that residues 582–585 (LQFL) in FIP200 are required for interaction with Atg13, and mutation of these residues to AAAA (designated the FIP200-4A mutant) abolished its canonical autophagy function in vitro. Furthermore, we created a FIP200-4A mutant knock-in mouse model and found that specifically blocking FIP200 interaction with Atg13 abolishes autophagy in vivo, providing direct support for the essential role of the ULK1/Atg13/FIP200/Atg101 complex in the process beyond previous studies relying on the complete knockout of individual components. Analysis of the new mouse model showed that nonautophagic functions of FIP200 are sufficient to fully support embryogenesis by maintaining a protective role in TNFα-induced apoptosis. However, FIP200-mediated canonical autophagy is required to support neonatal survival and tumor cell growth. These studies provide the first genetic evidence linking an Atg's autophagy and nonautophagic functions to different biological processes in vivo.
Collapse
Affiliation(s)
- Song Chen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Chenran Wang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Syn Yeo
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Chun-Chi Liang
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Takako Okamoto
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Shaogang Sun
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Jian Wen
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| | - Jun-Lin Guan
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267, USA
| |
Collapse
|
32
|
Litviakov NV, Freidin MB, Sazonov AE, Khalyuzova MV, Buldakov MA, Karbyshev MS, Albakh ЕN, Isubakova DS, Gagarin АA, Nekrasov GB, Mironova EB, Izosimov АS, Takhauov RM, Karpov АB. Different patterns of allelic imbalance in sporadic tumors and tumors associated with long-term exposure to gamma-radiation. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2015; 794:8-16. [PMID: 26653978 DOI: 10.1016/j.mrgentox.2015.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 09/03/2015] [Accepted: 09/08/2015] [Indexed: 02/07/2023]
Abstract
The study aimed to reveal cancer related mutations in DNA repair and cell cycle genes associated with chronic occupational exposure to gamma-radiation in personnel of the Siberian Group of Chemical Enterprises (SGCE). Mutations were analyzed by comparing genotypes of malignant tumors and matched normal tissues of 255 cancer patients including 98 exposed to external gamma-radiation (mean dose 128.1±150.5mSv). Also a genetic association analysis was carried out in a sample of 149 cancer patients and 908 healthy controls occupationally exposed to gamma-radiation (153.2±204.6mSv and 150.5±211.2mSv, respectively). Eight SNPs of genes of DNA excision repair were genotyped (rs13181, rs1052133, rs1042522, rs2305427, rs4244285, rs1045642, rs1805419 and rs1801133). The mutation profiles in heterozygous loci for selected SNP were different between sporadic tumors and tumors in patients exposed to radiation. In sporadic tumors, heterozygous genotype Arg/Pro of the rs1042522 SNP mutated into Arg/0 in 15 cases (9.6%) and 0/Pro in 14 cases (8.9%). The genotype Lys/Gln of the rs13181 SNP mutated into Lys/0 and 0/Gln in 9 and 4 cases, respectively. In tumors of patients exposed to low-level radiation, the rs1042522 Arg/0 mutated genotype was found in 12 cases (12.1%), while in 2 cases (2%) 0/Pro mutation was observed. Finally, the rs13181 0/Gln mutated genotype was observed in 15 cases (16,5%) . Thus, our study showed the difference in patterns of allelic imbalance in tumors appeared under low-level radiation exposure and spontaneous tumors for selected SNPs. This suggests different mechanisms of inactivation of heterozygous genotypes in sporadic and radiation-induced tumors.
Collapse
Affiliation(s)
- Nikolai V Litviakov
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia; Tomsk Cancer Research Institute, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia.
| | - Maxim B Freidin
- Population Genetics Laboratory, Research Institute for Medical Genetics, Tomsk, Russia
| | - Aleksey E Sazonov
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia
| | - Maria V Khalyuzova
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Mikhail A Buldakov
- Tomsk Cancer Research Institute, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Mikhail S Karbyshev
- Tomsk Cancer Research Institute, Tomsk, Russia; National Research Tomsk State University, Tomsk, Russia
| | - Еlena N Albakh
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia
| | - Daria S Isubakova
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia
| | - Аleksey A Gagarin
- Clinical Hospital #81 of the Federal Medical and Biological Agency, Seversk, Russia
| | - Gennadiy B Nekrasov
- Clinical Hospital #81 of the Federal Medical and Biological Agency, Seversk, Russia
| | - Elena B Mironova
- Clinical Hospital #81 of the Federal Medical and Biological Agency, Seversk, Russia
| | - Аndrey S Izosimov
- Clinical Hospital #81 of the Federal Medical and Biological Agency, Seversk, Russia
| | - Ravil M Takhauov
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia
| | - Аndrei B Karpov
- Seversk Biophysical Research Centre of the Federal Medical and Biological Agency, Seversk, Russia
| |
Collapse
|
33
|
Wesselborg S, Stork B. Autophagy signal transduction by ATG proteins: from hierarchies to networks. Cell Mol Life Sci 2015; 72:4721-57. [PMID: 26390974 PMCID: PMC4648967 DOI: 10.1007/s00018-015-2034-8] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/13/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023]
Abstract
Autophagy represents an intracellular degradation process which is involved in both cellular homeostasis and disease settings. In the last two decades, the molecular machinery governing this process has been characterized in detail. To date, several key factors regulating this intracellular degradation process have been identified. The so-called autophagy-related (ATG) genes and proteins are central to this process. However, several additional molecules contribute to the outcome of an autophagic response. Several review articles describing the molecular process of autophagy have been published in the recent past. In this review article we would like to add the most recent findings to this knowledge, and to give an overview of the network character of the autophagy signaling machinery.
Collapse
Affiliation(s)
- Sebastian Wesselborg
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany
| | - Björn Stork
- Institute of Molecular Medicine I, Heinrich-Heine-University, Universitätsstr. 1, Building 23.12, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Czarny P, Pawlowska E, Bialkowska-Warzecha J, Kaarniranta K, Blasiak J. Autophagy in DNA damage response. Int J Mol Sci 2015; 16:2641-62. [PMID: 25625517 PMCID: PMC4346856 DOI: 10.3390/ijms16022641] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 01/12/2015] [Indexed: 12/15/2022] Open
Abstract
DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2-Atg13-FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11-Rad50-Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.
Collapse
Affiliation(s)
- Piotr Czarny
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, Pomorska 251, 92-216 Lodz, Poland.
| | - Jolanta Bialkowska-Warzecha
- Department of Infectious and Liver Diseases, Medical University of Lodz, Kniaziewicza 1/5, 92-347 Lodz, Poland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland.
| |
Collapse
|
35
|
The role of hypoxia-inducible factor-2 in digestive system cancers. Cell Death Dis 2015; 6:e1600. [PMID: 25590810 PMCID: PMC4669763 DOI: 10.1038/cddis.2014.565] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/24/2014] [Accepted: 11/26/2014] [Indexed: 01/24/2023]
Abstract
Hypoxia is an all but ubiquitous phenomenon in cancers. Two known hypoxia-inducible factors (HIFs), HIF-1α and HIF-2α, primarily mediate the transcriptional response to hypoxia. Despite the high homology between HIF-1α and HIF-2α, emerging evidence suggests differences between both molecules in terms of transcriptional targets as well as impact on multiple physiological pathways and tumorigenesis. To date, much progress has been made toward understanding the roles of HIF-2α in digestive system cancers. Indeed, HIF-2α has been shown to regulate multiple aspects of digestive system cancers, including cell proliferation, angiogenesis and apoptosis, metabolism, metastasis and resistance to chemotherapy. These findings make HIF-2α a critical regulator of this malignant phenotype. Here we summarize the function of HIF-2 during cancer development as well as its contribution to tumorigenesis in digestive system malignancies.
Collapse
|
36
|
WAZIR UMAR, SANDERS ANDREWJ, WAZIR ALI, BAIG RUQIAMEHMOOD, JIANG WENG, STER IRINAC, SHARMA ANUPK, MOKBEL KEFAH. Effect of the knockdown of death-associated protein 1 expression on cell adhesion, growth and migration in breast cancer cells. Oncol Rep 2014; 33:1450-8. [DOI: 10.3892/or.2014.3686] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 09/01/2014] [Indexed: 11/05/2022] Open
|
37
|
Abstract
Autophagy is a highly conserved cytoplasmic degradation pathway that has an impact on many physiological and disease states, including immunity, tumorigenesis and neurodegeneration. Recent studies suggest that autophagy may also have important functions in embryogenesis and development. Many autophagy gene-knockout mice have embryonic lethality at different stages of development. Furthermore, interactions of autophagy with crucial developmental pathways such as Wnt, Shh (Sonic Hedgehog), TGFβ (transforming growth factor β) and FGF (fibroblast growth factor) have been reported. This suggests that autophagy may regulate cell fate decisions, such as differentiation and proliferation. In the present article, we discuss how mammalian autophagy may affect phenotypes associated with development.
Collapse
|
38
|
Degenhardt F, Priebe L, Meier S, Lennertz L, Streit F, Witt SH, Hofmann A, Becker T, Mössner R, Maier W, Nenadic I, Sauer H, Mattheisen M, Buizer-Voskamp J, Ophoff RA, GROUP Consortium 26, Rujescu D, Giegling I, Ingason A, Wagner M, Delobel B, Andrieux J, Meyer-Lindenberg A, Heinz A, Walter H, Moebus S, Corvin A, Wellcome Trust Case Control Consortium 2, International Schizophrenia
Consortium 25KahnRené SLinszenDon Hvan OsJimWiersmaDurkBruggemanRichardCahnWiepkede HaanLieuweKrabbendamLydiaMyin-GermeysInez, Rietschel M, Nöthen MM, Cichon S. Duplications in RB1CC1 are associated with schizophrenia; identification in large European sample sets. Transl Psychiatry 2013; 3:e326. [PMID: 26151896 PMCID: PMC3849960 DOI: 10.1038/tp.2013.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 09/17/2013] [Accepted: 09/26/2013] [Indexed: 12/16/2022] Open
Abstract
Schizophrenia (SCZ) is a severe and debilitating neuropsychiatric disorder with an estimated heritability of ~80%. Recently, de novo mutations, identified by next-generation sequencing (NGS) technology, have been suggested to contribute to the risk of developing SCZ. Although these studies show an overall excess of de novo mutations among patients compared with controls, it is not easy to pinpoint specific genes hit by de novo mutations as actually involved in the disease process. Importantly, support for a specific gene can be provided by the identification of additional alterations in several independent patients. We took advantage of existing genome-wide single-nucleotide polymorphism data sets to screen for deletions or duplications (copy number variations, CNVs) in genes previously implicated by NGS studies. Our approach was based on the observation that CNVs constitute part of the mutational spectrum in many human disease-associated genes. In a discovery step, we investigated whether CNVs in 55 candidate genes, suggested from NGS studies, were more frequent among 1637 patients compared with 1627 controls. Duplications in RB1CC1 were overrepresented among patients. This finding was followed-up in large, independent European sample sets. In the combined analysis, totaling 8461 patients and 112 871 controls, duplications in RB1CC1 were found to be associated with SCZ (P=1.29 × 10(-5); odds ratio=8.58). Our study provides evidence for rare duplications in RB1CC1 as a risk factor for SCZ.
Collapse
Affiliation(s)
- F Degenhardt
- Institute of Human Genetics, University of
Bonn, Bonn, Germany,Department of Genomics, Life and Brain
Center, University of Bonn, Bonn, Germany,Institute of Human Genetics, University of
Bonn, Sigmund-Freud-Straße 25, 53127
Bonn, Germany. E-mail:
| | - L Priebe
- Institute of Human Genetics, University of
Bonn, Bonn, Germany,Department of Genomics, Life and Brain
Center, University of Bonn, Bonn, Germany
| | - S Meier
- Department of Genetic Epidemiology in
Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - L Lennertz
- Department of Psychiatry, University of
Bonn, Bonn, Germany
| | - F Streit
- Department of Genetic Epidemiology in
Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - S H Witt
- Department of Genetic Epidemiology in
Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - A Hofmann
- Institute of Human Genetics, University of
Bonn, Bonn, Germany,Department of Genomics, Life and Brain
Center, University of Bonn, Bonn, Germany
| | - T Becker
- German Center for Neurodegenerative Diseases
(DZNE), Bonn, Germany,Institute for Medical Biometry,
Informatics and Epidemiology, University of Bonn, Bonn,
Germany
| | - R Mössner
- Department of Psychiatry, University of
Bonn, Bonn, Germany
| | - W Maier
- Department of Psychiatry, University of
Bonn, Bonn, Germany,German Center for Neurodegenerative Diseases
(DZNE), Bonn, Germany
| | - I Nenadic
- Department of Psychiatry and Psychotherapy,
Jena University Hospital, Jena, Germany
| | - H Sauer
- Department of Psychiatry and Psychotherapy,
Jena University Hospital, Jena, Germany
| | - M Mattheisen
- Department of Genomics, Life and Brain
Center, University of Bonn, Bonn, Germany,Institute for Genomic Mathematics, University
of Bonn, Bonn, Germany,Channing Division of Network Medicine,
Brigham and Women's Hospital and Harvard Medical School, Boston,
MA, USA
| | - J Buizer-Voskamp
- Department of Psychiatry, Rudolf Magnus
Institute of Neuroscience, University Medical Center Utrecht,
Utrecht, The Netherlands,Department of Medical Genetics, University
Medical Center Utrecht, Utrecht, The Netherlands
| | - R A Ophoff
- Department of Psychiatry, Rudolf Magnus
Institute of Neuroscience, University Medical Center Utrecht,
Utrecht, The Netherlands,Department of Human Genetics, David Geffen
School of Medicine, University of California Los Angeles, Los
Angeles, CA, USA,Center for Neurobehavioral Genetics, Semel
Institute for Neuroscience & Human Behavior, University of California Los
Angeles, Los Angeles, CA, USA
| | | | - D Rujescu
- Molecular and Clinical Neurobiology,
Department of Psychiatry, Ludwig-Maximilians-University, Munich,
Germany,Department of Psychiatry, University of
Halle-Wittenberg, Halle, Germany
| | - I Giegling
- Molecular and Clinical Neurobiology,
Department of Psychiatry, Ludwig-Maximilians-University, Munich,
Germany,Department of Psychiatry, University of
Halle-Wittenberg, Halle, Germany
| | - A Ingason
- Department of Psychiatry, University of
Halle-Wittenberg, Halle, Germany
| | - M Wagner
- Department of Psychiatry, University of
Bonn, Bonn, Germany
| | - B Delobel
- Centre de Génétique
chromosomique, GHICL, Hôpital St-Vincent de Paul, Lille,
France
| | - J Andrieux
- Institut de Génétique
Médicale, Hopital Jeanne de Flandre, CHRU de Lille,
Lille, France
| | - A Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy,
Central Institute of Mental Health, Medical Faculty Mannheim, University of
Heidelberg, Mannheim, Germany
| | - A Heinz
- Department of Psychiatry and Psychotherapy,
Charité Campus Mitte, Berlin, Germany
| | - H Walter
- Department of Psychiatry and Psychotherapy,
Charité Campus Mitte, Berlin, Germany
| | - S Moebus
- Institute of Medical Informatics, Biometry,
and Epidemiology, University Duisburg-Essen, Essen,
Germany
| | - A Corvin
- Department of Psychiatry, Institute of
Neuroscience, Trinity College Dublin, Dublin, Ireland
| | | | - M Rietschel
- Department of Genetic Epidemiology in
Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg
University, Mannheim, Germany
| | - M M Nöthen
- Institute of Human Genetics, University of
Bonn, Bonn, Germany,Department of Genomics, Life and Brain
Center, University of Bonn, Bonn, Germany
| | - S Cichon
- Institute of Human Genetics, University of
Bonn, Bonn, Germany,Department of Genomics, Life and Brain
Center, University of Bonn, Bonn, Germany,Institute of Neuroscience and Medicine
(INM-1), Structural and Functional Organisation of the Brain, Genomic Imaging, Research
Centre Juelich, Juelich, Germany,Division of Medical Genetics, University
Hospital Basel and Department of Biomedicine, University of Basel,
Basel, Switzerland
| |
Collapse
|
39
|
The FoxO-BNIP3 axis exerts a unique regulation of mTORC1 and cell survival under energy stress. Oncogene 2013; 33:3183-94. [PMID: 23851496 DOI: 10.1038/onc.2013.273] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Revised: 05/07/2013] [Accepted: 05/09/2013] [Indexed: 12/17/2022]
Abstract
Normal cells possess adaptive mechanisms to couple energy availability with cell growth (cell size increase) and survival, and imbalances are associated with major diseases such as cancer. Inactivation of critical regulators involved in energy stress response, including adenosine monophosphate-activated protein kinase (AMPK), liver kinase B1 (LKB1), tuberous sclerosis complex 1 (TSC1) and tuberous sclerosis complex 2 (TSC2), leads to uncontrolled cell growth yet increased apoptosis under energy stress. These energy stress regulators are also important in tumor suppression and metabolism. Here, we show that forkhead box O (FoxO) transcription factor, a central regulator of tumor suppression and metabolism, plays a unique role in energy stress response. FoxOs inhibit the mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cell growth, under energy stress, and inactivation of FoxOs alleviates energy stress-mediated mTORC1 repression. Surprisingly, unlike AMPK-, Lkb1- or Tsc1/2-deficient cells, FoxO-deficient cells exhibit decreased apoptosis under energy stress. FoxOs operate to inhibit mTORC1 signaling and cell survival independent of AMPK and TSC. Integrated transcriptomic and functional analyses identified BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3)-a negative regulator of both Rheb and Bcl2 prosurvival family members-as a key downstream target of FoxOs to inhibit mTORC1 function and promote apoptosis in response to energy stress. We show that p38β, but not AMPK, is likely to function upstream of FoxO-BNIP3 to mediate energy stress response. Finally, we reveal that low expression of FoxO or BNIP3 correlates with poor clinical outcomes in renal cancer patients. Together, our study uncovers a novel signaling circuit functioning to mediate cellular energy responses to control cell growth and survival. These findings also have important implications to human cancers.
Collapse
|
40
|
Kim M, Park HL, Park HW, Ro SH, Nam SG, Reed JM, Guan JL, Lee JH. Drosophila Fip200 is an essential regulator of autophagy that attenuates both growth and aging. Autophagy 2013; 9:1201-13. [PMID: 23819996 DOI: 10.4161/auto.24811] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Autophagy-related 1 (Atg1)/Unc-51-like protein kinases (ULKs) are evolutionarily conserved proteins that play critical physiological roles in controlling autophagy, cell growth and neurodevelopment. RB1-inducible coiled-coil 1 (RB1CC1), also known as PTK2/FAK family-interacting protein of 200 kDa (FIP200) is a recently discovered binding partner of ULK1. Here we isolated the Drosophila RB1CC1/FIP200 homolog (Fip200/CG1347) and showed that it mediates Atg1-induced autophagy as a genetically downstream component in diverse physiological contexts. Fip200 loss-of-function mutants experienced severe mobility loss associated with neuronal autophagy defects and neurodegeneration. The Fip200 mutants were also devoid of both developmental and starvation-induced autophagy in salivary gland and fat body, while having no defects in axonal transport and projection in developing neurons. Interestingly, moderate downregulation of Fip200 accelerated both developmental growth and aging, accompanied by target of rapamycin (Tor) signaling upregulation. These results suggest that Fip200 is a critical downstream component of Atg1 and specifically mediates Atg1's autophagy-, aging- and growth-regulating functions.
Collapse
Affiliation(s)
- Myungjin Kim
- Department of Molecular and Integrative Physiology; University of Michigan; Ann Arbor, MI USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Wong PM, Puente C, Ganley IG, Jiang X. The ULK1 complex: sensing nutrient signals for autophagy activation. Autophagy 2013; 9:124-37. [PMID: 23295650 PMCID: PMC3552878 DOI: 10.4161/auto.23323] [Citation(s) in RCA: 384] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Atg1/ULK1 complex plays a central role in starvation-induced autophagy, integrating signals from upstream sensors such as MTOR and AMPK and transducing them to the downstream autophagy pathway. Much progress has been made in the last few years in understanding the mechanisms by which the complex is regulated through protein-protein interactions and post-translational modifications, providing insights into how the cell modulates autophagy, particularly in response to nutrient status. However, how the ULK1 complex transduces upstream signals to the downstream central autophagy pathway is still unclear. Although the protein kinase activity of ULK1 is required for its autophagic function, its protein substrate(s) responsible for autophagy activation has not been identified. Furthermore, examples of potential ULK1-independent autophagy have emerged, indicating that under certain specific contexts, the ULK1 complex might be dispensable for autophagy activation. This raises the question of how the autophagic machinery is activated independent of the ULK1 complex and what are the biological functions of such noncanonical autophagy pathways.
Collapse
Affiliation(s)
- Pui-Mun Wong
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Cindy Puente
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| | - Ian G. Ganley
- MRC Protein Phosphorylation Unit; University of Dundee; Dundee, Scotland UK
| | - Xuejun Jiang
- Cell Biology Program; Memorial Sloan-Kettering Cancer Center; New York, NY USA
| |
Collapse
|
42
|
Kobayashi S, Yoneda-Kato N, Itahara N, Yoshida A, Kato JY. The COP1 E3-ligase interacts with FIP200, a key regulator of mammalian autophagy. BMC BIOCHEMISTRY 2013; 14:1. [PMID: 23289756 PMCID: PMC3548756 DOI: 10.1186/1471-2091-14-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 01/02/2013] [Indexed: 01/07/2023]
Abstract
Background The ubiquitin ligase COP1, COnstitutively Photomorphogenic 1, functions in many biological responses in mammalian cells, but its downstream pathway remains unclear. Results Here, we identified FIP200, a key regulator of mammalian autophagy, as a novel COP1-interacting protein by yeast two-hybrid screening. The interaction was confirmed by a GST-pulldown assay. Split-GFP analysis revealed that interaction between COP1 and FIP200 predominantly occurred in the cytoplasm and was enhanced in cells treated with UV irradiation. Different forms of FIP200 protein were expressed in cultured mammalian cells, and ectopic expression of COP1 reduced one of such forms. Conclusions These data suggest that COP1 modulates FIP200-associated activities, which may contribute to a variety of cellular functions that COP1 is involved in.
Collapse
Affiliation(s)
- Saori Kobayashi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, Japan
| | | | | | | | | |
Collapse
|
43
|
Choi JD, Ryu M, Ae Park M, Jeong G, Lee JS. FIP200 inhibits β-catenin-mediated transcription by promoting APC-independent β-catenin ubiquitination. Oncogene 2012; 32:2421-32. [PMID: 22751121 DOI: 10.1038/onc.2012.262] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Focal adhesion kinase-family-interacting protein of 200 kDa (FIP200) has been shown to regulate multiple cellular functions, including cell adhesion, autophagy, development and proliferation. Furthermore, FIP200 is considered to have tumor-suppressive activity, which may be correlated with its inactivation in human breast cancers, in addition to its role as an important signal transduction node. Herein, we report that FIP200 interacts with the oncoprotein β-catenin. Moreover, FIP200 promotes destabilization of wild-type β-catenin, but not a cancer-causing form of β-catenin, and as a result represses the β-catenin-mediated transcription. FIP200-induced degradation of β-catenin is independent of adenomatous polyposis coli (APC) of the well-established β-catenin destruction complex (glycogen synthase kinase-3β/axin/APC), in a component of β-catenin E3 ubiquitin ligase, β-TrCP-dependent manner. Thus, the APC-independent β-catenin degradation by FIP200 suggests a role for FIP200 in tumor suppression in the presence of APC dysfunction. These findings reveal a new and important function of FIP200 in regulation of the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- J D Choi
- Department of Molecular Science and Technology, College of Natural Sciences, Ajou University, Suwon, Korea
| | | | | | | | | |
Collapse
|
44
|
Hama Y, Chano T, Inui T, Matsumoto K, Okabe H. Preparation of mouse monoclonal antibody for RB1CC1 and its clinical application. PLoS One 2012; 7:e32052. [PMID: 22396748 PMCID: PMC3291565 DOI: 10.1371/journal.pone.0032052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/21/2012] [Indexed: 11/18/2022] Open
Abstract
RB1-inducible coiled-coil 1 (RB1CC1; also known as FIP200) plays important roles in several biological pathways such as cell proliferation and autophagy. Evaluation of RB1CC1 expression can provide useful clinical information on various cancers and neurodegenerative diseases. In order to realize the clinical applications, it is necessary to establish a stable supply of antibody and reproducible procedures for the laboratory examinations. In the present study, we have generated mouse monoclonal antibodies for RB1CC1, and four kinds of antibodies (N1-8, N1-216, N3-2, and N3-42) were found to be optimal for clinical applications such as ELISA and immunoblots and work as well as the pre-existing polyclonal antibodies. N1-8 monoclonal antibody provided the best recognition of RB1CC1 in the clinico-pathological examination of formalin-fixed paraffin-embedded tissues. These monoclonal antibodies will help to generate new opportunities in scientific examinations in biology and clinical medicine.
Collapse
Affiliation(s)
- Yusuke Hama
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Shiga, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Shiga, Japan
- * E-mail:
| | - Takuma Inui
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Hidetoshi Okabe
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Shiga, Japan
| |
Collapse
|
45
|
Abstract
Hypoxia-inducible factors (HIFs) are broadly expressed in human cancers, and HIF1α and HIF2α were previously suspected to promote tumour progression through largely overlapping functions. However, this relatively simple model has now been challenged in light of recent data from various approaches that reveal unique and sometimes opposing activities of these HIFα isoforms in both normal physiology and disease. These effects are mediated in part through the regulation of unique target genes, as well as through direct and indirect interactions with important oncoproteins and tumour suppressors, including MYC and p53. As HIF inhibitors are currently undergoing clinical evaluation as cancer therapeutics, a more thorough understanding of the unique roles performed by HIF1α and HIF2α in human neoplasia is warranted.
Collapse
Affiliation(s)
- Brian Keith
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Randall S. Johnson
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093
| | - M. Celeste Simon
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Howard Hughes Medical Institute and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104
- Corresponding author: M. Celeste Simon, Ph.D., Scientific Director and Investigator, Abramson Family Cancer Research Institute, Investigator, Howard Hughes Medical Institute, Professor, Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, 456 BRB 111111, 421 Curie Boulevard, Philadelphia, PA 19104-6160, Tel: 215-746-5532, Fax: 215-746-5511,
| |
Collapse
|
46
|
Lequieu J, Chakrabarti A, Nayak S, Varner JD. Computational modeling and analysis of insulin induced eukaryotic translation initiation. PLoS Comput Biol 2011; 7:e1002263. [PMID: 22102801 PMCID: PMC3213178 DOI: 10.1371/journal.pcbi.1002263] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 09/23/2011] [Indexed: 11/18/2022] Open
Abstract
Insulin, the primary hormone regulating the level of glucose in the bloodstream, modulates a variety of cellular and enzymatic processes in normal and diseased cells. Insulin signals are processed by a complex network of biochemical interactions which ultimately induce gene expression programs or other processes such as translation initiation. Surprisingly, despite the wealth of literature on insulin signaling, the relative importance of the components linking insulin with translation initiation remains unclear. We addressed this question by developing and interrogating a family of mathematical models of insulin induced translation initiation. The insulin network was modeled using mass-action kinetics within an ordinary differential equation (ODE) framework. A family of model parameters was estimated, starting from an initial best fit parameter set, using 24 experimental data sets taken from literature. The residual between model simulations and each of the experimental constraints were simultaneously minimized using multiobjective optimization. Interrogation of the model population, using sensitivity and robustness analysis, identified an insulin-dependent switch that controlled translation initiation. Our analysis suggested that without insulin, a balance between the pro-initiation activity of the GTP-binding protein Rheb and anti-initiation activity of PTEN controlled basal initiation. On the other hand, in the presence of insulin a combination of PI3K and Rheb activity controlled inducible initiation, where PI3K was only critical in the presence of insulin. Other well known regulatory mechanisms governing insulin action, for example IRS-1 negative feedback, modulated the relative importance of PI3K and Rheb but did not fundamentally change the signal flow.
Collapse
Affiliation(s)
- Joshua Lequieu
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Anirikh Chakrabarti
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Satyaprakash Nayak
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey D. Varner
- School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Nishimura I, Chano T, Kita H, Matsusue Y, Okabe H. RB1CC1 protein suppresses type II collagen synthesis in chondrocytes and causes dwarfism. J Biol Chem 2011; 286:43925-43932. [PMID: 22049074 DOI: 10.1074/jbc.m111.264192] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
RB1-inducible coiled-coil 1 (RB1CC1) functions in various processes, such as cell growth, differentiation, senescence, apoptosis, and autophagy. The conditional transgenic mice with cartilage-specific RB1CC1 excess that were used in the present study were made for the first time by the Cre-loxP system. Cartilage-specific RB1CC1 excess caused dwarfism in mice without causing obvious abnormalities in endochondral ossification and subsequent skeletal development from embryo to adult. In vitro and in vivo analysis revealed that the dwarf phenotype in cartilaginous RB1CC1 excess was induced by reductions in the total amount of cartilage and the number of cartilaginous cells, following suppressions of type II collagen synthesis and Erk1/2 signals. In addition, we have demonstrated that two kinds of SNPs (T-547C and C-468T) in the human RB1CC1 promoter have significant influence on the self-transcriptional level. Accordingly, human genotypic variants of RB1CC1 that either stimulate or inhibit RB1CC1 transcription in vivo may cause body size variations.
Collapse
Affiliation(s)
- Ichiro Nishimura
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan; Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan.
| | - Hiroko Kita
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Yoshitaka Matsusue
- Department of Orthopedic Surgery, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| | - Hidetoshi Okabe
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga 520-2192, Japan
| |
Collapse
|
48
|
Wei H, Wei S, Gan B, Peng X, Zou W, Guan JL. Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev 2011; 25:1510-27. [PMID: 21764854 DOI: 10.1101/gad.2051011] [Citation(s) in RCA: 317] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Autophagy is a conserved cellular process for bulk degradation of intracellular protein and organelles in lysosomes. In contrast to elegant studies of beclin1 using mouse models and cultured cells demonstrating a tumor suppression function for autophagy, knockout of other essential autophagy proteins such as ATG5, ATG7, or FIP200 (FAK family-interacting protein of 200 kDa) in various tissues did not lead to malignant tumor development in vivo. Here, we report that inhibition of autophagy by FIP200 ablation suppresses mammary tumor initiation and progression in a mouse model of breast cancer driven by the PyMT oncogene. Deletion of FIP200 resulted in multiple autophagy defects including accumulation of ubiquitinated protein aggregates and p62/SQSTM1, deficient LC3 conversion, and increased number of mitochondria with abnormal morphology in tumor cells. FIP200 deletion did not affect apoptosis of mammary tumor cells or Ras-transformed mouse embryonic fibroblasts (MEFs), but significantly reduced their proliferation in both systems. We also observed a reduced glycolysis and cyclin D1 expression in FIP200-null mammary tumor cells and transformed MEFs. In addition, gene profiling studies revealed significantly elevated expression of interferon (IFN)-responsive genes in the early tumors of FIP200 conditional knockout mice, which was accompanied by increased infiltration of effector T cells in the tumor microenvironment triggered by an increased production of chemokines including CXCL10 in FIP200-null tumor cells. Together, these data provide strong evidence for a protumorigenesis role of autophagy in oncogene-induced tumors in vivo and suggest FIP200 as a potential target for cancer therapy.
Collapse
Affiliation(s)
- Huijun Wei
- Division of Molecular Medicine and Genetics, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | | | | | | | | | | |
Collapse
|
49
|
Koinuma D, Shinozaki M, Nagano Y, Ikushima H, Horiguchi K, Goto K, Chano T, Saitoh M, Imamura T, Miyazono K, Miyazawa K. RB1CC1 protein positively regulates transforming growth factor-beta signaling through the modulation of Arkadia E3 ubiquitin ligase activity. J Biol Chem 2011; 286:32502-12. [PMID: 21795712 PMCID: PMC3173165 DOI: 10.1074/jbc.m111.227561] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Transforming growth factor-β (TGF-β) signaling is controlled by a variety of regulators, of which Smad7, c-Ski, and SnoN play a pivotal role in its negative regulation. Arkadia is a RING-type E3 ubiquitin ligase that targets these negative regulators for degradation to enhance TGF-β signaling. In the present study we identified a candidate human tumor suppressor gene product RB1CC1/FIP200 as a novel positive regulator of TGF-β signaling that functions as a substrate-selective cofactor of Arkadia. Overexpression of RB1CC1 enhanced TGF-β signaling, and knockdown of endogenous RB1CC1 attenuated TGF-β-induced expression of target genes as well as TGF-β-induced cytostasis. RB1CC1 down-regulated the protein levels of c-Ski but not SnoN by enhancing the activity of Arkadia E3 ligase toward c-Ski. Substrate selectivity is primarily attributable to the physical interaction of RB1CC1 with substrates, suggesting its role as a scaffold protein. RB1CC1 thus appears to play a unique role as a modulator of TGF-β signaling by restricting substrate specificity of Arkadia.
Collapse
Affiliation(s)
- Daizo Koinuma
- Division of Biochemistry, The Cancer Institute of the Japanese Foundation for Cancer Research, Koto-ku, Tokyo 135-8550, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Napolioni V, Curatolo P. Genetics and molecular biology of tuberous sclerosis complex. Curr Genomics 2011; 9:475-87. [PMID: 19506736 PMCID: PMC2691673 DOI: 10.2174/138920208786241243] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2008] [Revised: 07/21/2008] [Accepted: 07/26/2008] [Indexed: 02/08/2023] Open
Abstract
Tuberous Sclerosis Complex is a multisystem disorder exhibiting a wide range of manifestations characterized by tumour-like lesions called hamartomas in the brain, skin, eyes, heart, lungs and kidneys. Tuberous Sclerosis Complex is genetically determined with an autosomal dominant inheritance and is caused by inactivating mutations in either the TSC1 or TSC2 genes. TSC1/2 genes play a fundamental role in the regulation of phosphoinositide 3-kinase (PI3K) signalling pathway, inhibiting the mammalian target of rapamycin (mTOR) through activation of the GTPase activity of Rheb. Mutations in TSC1/2 genes impair the inhibitory function of the hamartin/tuberin complex, leading to phosphorylation of the downstream effectors of mTOR, p70 S6 kinase (S6K), ribosomal protein S6 and the elongation factor binding protein 4E-BP1, resulting in uncontrolled cell growth and tumourigenesis. Despite recent promising genetic, diagnostic, and therapeutic advances in Tuberous Sclerosis Complex, continuing research in all aspects of this complex disease will be pivotal to decrease its associated morbidity and mortality. In this review we will discuss and analyse all the important findings in the molecular pathogenesis of Tuberous Sclerosis Complex, focusing on genetics and the molecular mechanisms that define this multisystemic disorder.
Collapse
Affiliation(s)
- Valerio Napolioni
- Laboratory of Human Genetics, Department of Molecular, Cellular and Animal Biology, University of Camerino, Camerino, Italy
| | | |
Collapse
|