1
|
Carlström A, Bridgers JB, Couvillion M, Singh A, Forné I, Imhof A, Churchman LS, Ott M. A molecular switch at the yeast mitoribosomal tunnel exit controls cytochrome b synthesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635641. [PMID: 39975335 PMCID: PMC11838262 DOI: 10.1101/2025.01.30.635641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mitochondrial gene expression needs to be balanced with cytosolic translation to produce oxidative phosphorylation complexes. In yeast, translational feedback loops involving lowly expressed proteins called translational activators help to achieve this balance. Synthesis of cytochrome b (Cytb or COB), a core subunit of complex III in the respiratory chain, is controlled by three translational activators and the assembly factor Cbp3-Cbp6. However, the molecular interface between the COB translational feedback loop and complex III assembly is yet unknown. Here, using protein-proximity mapping combined with selective mitoribosome profiling, we reveal the components and dynamics of the molecular switch controlling COB translation. Specifically, we demonstrate that Mrx4, a previously uncharacterized ligand of the mitoribosomal polypeptide tunnel exit, interacts with either the assembly factor Cbp3-Cbp6 or with the translational activator Cbs2. These reciprocal interactions determine whether the translational activator complex with bound COB mRNA can interact with the mRNA channel exit on the small ribosomal subunit for translation initiation. Organization of the feedback loop at the tunnel exit therefore orchestrates mitochondrial translation with respiratory chain biogenesis.
Collapse
Affiliation(s)
- Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Joseph B. Bridgers
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Mary Couvillion
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Abeer Singh
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Ignasi Forné
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - Axel Imhof
- Biomedical Center Munich, Faculty of Medicine, Ludwig Maximilian University of Munich, 82152, Planegg-Martinsried, Germany
| | - L. Stirling Churchman
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
2
|
Bohovych I, Menezes da Silva G, Ali SF, Bergmeyer EJ, Germany EM, Mayank A, Wohlschlegel JA, Casler JC, Rahman MA, Nazarko TY, Tarsio M, Shiota T, Lackner LL, Claypool SM, Kane PM, Barrientos A, Khalimonchuk O. Mdm38/LETM1 couples ion homeostasis and proteostatic mechanisms in the inner mitochondrial membrane. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.30.635785. [PMID: 39975406 PMCID: PMC11838341 DOI: 10.1101/2025.01.30.635785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The mitochondrial inner membrane is among the most protein-dense cellular membranes. Its functional integrity is maintained through a concerted action of several conserved mechanisms that are far from clear. Here, using the baker's yeast model, we functionally characterize Mdm38/LETM1, a disease-related protein implicated in mitochondrial translation and ion homeostasis, although the molecular basis of these connections remains elusive. Our findings reveal a novel role for Mdm38 in maintaining protein homeostasis within the inner membrane. Specifically, we demonstrate that Mdm38 is required for mitochondrial iron homeostasis and for signaling iron bioavailability from mitochondria to vacuoles. These processes are linked to the m- AAA quality control protease, whose unrestrained activity disrupts the assembly and stability of respiratory chain complexes in Mdm38-deficient cells. Our study highlights the central role of Mdm38 in mitochondrial biology and reveals how it couples proteostatic mechanisms to ion homeostasis across subcellular compartments.
Collapse
|
3
|
Mohammed SEM, Nowikovsky K. The mysteries of LETM1 pleiotropy. Pharmacol Res 2024; 210:107485. [PMID: 39481506 DOI: 10.1016/j.phrs.2024.107485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/02/2024]
Abstract
LETM1 is a nuclear-encoded protein located in the inner mitochondrial membrane, playing a critical role in regulating mitochondrial cation and volume homeostasis. However, numerous studies on functional features, molecular interactions, and disease-associated effects of LETM1 revealed that LETM1 is also involved in other metabolic functions including glucose utilization, mitochondrial DNA and ribosome organization, cristae architecture and respiratory complex stability. Undisputedly, osmoregulatory processes are essential for mitochondrial functionality, but the pleiotropic aspects of LETM1 challenges us to understand the core function of LETM1, which still remains elusive. In this review, we provide an overview of the current knowledge and latest developments regarding the activities involving LETM1. We highlight various findings that offer different functional perspectives and ideas on the core function of LETM1. Specifically, we emphasize data supporting LETM1's role as a mitochondrial translational factor, K+/H+ exchanger, or Ca2+/H+ exchanger, along with recent findings on its interaction with ATAD3A and TMBIM5. We also present the severe clinical implications of LETM1 deficiency. Finally, we discuss emerging questions raised by the different views on LETM1, which need to be addressed to guide future research directions and ultimately resolve the function of this essential protein and develop targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sami E M Mohammed
- Department of Biomedical Sciences and Pathobiology, Centre of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, Vetmeduni, Vienna, Austria
| | - Karin Nowikovsky
- Department of Biomedical Sciences and Pathobiology, Centre of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, Vetmeduni, Vienna, Austria.
| |
Collapse
|
4
|
Snyder M, Liu YK, Shang R, Xu H, Thrift C, Chen X, Chen J, Kim KH, Qiu J, Bi P, Tao WA, Kuang S. LETMD1 regulates mitochondrial protein synthesis and import to guard brown fat mitochondrial integrity and function. iScience 2024; 27:110944. [PMID: 39398236 PMCID: PMC11467678 DOI: 10.1016/j.isci.2024.110944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 09/10/2024] [Indexed: 10/15/2024] Open
Abstract
Thermogenic brown adipocytes (BAs) catabolize lipids to generate heat, representing powerful agents against the growing global obesity epidemic. We and others reported recently that LETMD1 is a BA-specific protein essential for mitochondrial structure and function, but the mechanisms of action remain unclear. We performed sequential digestion to demonstrate that LETMD1 is a trans-inner mitochondrial membrane protein. We then generated UCP1Cre-driven BA-specific Letmd1 knockout (Letmd1 UKO ) mice to show that Letmd1 UKO leads to protein aggregation, reactive oxidative stress, hyperpolarization, and mitophagy in BAs. We further employed TurboID proximity labeling to identify LETMD1-interacting proteins. Many candidate proteins are associated with mitochondrial ribosomes, protein import machinery, and electron transport chain complexes (ETC-I and ETC-IV). Using quantitative proteomics, we confirmed the elevated aggregations of ETC and mitochondrial ribosomal proteins, impairing mitochondrial protein synthesis in the Letmd1 UKO BAs. Therefore, LETMD1 may function to maintain mitochondrial proteostasis through regulating import of nuclear-encoded proteins and local protein translation in brown fat mitochondria.
Collapse
Affiliation(s)
- Madigan Snyder
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Yi-Kai Liu
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Renjie Shang
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Haowei Xu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Charlie Thrift
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Xiyue Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jingjuan Chen
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| | - Kun Ho Kim
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jiamin Qiu
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Pengpeng Bi
- Center for Molecular Medicine, University of Georgia, Athens, GA 30602, USA
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Shihuan Kuang
- Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Orthopaedic Surgery, School of Medicine, Duke University, Durham, NC 27710, USA
| |
Collapse
|
5
|
Kizmaz B, Nutz A, Egeler A, Herrmann JM. Protein insertion into the inner membrane of mitochondria: routes and mechanisms. FEBS Open Bio 2024; 14:1627-1639. [PMID: 38664330 PMCID: PMC11452304 DOI: 10.1002/2211-5463.13806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/28/2024] [Accepted: 04/11/2024] [Indexed: 10/06/2024] Open
Abstract
The inner membrane of mitochondria contains hundreds of different integral membrane proteins. These proteins transport molecules into and out of the matrix, they carry out multifold catalytic reactions and they promote the biogenesis or degradation of mitochondrial constituents. Most inner membrane proteins are encoded by nuclear genes and synthesized in the cytosol from where they are imported into mitochondria by translocases in the outer and inner membrane. Three different import routes direct proteins into the inner membrane and allow them to acquire their appropriate membrane topology. First, mitochondrial import intermediates can be arrested at the level of the TIM23 inner membrane translocase by a stop-transfer sequence to reach the inner membrane by lateral insertion. Second, proteins can be fully translocated through the TIM23 complex into the matrix from where they insert into the inner membrane in an export-like reaction. Carriers and other polytopic membrane proteins embark on a third insertion pathway: these hydrophobic proteins employ the specialized TIM22 translocase to insert from the intermembrane space (IMS) into the inner membrane. This review article describes these three targeting routes and provides an overview of the machinery that promotes the topogenesis of mitochondrial inner membrane proteins.
Collapse
Affiliation(s)
- Büsra Kizmaz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Nutz
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | - Annika Egeler
- Cell BiologyUniversity of Kaiserslautern, RPTUGermany
| | | |
Collapse
|
6
|
Tsujii M, Tanudjaja E, Zhang H, Shimizukawa H, Konishi A, Furuta T, Ishimaru Y, Uozumi N. Dissecting structure and function of the monovalent cation/H + antiporters Mdm38 and Ylh47 in Saccharomyces cerevisiae. J Bacteriol 2024; 206:e0018224. [PMID: 39082862 PMCID: PMC11340316 DOI: 10.1128/jb.00182-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/09/2024] [Indexed: 08/23/2024] Open
Abstract
Saccharomyces cerevisiae Mdm38 and Ylh47 are homologs of the Ca2+/H+ antiporter Letm1, a candidate gene for seizures associated with Wolf-Hirschhorn syndrome in humans. Mdm38 is important for K+/H+ exchange across the inner mitochondrial membrane and contributes to membrane potential formation and mitochondrial protein translation. Ylh47 also localizes to the inner mitochondrial membrane. However, knowledge of the structures and detailed transport activities of Mdm38 and Ylh47 is limited. In this study, we conducted characterization of the ion transport activities and related structural properties of Mdm38 and Ylh47. Growth tests using Na+/H+ antiporter-deficient Escherichia coli strain TO114 showed that Mdm38 and Ylh47 had Na+ efflux activity. Measurement of transport activity across E. coli-inverted membranes showed that Mdm38 and Ylh47 had K+/H+, Na+/H+, and Li+/H+ antiport activity, but unlike Letm1, they lacked Ca2+/H+ antiport activity. Deletion of the ribosome-binding domain resulted in decreased Na+ efflux activity in Mdm38. Structural models of Mdm38 and Ylh47 identified a highly conserved glutamic acid in the pore-forming membrane-spanning region. Replacement of this glutamic acid with alanine, a non-polar amino acid, significantly impaired the ability of Mdm38 and Ylh47 to complement the salt sensitivity of E. coli TO114. These findings not only provide important insights into the structure and function of the Letm1-Mdm38-Ylh47 antiporter family but by revealing their distinctive properties also shed light on the physiological roles of these transporters in yeast and animals. IMPORTANCE The inner membrane of mitochondria contains numerous ion transporters, including those facilitating H+ transport by the electron transport chain and ATP synthase to maintain membrane potential. Letm1 in the inner membrane of mitochondria in animals functions as a Ca2+/H+ antiporter. However, this study reveals that homologous antiporters in mitochondria of yeast, Mdm38 and Ylh47, do not transport Ca2+ but instead are selective for K+ and Na+. Additionally, the identification of conserved amino acids crucial for antiporter activity further expanded our understanding of the structure and function of the Letm1-Mdm38-Ylh47 antiporter family.
Collapse
Affiliation(s)
- Masaru Tsujii
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Ellen Tanudjaja
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Haoyu Zhang
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Haruto Shimizukawa
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Ayumi Konishi
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Tadaomi Furuta
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho, Yokohama, Japan
| | - Yasuhiro Ishimaru
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| | - Nobuyuki Uozumi
- Graduate School of Engineering, Tohoku University, Aobayama, Sendai, Japan
| |
Collapse
|
7
|
Poerschke S, Oeljeklaus S, Cruz-Zaragoza LD, Schenzielorz A, Dahal D, Hillen HS, Das H, Kremer LS, Valpadashi A, Breuer M, Sattmann J, Richter-Dennerlein R, Warscheid B, Dennerlein S, Rehling P. Identification of TMEM126A as OXA1L-interacting protein reveals cotranslational quality control in mitochondria. Mol Cell 2024; 84:345-358.e5. [PMID: 38199007 PMCID: PMC10805001 DOI: 10.1016/j.molcel.2023.12.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/17/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Cellular proteostasis requires transport of polypeptides across membranes. Although defective transport processes trigger cytosolic rescue and quality control mechanisms that clear translocases and membranes from unproductive cargo, proteins that are synthesized within mitochondria are not accessible to these mechanisms. Mitochondrial-encoded proteins are inserted cotranslationally into the inner membrane by the conserved insertase OXA1L. Here, we identify TMEM126A as a OXA1L-interacting protein. TMEM126A associates with mitochondrial ribosomes and translation products. Loss of TMEM126A leads to the destabilization of mitochondrial translation products, triggering an inner membrane quality control process, in which newly synthesized proteins are degraded by the mitochondrial iAAA protease. Our data reveal that TMEM126A cooperates with OXA1L in protein insertion into the membrane. Upon loss of TMEM126A, the cargo-blocked OXA1L insertase complexes undergo proteolytic clearance by the iAAA protease machinery together with its cargo.
Collapse
Affiliation(s)
- Sabine Poerschke
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany
| | | | - Alexander Schenzielorz
- Institute for Biology II, Faculty for Biology, Functional Proteomics, University of Freiburg, 79104 Freiburg, Germany
| | - Drishan Dahal
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Hauke Sven Hillen
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Research Group Structure and Function of Molecular Machines, Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany
| | - Hirak Das
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany
| | - Laura Sophie Kremer
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Anusha Valpadashi
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Mirjam Breuer
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Johannes Sattmann
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany
| | - Ricarda Richter-Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Goettingen Center for Molecular Biosciences, University of Goettingen, 37077 Goettingen, Germany
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, 97074 Wuerzburg, Germany; Cluster of Excellence CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | - Sven Dennerlein
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany.
| | - Peter Rehling
- Institute for Cellular Biochemistry, University of Goettingen, 37073 Goettingen, Germany; Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Goettingen, Goettingen, Germany; Goettingen Center for Molecular Biosciences, University of Goettingen, 37077 Goettingen, Germany; Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Translational Neuroinflammation and Automated Microscopy, Goettingen, Germany; Max Planck Institute for Multidisciplinary Sciences, 37077 Goettingen, Germany.
| |
Collapse
|
8
|
Wenger C, Harsman A, Niemann M, Oeljeklaus S, von Känel C, Calderaro S, Warscheid B, Schneider A. The Mba1 homologue of Trypanosoma brucei is involved in the biogenesis of oxidative phosphorylation complexes. Mol Microbiol 2023; 119:537-550. [PMID: 36829306 DOI: 10.1111/mmi.15048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/16/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Consistent with other eukaryotes, the Trypanosoma brucei mitochondrial genome encodes mainly hydrophobic core subunits of the oxidative phosphorylation system. These proteins must be co-translationally inserted into the inner mitochondrial membrane and are synthesized by the highly unique trypanosomal mitoribosomes, which have a much higher protein to RNA ratio than any other ribosome. Here, we show that the trypanosomal orthologue of the mitoribosome receptor Mba1 (TbMba1) is essential for normal growth of procyclic trypanosomes but redundant in the bloodstream form, which lacks an oxidative phosphorylation system. Proteomic analyses of TbMba1-depleted mitochondria from procyclic cells revealed reduced levels of many components of the oxidative phosphorylation system, most of which belong to the cytochrome c oxidase (Cox) complex, three subunits of which are mitochondrially encoded. However, the integrity of the mitoribosome and its interaction with the inner membrane were not affected. Pull-down experiments showed that TbMba1 forms a dynamic interaction network that includes the trypanosomal Mdm38/Letm1 orthologue and a trypanosome-specific factor that stabilizes the CoxI and CoxII mRNAs. In summary, our study suggests that the function of Mba1 in the biogenesis of membrane subunits of OXPHOS complexes is conserved among yeast, mammals and trypanosomes, which belong to two eukaryotic supergroups.
Collapse
Affiliation(s)
- Christoph Wenger
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Anke Harsman
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Moritz Niemann
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Silke Oeljeklaus
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany
| | - Corinne von Känel
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Salvatore Calderaro
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Bettina Warscheid
- Faculty of Chemistry and Pharmacy, Biochemistry II, Theodor Boveri-Institute, University of Würzburg, Würzburg, Germany.,CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - André Schneider
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.,Institute for Advanced Study (Wissenschaftskolleg) Berlin, Berlin, Germany
| |
Collapse
|
9
|
Tsirkas I, Zur T, Dovrat D, Cohen A, Ravkaie L, Aharoni A. Protein fluorescent labeling in live yeast cells using scFv-based probes. CELL REPORTS METHODS 2022; 2:100357. [PMID: 36590693 PMCID: PMC9795370 DOI: 10.1016/j.crmeth.2022.100357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 09/19/2022] [Accepted: 11/10/2022] [Indexed: 12/12/2022]
Abstract
The fusion of fluorescent proteins (FPs) to endogenous proteins is a widespread approach for microscopic examination of protein function, expression, and localization in the cell. However, proteins that are sensitive to FP fusion or expressed at low levels are difficult to monitor using this approach. Here, we develop a single-chain fragment variable (scFv)-FP approach to efficiently label Saccharomyces cerevisiae proteins that are tagged with repeats of hemagglutinin (HA)-tag sequences. We demonstrate the successful labeling of DNA-binding proteins and proteins localized to different cellular organelles including the nuclear membrane, peroxisome, Golgi apparatus, and mitochondria. This approach can lead to a significant increase in fluorescence intensity of the labeled protein, allows C'-terminal labeling of difficult-to-tag proteins and increased detection sensitivity of DNA-damage foci. Overall, the development of a scFv-FP labeling approach in yeast provides a general and simple tool for the function and localization analysis of the yeast proteome.
Collapse
Affiliation(s)
- Ioannis Tsirkas
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Tomer Zur
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Daniel Dovrat
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amit Cohen
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Lior Ravkaie
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
10
|
Zhang L, Dietsche F, Seitaj B, Rojas-Charry L, Latchman N, Tomar D, Wüst RC, Nickel A, Frauenknecht KB, Schoser B, Schumann S, Schmeisser MJ, Vom Berg J, Buch T, Finger S, Wenzel P, Maack C, Elrod JW, Parys JB, Bultynck G, Methner A. TMBIM5 loss of function alters mitochondrial matrix ion homeostasis and causes a skeletal myopathy. Life Sci Alliance 2022; 5:5/10/e202201478. [PMID: 35715207 PMCID: PMC9206080 DOI: 10.26508/lsa.202201478] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/25/2022] [Accepted: 05/31/2022] [Indexed: 01/13/2023] Open
Abstract
TMBIM5 deficiency reduces mitochondrial K+/H+ exchange. Mutation of the channel pore in mice destabilizes the protein and results in increased embryonic lethality and a skeletal myopathy. Ion fluxes across the inner mitochondrial membrane control mitochondrial volume, energy production, and apoptosis. TMBIM5, a highly conserved protein with homology to putative pH-dependent ion channels, is involved in the maintenance of mitochondrial cristae architecture, ATP production, and apoptosis. Here, we demonstrate that overexpressed TMBIM5 can mediate mitochondrial calcium uptake. Under steady-state conditions, loss of TMBIM5 results in increased potassium and reduced proton levels in the mitochondrial matrix caused by attenuated exchange of these ions. To identify the in vivo consequences of TMBIM5 dysfunction, we generated mice carrying a mutation in the channel pore. These mutant mice display increased embryonic or perinatal lethality and a skeletal myopathy which strongly correlates with tissue-specific disruption of cristae architecture, early opening of the mitochondrial permeability transition pore, reduced calcium uptake capability, and mitochondrial swelling. Our results demonstrate that TMBIM5 is an essential and important part of the mitochondrial ion transport system machinery with particular importance for embryonic development and muscle function.
Collapse
Affiliation(s)
- Li Zhang
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Bruno Seitaj
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Liliana Rojas-Charry
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Nadina Latchman
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Dhanendra Tomar
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Rob Ci Wüst
- Laboratory for Myology, Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Alexander Nickel
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - Katrin Bm Frauenknecht
- Institute of Neuropathology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Benedikt Schoser
- Friedrich-Baur-Institute, Department of Neurology, LMU Clinic, Munich, Germany
| | - Sven Schumann
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Johannes Vom Berg
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zürich, Switzerland
| | - Stefanie Finger
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Philip Wenzel
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Department of Cardiology, Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| | - Christoph Maack
- Department of Translational Research, Comprehensive Heart Failure Center (CHFC), University Clinic Würzburg, Würzburg, Germany
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Jan B Parys
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Geert Bultynck
- Department of Cellular and Molecular Medicine, KU Leuven, Laboratory of Molecular and Cellular Signaling, Leuven, Belgium
| | - Axel Methner
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
11
|
Kaiyrzhanov R, Mohammed SEM, Maroofian R, Husain RA, Catania A, Torraco A, Alahmad A, Dutra-Clarke M, Grønborg S, Sudarsanam A, Vogt J, Arrigoni F, Baptista J, Haider S, Feichtinger RG, Bernardi P, Zulian A, Gusic M, Efthymiou S, Bai R, Bibi F, Horga A, Martinez-Agosto JA, Lam A, Manole A, Rodriguez DP, Durigon R, Pyle A, Albash B, Dionisi-Vici C, Murphy D, Martinelli D, Bugiardini E, Allis K, Lamperti C, Reipert S, Risom L, Laugwitz L, Di Nottia M, McFarland R, Vilarinho L, Hanna M, Prokisch H, Mayr JA, Bertini ES, Ghezzi D, Østergaard E, Wortmann SB, Carrozzo R, Haack TB, Taylor RW, Spinazzola A, Nowikovsky K, Houlden H. Bi-allelic LETM1 variants perturb mitochondrial ion homeostasis leading to a clinical spectrum with predominant nervous system involvement. Am J Hum Genet 2022; 109:1692-1712. [PMID: 36055214 PMCID: PMC9502063 DOI: 10.1016/j.ajhg.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.
Collapse
Affiliation(s)
- Rauan Kaiyrzhanov
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Sami E M Mohammed
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna 1210, Austria
| | - Reza Maroofian
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Ralf A Husain
- Department of Neuropediatrics, Jena University Hospital, Jena 07747, Germany; Center for Rare Diseases, Jena University Hospital, Jena 07747, Germany
| | - Alessia Catania
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20126, Italy
| | - Alessandra Torraco
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Ahmad Alahmad
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; Kuwait Medical Genetics Centre, Al-Sabah Medical Area 80901, Kuwait
| | - Marina Dutra-Clarke
- Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, the University of California at Los Angeles, Los Angeles, CA 90095, USA
| | - Sabine Grønborg
- Center for Rare Diseases, Department of Pediatrics and Department of Genetics, Copenhagen University Hospital Rigshospitalet, Blegdamsvej 9, Copenhagen 2100, Denmark
| | - Annapurna Sudarsanam
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham B15 2TG, UK
| | - Julie Vogt
- West Midlands Regional Genetics Service, Birmingham Women's and Children's Hospital, Birmingham B15 2TG, UK
| | - Filippo Arrigoni
- Paediatric Radiology and Neuroradiology Department, V. Buzzi Children's Hospital, Milan 20154, Italy
| | - Julia Baptista
- Peninsula Medical School, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Shahzad Haider
- Paediatrics Wah Medical College NUMS, Wah Cantonment, Punjab 44000, Pakistan
| | - René G Feichtinger
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg 5020, Austria
| | - Paolo Bernardi
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Alessandra Zulian
- Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, Padova 35131, Italy
| | - Mirjana Gusic
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg 85764, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich 81675, Germany; Institute of Human Genetics, Technical University of Munich, Munich 81675, Germany
| | - Stephanie Efthymiou
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | | | - Farah Bibi
- Institute of Biochemistry and Biotechnology, Pir Mehar Ali Shah Arid Agriculture University, Rawalpindi 44000, Pakistan
| | - Alejandro Horga
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK; Neuromuscular Diseases Unit, Department of Neurology, Hospital Clinico San Carlos and San Carlos Health Research Institute (IdISSC), Madrid 28040, Spain
| | - Julian A Martinez-Agosto
- Department of Human Genetics, Division of Medical Genetics, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Amanda Lam
- Neurometabolic Unit, National Hospital for Neurology and Neurosurgery, London, UK; Department of Chemical Pathology, Great Ormond Street Hospital, WC1N 3BG London, UK
| | - Andreea Manole
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Diego-Perez Rodriguez
- Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Romina Durigon
- Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Angela Pyle
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| | - Buthaina Albash
- Kuwait Medical Genetics Centre, Al-Sabah Medical Area 80901, Kuwait
| | - Carlo Dionisi-Vici
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - David Murphy
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Enrico Bugiardini
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | | | - Costanza Lamperti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20126, Italy
| | - Siegfried Reipert
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Djerassiplatz 1, 1030 Wien, Austria
| | - Lotte Risom
- Department of Genetics, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen 2100, Denmark
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tübingen, Germany; Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen 72076, Germany
| | - Michela Di Nottia
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Robert McFarland
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Laura Vilarinho
- Unit of Neonatal Screening, Metabolism and Genetics, Department of Human Genetics, National Institute of Health Dr Ricardo Jorge, Porto 4000-055, Portugal
| | - Michael Hanna
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg 85764, Germany; Institute of Human Genetics, Technical University of Munich, Munich 81675, Germany
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg 5020, Austria
| | - Enrico Silvio Bertini
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20126, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan 20122, Italy
| | - Elsebet Østergaard
- Department of Genetics, Copenhagen University Hospital Rigshospitalet Blegdamsvej, Copenhagen 2100, Denmark; Institute for Clinical Medicine, University of Copenhagen, Copenhagen 2200, Denmark
| | - Saskia B Wortmann
- University Children's Hospital, Salzburger Landeskliniken (SALK) and Paracelsus Medical University (PMU), Salzburg 5020, Austria; Institute of Neurogenomics, Helmholtz Zentrum München, Neuherberg 85764, Germany; Institute of Human Genetics, Technical University of Munich, Munich 81675, Germany; Radboud Center for Mitochondrial Medicine, Department of Pediatrics, Amalia Children's Hospital, Radboudumc, Nijmegen 6525 EZ, the Netherlands
| | - Rosalba Carrozzo
- Unit of Muscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Hospital, IRCCS, Rome 00146, Italy
| | - Tobias B Haack
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen 72076, Germany; Centre for Rare Diseases, University of Tuebingen, Tübingen 72076, Germany
| | - Robert W Taylor
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, UK
| | - Antonella Spinazzola
- Department of Clinical Movement Neurosciences, Royal Free Campus, University College of London, Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Karin Nowikovsky
- Department of Biomedical Sciences, Institute of Physiology, Pathophysiology and Biophysics, University of Veterinary Medicine Vienna, Vienna 1210, Austria; Department of Internal Medicine I, ASCTR and Comprehensive Cancer Center, Medical University of Vienna, Vienna 1090, Austria.
| | - Henry Houlden
- Department of Neuromuscular Diseases, University College London, Queen Square, Institute of Neurology, London WC1N 3BG, UK.
| |
Collapse
|
12
|
Sharma N, Osman C. Yme2, a putative RNA recognition motif and AAA+ domain containing protein, genetically interacts with the mitochondrial protein export machinery. Biol Chem 2022; 403:807-817. [PMID: 35100666 PMCID: PMC9284673 DOI: 10.1515/hsz-2021-0398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/19/2022] [Indexed: 02/04/2023]
Abstract
The mitochondrial respiratory chain is composed of nuclear as well as mitochondrial-encoded subunits. A variety of factors mediate co-translational integration of mtDNA-encoded proteins into the inner membrane. In Saccharomyces cerevisiae, Mdm38 and Mba1 are ribosome acceptors that recruit the mitochondrial ribosome to the inner membrane, where the insertase Oxa1, facilitates membrane integration of client proteins. The protein Yme2 has previously been shown to be localized in the inner mitochondrial membrane and has been implicated in mitochondrial protein biogenesis, but its mode of action remains unclear. Here, we show that multiple copies of Yme2 assemble into a high molecular weight complex. Using a combination of bioinformatics and mutational analyses, we find that Yme2 possesses an RNA recognition motif (RRM), which faces the mitochondrial matrix and a AAA+ domain that is located in the intermembrane space. We further show that YME2 genetically interacts with MDM38, MBA1 and OXA1, which links the function of Yme2 to the mitochondrial protein biogenesis machinery.
Collapse
Affiliation(s)
- Nupur Sharma
- Faculty of Biology, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
- Graduate School of Life Sciences, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
- Graduate School of Life Sciences, Ludwig Maximilian University Munich, D-82152Planegg-Martinsried, Germany
| |
Collapse
|
13
|
Ruiz-Castilla FJ, Ruiz Pérez FS, Ramos-Moreno L, Ramos J. Candida albicans Potassium Transporters. Int J Mol Sci 2022; 23:ijms23094884. [PMID: 35563275 PMCID: PMC9105532 DOI: 10.3390/ijms23094884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 04/26/2022] [Indexed: 12/10/2022] Open
Abstract
Potassium is basic for life. All living organisms require high amounts of intracellular potassium, which fulfils multiple functions. To reach efficient potassium homeostasis, eukaryotic cells have developed a complex and tightly regulated system of transporters present both in the plasma membrane and in the membranes of internal organelles that allow correct intracellular potassium content and distribution. We review the information available on the pathogenic yeast Candida albicans. While some of the plasma membrane potassium transporters are relatively well known and experimental data about their nature, function or regulation have been published, in the case of most of the transporters present in intracellular membranes, their existence and even function have just been deduced because of their homology with those present in other yeasts, such as Saccharomyces cerevisiae. Finally, we analyse the possible links between pathogenicity and potassium homeostasis. We comment on the possibility of using some of these transporters as tentative targets in the search for new antifungal drugs.
Collapse
|
14
|
Priesnitz C, Böttinger L, Zufall N, Gebert M, Guiard B, van der Laan M, Becker T. Coupling to Pam16 differentially controls the dual role of Pam18 in protein import and respiratory chain formation. Cell Rep 2022; 39:110619. [PMID: 35385740 DOI: 10.1016/j.celrep.2022.110619] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 01/31/2022] [Accepted: 03/15/2022] [Indexed: 11/03/2022] Open
Abstract
The presequence translocase (TIM23 complex) imports precursor proteins into the mitochondrial inner membrane and matrix. The presequence translocase-associated motor (PAM) provides a driving force for transport into the matrix. The J-protein Pam18 stimulates the ATPase activity of the mitochondrial Hsp70 (mtHsp70). Pam16 recruits Pam18 to the TIM23 complex to ensure protein import. The Pam16-Pam18 module also associates with components of the respiratory chain, but the function of the dual localization of Pam16-Pam18 is largely unknown. Here, we show that disruption of the Pam16-Pam18 heterodimer causes redistribution of Pam18 to the respiratory chain supercomplexes, where it forms a homodimer. Redistribution of Pam18 decreases protein import into mitochondria but stimulates mtHsp70-dependent assembly of respiratory chain complexes. We conclude that coupling to Pam16 differentially controls the dual function of Pam18. It recruits Pam18 to the TIM23 complex to promote protein import but attenuates the Pam18 function in the assembly of respiratory chain complexes.
Collapse
Affiliation(s)
- Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Lena Böttinger
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Michael Gebert
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | | | - Martin van der Laan
- Medical Biochemistry and Molecular Biology, Center for Molecular Signaling, PZMS, Faculty of Medicine, Saarland University, 66421 Homburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
15
|
Garbincius JF, Elrod JW. Mitochondrial calcium exchange in physiology and disease. Physiol Rev 2022; 102:893-992. [PMID: 34698550 PMCID: PMC8816638 DOI: 10.1152/physrev.00041.2020] [Citation(s) in RCA: 206] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 08/16/2021] [Accepted: 10/19/2021] [Indexed: 12/13/2022] Open
Abstract
The uptake of calcium into and extrusion of calcium from the mitochondrial matrix is a fundamental biological process that has critical effects on cellular metabolism, signaling, and survival. Disruption of mitochondrial calcium (mCa2+) cycling is implicated in numerous acquired diseases such as heart failure, stroke, neurodegeneration, diabetes, and cancer and is genetically linked to several inherited neuromuscular disorders. Understanding the mechanisms responsible for mCa2+ exchange therefore holds great promise for the treatment of these diseases. The past decade has seen the genetic identification of many of the key proteins that mediate mitochondrial calcium uptake and efflux. Here, we present an overview of the phenomenon of mCa2+ transport and a comprehensive examination of the molecular machinery that mediates calcium flux across the inner mitochondrial membrane: the mitochondrial uniporter complex (consisting of MCU, EMRE, MICU1, MICU2, MICU3, MCUB, and MCUR1), NCLX, LETM1, the mitochondrial ryanodine receptor, and the mitochondrial permeability transition pore. We then consider the physiological implications of mCa2+ flux and evaluate how alterations in mCa2+ homeostasis contribute to human disease. This review concludes by highlighting opportunities and challenges for therapeutic intervention in pathologies characterized by aberrant mCa2+ handling and by summarizing critical unanswered questions regarding the biology of mCa2+ flux.
Collapse
Affiliation(s)
- Joanne F Garbincius
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - John W Elrod
- Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Heidorn-Czarna M, Heidorn HM, Fernando S, Sanislav O, Jarmuszkiewicz W, Mutzel R, Fisher PR. Chronic Activation of AMPK Induces Mitochondrial Biogenesis through Differential Phosphorylation and Abundance of Mitochondrial Proteins in Dictyostelium discoideum. Int J Mol Sci 2021; 22:ijms222111675. [PMID: 34769115 PMCID: PMC8584165 DOI: 10.3390/ijms222111675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Mitochondrial biogenesis is a highly controlled process that depends on diverse signalling pathways responding to cellular and environmental signals. AMP-activated protein kinase (AMPK) is a critical metabolic enzyme that acts at a central control point in cellular energy homeostasis. Numerous studies have revealed the crucial roles of AMPK in the regulation of mitochondrial biogenesis; however, molecular mechanisms underlying this process are still largely unknown. Previously, we have shown that, in cellular slime mould Dictyostelium discoideum, the overexpression of the catalytic α subunit of AMPK led to enhanced mitochondrial biogenesis, which was accompanied by reduced cell growth and aberrant development. Here, we applied mass spectrometry-based proteomics of Dictyostelium mitochondria to determine the impact of chronically active AMPKα on the phosphorylation state and abundance of mitochondrial proteins and to identify potential protein targets leading to the biogenesis of mitochondria. Our results demonstrate that enhanced mitochondrial biogenesis is associated with variations in the phosphorylation levels and abundance of proteins related to energy metabolism, protein synthesis, transport, inner membrane biogenesis, and cellular signalling. The observed changes are accompanied by elevated mitochondrial respiratory activity in the AMPK overexpression strain. Our work is the first study reporting on the global phosphoproteome profiling of D. discoideum mitochondria and its changes as a response to constitutively active AMPK. We also propose an interplay between the AMPK and mTORC1 signalling pathways in controlling the cellular growth and biogenesis of mitochondria in Dictyostelium as a model organism.
Collapse
Affiliation(s)
- Malgorzata Heidorn-Czarna
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, 50-383 Wroclaw, Poland
- Correspondence: ; Tel.: +48-71-375-62-73
| | - Herbert-Michael Heidorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
| | - Sanjanie Fernando
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| | - Oana Sanislav
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| | - Wieslawa Jarmuszkiewicz
- Laboratory of Mitochondrial Biochemistry, Department of Bioenergetics, Faculty of Biology, Adam Mickiewicz University, 61-614 Poznan, Poland;
| | - Rupert Mutzel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology-Microbiology, Freie Universität Berlin, 14195 Berlin, Germany; (H.-M.H.); (R.M.)
| | - Paul R. Fisher
- Discipline of Microbiology, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Bundoora, VIC 3086, Australia; (S.F.); (O.S.); (P.R.F.)
| |
Collapse
|
17
|
Srinivasan K, Banerjee A, Baid P, Dhur A, Sengupta J. Ribosome-membrane crosstalk: Co-translational targeting pathways of proteins across membranes in prokaryotes and eukaryotes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 128:163-198. [PMID: 35034718 DOI: 10.1016/bs.apcsb.2021.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Ribosomes are the molecular machine of living cells designed for decoding mRNA-encoded genetic information into protein. Being sophisticated machinery, both in design and function, the ribosome not only carries out protein synthesis, but also coordinates several other ribosome-associated cellular processes. One such process is the translocation of proteins across or into the membrane depending on their secretory or membrane-associated nature. These proteins comprise a large portion of a cell's proteome and act as key factors for cellular survival as well as several crucial functional pathways. Protein transport to extra- and intra-cytosolic compartments (across the eukaryotic endoplasmic reticulum (ER) or across the prokaryotic plasma membrane) or insertion into membranes majorly occurs through an evolutionarily conserved protein-conducting channel called translocon (eukaryotic Sec61 or prokaryotic SecYEG channels). Targeting proteins to the membrane-bound translocon may occur via post-translational or co-translational modes and it is often mediated by recognition of an N-terminal signal sequence in the newly synthesizes polypeptide chain. Co-translational translocation is coupled to protein synthesis where the ribosome-nascent chain complex (RNC) itself is targeted to the translocon. Here, in the light of recent advances in structural and functional studies, we discuss our current understanding of the mechanistic models of co-translational translocation, coordinated by the actively translating ribosomes, in prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Krishnamoorthi Srinivasan
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Aneek Banerjee
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priya Baid
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Ankit Dhur
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Jayati Sengupta
- Division of Structural Biology and Bioinformatics, CSIR-Indian Institute of Chemical Biology, Kolkata, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
18
|
Rossetti G, Ermer JA, Stentenbach M, Siira SJ, Richman TR, Milenkovic D, Perks KL, Hughes LA, Jamieson E, Xiafukaiti G, Ward NC, Takahashi S, Gray N, Viola HM, Hool LC, Rackham O, Filipovska A. A common genetic variant of a mitochondrial RNA processing enzyme predisposes to insulin resistance. SCIENCE ADVANCES 2021; 7:eabi7514. [PMID: 34559558 PMCID: PMC8462889 DOI: 10.1126/sciadv.abi7514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/04/2021] [Indexed: 05/31/2023]
Abstract
Mitochondrial energy metabolism plays an important role in the pathophysiology of insulin resistance. Recently, a missense N437S variant was identified in the MRPP3 gene, which encodes a mitochondrial RNA processing enzyme within the RNase P complex, with predicted impact on metabolism. We used CRISPR-Cas9 genome editing to introduce this variant into the mouse Mrpp3 gene and show that the variant causes insulin resistance on a high-fat diet. The variant did not influence mitochondrial gene expression markedly, but instead, it reduced mitochondrial calcium that lowered insulin release from the pancreatic islet β cells of the Mrpp3 variant mice. Reduced insulin secretion resulted in lower insulin levels that contributed to imbalanced metabolism and liver steatosis in the Mrpp3 variant mice on a high-fat diet. Our findings reveal that the MRPP3 variant may be a predisposing factor to insulin resistance and metabolic disease in the human population.
Collapse
Affiliation(s)
- Giulia Rossetti
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Judith A. Ermer
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Maike Stentenbach
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Stefan J. Siira
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Tara R. Richman
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | | | - Kara L. Perks
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Laetitia A. Hughes
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
| | - Emma Jamieson
- Faculty of Health and Medical Sciences, Medical School, The Rural Clinical School of Western Australia, The University of Western Australia, Bunbury, Western Australia 6230, Australia
| | - Gulibaikelamu Xiafukaiti
- Department of Anatomy and Embryology, Faculty of Medicine, Laboratory Animal Resource Center (LARC), and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Natalie C. Ward
- Dobney Hypertension Centre, Medical School, The University of Western Australia, Perth, Western Australia, Australia
| | - Satoru Takahashi
- Department of Anatomy and Embryology, Faculty of Medicine, Laboratory Animal Resource Center (LARC), and Transborder Medical Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Nicola Gray
- Australian National Phenome Centre, Centre for Computational and Systems Medicine, Health Futures Institute, Murdoch University, Harry Perkins Building, Perth, Western Australia 6150, Australia
| | - Helena M. Viola
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Livia C. Hool
- School of Human Sciences (Physiology), The University of Western Australia, Crawley, Western Australia 6009, Australia
- Victor Chang Cardiac Research Institute, Darlinghurst, Sydney, New South Wales 2010, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Curtin Medical School, Curtin University, Bentley, Western Australia 6102, Australia
- Curtin Health Innovation Research Institute, Curtin University, Bentley, Western Australia 6102, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research, Nedlands, Western Australia 6009, Australia
- ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Centre for Medical Research, The University of Western Australia, QEII Medical Centre, Nedlands, Western Australia 6009, Australia
- Telethon Kids Institute, Northern Entrance, Perth Children’s Hospital, 15 Hospital Avenue, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
19
|
Melatonin Targets Metabolism in Head and Neck Cancer Cells by Regulating Mitochondrial Structure and Function. Antioxidants (Basel) 2021; 10:antiox10040603. [PMID: 33919790 PMCID: PMC8070770 DOI: 10.3390/antiox10040603] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Metabolic reprogramming, which is characteristic of cancer cells that rapidly adapt to the hypoxic microenvironment and is crucial for tumor growth and metastasis, is recognized as one of the major mechanisms underlying therapeutic resistance. Mitochondria, which are directly involved in metabolic reprogramming, are used to design novel mitochondria-targeted anticancer agents. Despite being targeted by melatonin, the functional role of mitochondria in melatonin’s oncostatic activity remains unclear. In this study, we aim to investigate the role of melatonin in mitochondrial metabolism and its functional consequences in head and neck cancer. We analyzed the effects of melatonin on head and neck squamous cell carcinoma (HNSCC) cell lines (Cal-27 and SCC-9), which were treated with 100, 500, and 1500 µM of melatonin for 1, 3, and 5 days, and found a connection between a change of metabolism following melatonin treatment and its effects on mitochondria. Our results demonstrate that melatonin induces a shift to an aerobic mitochondrial metabolism that is associated with changes in mitochondrial morphology, function, fusion, and fission in HNSCC. We found that melatonin increases oxidative phosphorylation (OXPHOS) and inhibits glycolysis in HNSCC, resulting in increased ROS production, apoptosis, and mitophagy, and decreased cell proliferation. Our findings highlight new molecular pathways involved in melatonin’s oncostatic activity, suggesting that it could act as an adjuvant agent in a potential therapy for cancer patients. We also found that high doses of melatonin, such as those used in this study for its cytotoxic impact on HNSCC cells, might lead to additional effects through melatonin receptors.
Collapse
|
20
|
Natarajan GK, Mishra J, Camara AKS, Kwok WM. LETM1: A Single Entity With Diverse Impact on Mitochondrial Metabolism and Cellular Signaling. Front Physiol 2021; 12:637852. [PMID: 33815143 PMCID: PMC8012663 DOI: 10.3389/fphys.2021.637852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/25/2021] [Indexed: 12/11/2022] Open
Abstract
Nearly 2 decades since its discovery as one of the genes responsible for the Wolf-Hirschhorn Syndrome (WHS), the primary function of the leucine-zipper EF-hand containing transmembrane 1 (LETM1) protein in the inner mitochondrial membrane (IMM) or the mechanism by which it regulates mitochondrial Ca2+ handling is unresolved. Meanwhile, LETM1 has been associated with the regulation of fundamental cellular processes, such as development, cellular respiration and metabolism, and apoptosis. This mini-review summarizes the diversity of cellular functions impacted by LETM1 and highlights the multiple roles of LETM1 in health and disease.
Collapse
Affiliation(s)
- Gayathri K Natarajan
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jyotsna Mishra
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, United States.,Cancer Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
21
|
Tanwar J, Singh JB, Motiani RK. Molecular machinery regulating mitochondrial calcium levels: The nuts and bolts of mitochondrial calcium dynamics. Mitochondrion 2021; 57:9-22. [PMID: 33316420 PMCID: PMC7610953 DOI: 10.1016/j.mito.2020.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.
Collapse
Affiliation(s)
- Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 10025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaya Bharti Singh
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
22
|
Hierro-Yap C, Šubrtová K, Gahura O, Panicucci B, Dewar C, Chinopoulos C, Schnaufer A, Zíková A. Bioenergetic consequences of F oF 1-ATP synthase/ATPase deficiency in two life cycle stages of Trypanosoma brucei. J Biol Chem 2021; 296:100357. [PMID: 33539923 PMCID: PMC7949148 DOI: 10.1016/j.jbc.2021.100357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/23/2020] [Accepted: 01/28/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial ATP synthase is a reversible nanomotor synthesizing or hydrolyzing ATP depending on the potential across the membrane in which it is embedded. In the unicellular parasite Trypanosoma brucei, the direction of the complex depends on the life cycle stage of this digenetic parasite: in the midgut of the tsetse fly vector (procyclic form), the FoF1–ATP synthase generates ATP by oxidative phosphorylation, whereas in the mammalian bloodstream form, this complex hydrolyzes ATP and maintains mitochondrial membrane potential (ΔΨm). The trypanosome FoF1–ATP synthase contains numerous lineage-specific subunits whose roles remain unknown. Here, we seek to elucidate the function of the lineage-specific protein Tb1, the largest membrane-bound subunit. In procyclic form cells, Tb1 silencing resulted in a decrease of FoF1–ATP synthase monomers and dimers, rerouting of mitochondrial electron transfer to the alternative oxidase, reduced growth rate and cellular ATP levels, and elevated ΔΨm and total cellular reactive oxygen species levels. In bloodstream form parasites, RNAi silencing of Tb1 by ∼90% resulted in decreased FoF1–ATPase monomers and dimers, but it had no apparent effect on growth. The same findings were obtained by silencing of the oligomycin sensitivity-conferring protein, a conserved subunit in T. brucei FoF1–ATP synthase. However, as expected, nearly complete Tb1 or oligomycin sensitivity-conferring protein suppression was lethal because of the inability to sustain ΔΨm. The diminishment of FoF1–ATPase complexes was further accompanied by a decreased ADP/ATP ratio and reduced oxygen consumption via the alternative oxidase. Our data illuminate the often diametrically opposed bioenergetic consequences of FoF1–ATP synthase loss in insect versus mammalian forms of the parasite.
Collapse
Affiliation(s)
- Carolina Hierro-Yap
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Karolína Šubrtová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Brian Panicucci
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | - Caroline Dewar
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | | | - Achim Schnaufer
- Institute of Immunology and Infection Research, University of Edinburgh, United Kingdom
| | - Alena Zíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, Ceske Budejovice, Czech Republic; Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic.
| |
Collapse
|
23
|
Zhou B, Yang C, Yan X, Shi Z, Xiao H, Wei X, Jiang N, Wu Z. LETM1 Knockdown Promotes Autophagy and Apoptosis Through AMP-Activated Protein Kinase Phosphorylation-Mediated Beclin-1/Bcl-2 Complex Dissociation in Hepatocellular Carcinoma. Front Oncol 2021; 10:606790. [PMID: 33552978 PMCID: PMC7859436 DOI: 10.3389/fonc.2020.606790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/04/2020] [Indexed: 12/24/2022] Open
Abstract
Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is an inner mitochondrial membrane protein that has been reported to be involved in many primary tumors and may regulate many biological processes. However, the biological role and molecular mechanism of LETM1 in the progression of hepatocellular carcinoma (HCC) remain largely unknown. In this study, we found that LETM1 was highly expressed in HCC tissues and cell lines and that higher LETM1 expression was associated with a lower overall survival rate in HCC patients. In addition, knockdown of LETM1 inhibited proliferation and enhanced apoptosis and autophagy in the Huh 7 and QGY-7701 liver cancer cell lines. Mechanistically, knockdown of LETM1 dissociated the Beclin-1/Bcl-2 complex through phosphorylation of AMPK and Bcl-2. These results demonstrated that LETM1 is involved in the development of HCC and could be a novel therapeutic target in HCC.
Collapse
Affiliation(s)
- Baoyong Zhou
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Changhong Yang
- Department of Bioinformatics, Chongqing Medical University, Chongqing, China
| | - Xiong Yan
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhengrong Shi
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Heng Xiao
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xufu Wei
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
24
|
Transmembrane BAX Inhibitor-1 Motif Containing Protein 5 (TMBIM5) Sustains Mitochondrial Structure, Shape, and Function by Impacting the Mitochondrial Protein Synthesis Machinery. Cells 2020; 9:cells9102147. [PMID: 32977469 PMCID: PMC7598220 DOI: 10.3390/cells9102147] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/18/2020] [Accepted: 09/18/2020] [Indexed: 12/15/2022] Open
Abstract
The Transmembrane Bax Inhibitor-1 motif (TMBIM)-containing protein family is evolutionarily conserved and has been implicated in cell death susceptibility. The only member with a mitochondrial localization is TMBIM5 (also known as GHITM or MICS1), which affects cristae organization and associates with the Parkinson's disease-associated protein CHCHD2 in the inner mitochondrial membrane. We here used CRISPR-Cas9-mediated knockout HAP1 cells to shed further light on the function of TMBIM5 in physiology and cell death susceptibility. We found that compared to wild type, TMBIM5-knockout cells were smaller and had a slower proliferation rate. In these cells, mitochondria were more fragmented with a vacuolar cristae structure. In addition, the mitochondrial membrane potential was reduced and respiration was attenuated, leading to a reduced mitochondrial ATP generation. TMBIM5 did not associate with Mic10 and Mic60, which are proteins of the mitochondrial contact site and cristae organizing system (MICOS), nor did TMBIM5 knockout affect their expression levels. TMBIM5-knockout cells were more sensitive to apoptosis elicited by staurosporine and BH3 mimetic inhibitors of Bcl-2 and Bcl-XL. An unbiased proteomic comparison identified a dramatic downregulation of proteins involved in the mitochondrial protein synthesis machinery in TMBIM5-knockout cells. We conclude that TMBIM5 is important to maintain the mitochondrial structure and function possibly through the control of mitochondrial biogenesis.
Collapse
|
25
|
Zha L, Chen M, Yu C, Guo Q, Zhao X, Li Z, Zhao Y, Li C, Yang H. Differential proteomics study of postharvest Volvariella volvacea during storage at 4 °C. Sci Rep 2020; 10:13134. [PMID: 32753745 PMCID: PMC7403728 DOI: 10.1038/s41598-020-69988-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
The postharvest storage of Volvariella volvacea is an important factor limiting the industry development. Low-temperature storage is the traditional storage method used for most edible fungi, but V. volvacea undergoes autolysis at low temperature. To understand the molecular mechanism underlying the low-temperature autolysis of V. volvacea after harvesting, fruiting bodies of V. volvacea strain V23 were stored at 4 °C. Based on our previous study, in which the changes of morphological and physiological indexes during storage for 0, 6, 12, 24, 30, 36, 48 and 60 h were measured; four time points, namely, 0, 12, 24 and 60 h, were selected for this differential proteomics study. The proteomic changes in the postharvest storage samples were studied by isobaric tags for relative and absolute quantification-coupled two-dimensional liquid chromatography-tandem mass spectrometry (2D LC–MS/MS). A total of 2,063 proteins were identified, and 192 differentially expressed proteins (DEPs), including 24 up-regulated proteins and 168 down-regulated proteins, were detected after 12 h of storage. After 24 h of storage, 234 DEPs, including 48 up-regulated and 186 down-regulated proteins, were observed, and after 60 h, 415 DEPs, including 65 up-regulated proteins and 350 down-regulated proteins, were observed. An in-depth data analysis showed that the DEPs participated in various cellular processes, particularly metabolic processes. In this study, we combined Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses, and the results focused on oxidative phosphorylation and ubiquitin mediated proteolysis pathways. In addition, sdh2, uba1 and ubc1 was confirmed by quantitative real-time polymerase chain reaction, and the results showed that the expression of these genes were consistent with their protein level. Based on the literature and our results, it is speculated that the identified DEPs, such as ATP1, SDH2, COR1, UBA1, COX4, UBC1 and SKP1 play a key role in the low-temperature autolysis of V. volvacea.
Collapse
Affiliation(s)
- Lei Zha
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Mingjie Chen
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Changxia Yu
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Qian Guo
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Xu Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Zhengpeng Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Yan Zhao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China.
| | - Chuanhua Li
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Huanling Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| |
Collapse
|
26
|
Zhang F, Bian J, Chen X, Huang J, Smith N, Lu W, Xu Y, Lee J, Wu X. Roles for intracellular cation transporters in respiratory growth of yeast. Metallomics 2020; 11:1667-1678. [PMID: 31402362 DOI: 10.1039/c9mt00145j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Potassium is involved in copper and iron metabolism in eukaryotic Golgi apparatus, but it is not clear yet whether potassium distributions in other vesicles also affect copper and iron metabolism. Here we show that respiratory growth and iron acquisition by the yeast Saccharomyces cerevisiae relies on potassium (K+) compartmentalization to the mitochondria, as well as the vacuole and late endosome via K+/H+ exchangers Mdm38p, Vnx1p and Nhx1p, respectively. The data indicate that NHX1 and VNX1 knock-out cells grow better than wild type cells on non-fermentable YPEG media, while MDM38 knock-out cells display a growth defect on YPEG media. The over expression of the KHA1 gene located on the Golgi apparatus partially compensates for the growth defect of the MDM38 knock-out strain. The results suggest that the vacuole and late endosome are important potassium storage vesicles and Mdm38p affects the mitochondrial function by regulating copper and iron metabolism. Our study reveals potassium compartmentalization to the subcellular vesicles is relevant for respiratory growth by improving copper utilization and promoting iron absorption.
Collapse
Affiliation(s)
- Feng Zhang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Channels and transporters for inorganic ions in plant mitochondria: Prediction and facts. Mitochondrion 2020; 53:224-233. [PMID: 32540403 DOI: 10.1016/j.mito.2020.05.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/01/2020] [Accepted: 05/22/2020] [Indexed: 02/07/2023]
Abstract
Mitochondria are crucial bioenergetic organelles for providing different metabolites, including ATP, to sustain cell growth both in animals and in plants. These organelles, delimited by two membranes (outer and inner mitochondrial membrane), maintain their function by an intensive communication with other organelles as well as with the cytosol. Transport of metabolites across the two membranes, but also that of inorganic ions, takes place through specific ion channels and transporters and plays a crucial role in ensuring an adequate ionic milieu within the mitochondria. In the present review we briefly summarize the current knowledge about plant mitochondrial ion channels and transporters in comparison to those of animal mitochondria and examine the possible molecular identity of the so far unidentified transport systems taking into account subcellular targeting predictions and data from literature.
Collapse
|
28
|
Nakamura S, Matsui A, Akabane S, Tamura Y, Hatano A, Miyano Y, Omote H, Kajikawa M, Maenaka K, Moriyama Y, Endo T, Oka T. The mitochondrial inner membrane protein LETM1 modulates cristae organization through its LETM domain. Commun Biol 2020; 3:99. [PMID: 32139798 PMCID: PMC7058069 DOI: 10.1038/s42003-020-0832-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 02/17/2020] [Indexed: 11/26/2022] Open
Abstract
LETM1 is a mitochondrial inner membrane protein that is required for maintaining the mitochondrial morphology and cristae structures, and regulates mitochondrial ion homeostasis. Here we report a role of LETM1 in the organization of cristae structures. We identified four amino acid residues of human LETM1 that are crucial for complementation of the growth deficiency caused by gene deletion of a yeast LETM1 orthologue. Substituting amino acid residues with alanine disrupts the correct assembly of a protein complex containing LETM1 and prevents changes in the mitochondrial morphology induced by exogenous LETM1 expression. Moreover, the LETM1 protein changes the shapes of the membranes of in vitro-reconstituted proteoliposomes, leading to the formation of invaginated membrane structures on artificial liposomes. LETM1 mutant proteins with alanine substitutions fail to facilitate the formation of invaginated membrane structures, suggesting that LETM1 plays a fundamental role in the organization of mitochondrial membrane morphology. Nakamura et al find that the mitochondrial protein LETM1 can directly modulate membrane structure in vitro and identify a conserved domain involved in modulating mitochondrial membrane morphology. This study enhances our understanding of how mitochondrial cristae are organised.
Collapse
Affiliation(s)
- Seiko Nakamura
- Department of Molecular Biology, Graduate School of Medical Science, Kyushu University, Fukuoka, 812-8582, Japan
| | - Aiko Matsui
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Shiori Akabane
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yasushi Tamura
- Department of Material and Biological Chemistry, Faculty of Science, Yamagata University, Yamagata, 990-8560, Japan
| | - Azumi Hatano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Yuriko Miyano
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Hiroshi Omote
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Mizuho Kajikawa
- Laboratory for Infectious Immunity, RIKEN Research Center for Allergy and Immunology, Kanagawa, 230-0045, Japan
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, 060-0812, Japan
| | - Yoshinori Moriyama
- Department of Membrane Biochemistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8530, Japan
| | - Toshiya Endo
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto, 603-8555, Japan
| | - Toshihiko Oka
- Department of Life Science, Rikkyo University, Tokyo, 171-8501, Japan.
| |
Collapse
|
29
|
Aral C, Demirkesen S, Bircan R, Yasar Sirin D. Melatonin reverses the oxidative stress and mitochondrial dysfunction caused by LETM1 silencing. Cell Biol Int 2019; 44:795-807. [PMID: 31777134 DOI: 10.1002/cbin.11274] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 11/25/2019] [Indexed: 12/28/2022]
Abstract
LETM1 is a mitochondrial inner-membrane protein, which is encoded by a gene present in a locus of 4p, which, in turn, is deleted in the Wolf-Hirschhorn Syndrome, and is assumed to be related to its pathogenesis. The cellular damage caused by the deletion is presumably related to oxidative stress. Melatonin has many beneficial roles in protecting mitochondria by scavenging reactive oxygen species, maintaining membrane potential, and improving functions. The aim of this study was to investigate the effects of melatonin administration to LETM1-silenced mouse embryonic fibroblast cells as a cellular model for LETM1 deficiency. We transfected mouse embryonic fibroblast cells with a pair of siRNA against LETM1 and monitored the oxidative stress and mitochondrial functions with or without melatonin addition. MnSOD expression and aconitase activity decreased and oxidized protein levels increased in LETM1-silenced cells. LETM1 suppression did not alter the expression of OXPHOS complexes, but the oxygen consumption rates decreased significantly; however, this change was not related to complex I but instead involved complex IV and complex II. Melatonin supplementation effectively normalized the parameters studied, including the oxygen consumption rate. Our findings identified a novel effect of LETM1 deficiency on cellular respiration via complex II as well as a potential beneficial role of melatonin treatment. On the other hand, these effects may be specific to the cell line used and need to be verified in other cell lines.
Collapse
Affiliation(s)
- Cenk Aral
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Seyma Demirkesen
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Rıfat Bircan
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Faculty of Science and Arts, Namık Kemal University, 59030, Tekirdağ, Turkey
| |
Collapse
|
30
|
Mühleip A, McComas SE, Amunts A. Structure of a mitochondrial ATP synthase with bound native cardiolipin. eLife 2019; 8:51179. [PMID: 31738165 PMCID: PMC6930080 DOI: 10.7554/elife.51179] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 11/16/2019] [Indexed: 11/13/2022] Open
Abstract
The mitochondrial ATP synthase fuels eukaryotic cells with chemical energy. Here we report the cryo-EM structure of a divergent ATP synthase dimer from mitochondria of Euglena gracilis, a member of the phylum Euglenozoa that also includes human parasites. It features 29 different subunits, 8 of which are newly identified. The membrane region was determined to 2.8 Å resolution, enabling the identification of 37 associated lipids, including 25 cardiolipins, which provides insight into protein-lipid interactions and their functional roles. The rotor-stator interface comprises four membrane-embedded horizontal helices, including a distinct subunit a. The dimer interface is formed entirely by phylum-specific components, and a peripherally associated subcomplex contributes to the membrane curvature. The central and peripheral stalks directly interact with each other. Last, the ATPase inhibitory factor 1 (IF1) binds in a mode that is different from human, but conserved in Trypanosomatids. Every living thing uses the energy-rich molecule called adenosine triphosphate, or ATP, as fuel. It is the universal molecular currency for transferring energy. Cells trade it, mitochondria make it, and the energy extracted from it is used to drive chemical reactions, transport molecules across cell membranes, energize nerve impulses and contract muscles. ATP synthase is the enzyme that makes ATP molecules. It is a multi-part complex that straddles the inner membrane of mitochondria, the energy factories in cells. The enzyme complex interacts with fatty molecules in the mitochondrial inner membrane, creating a curvature that is required to produce ATP more efficiently. The mitochondrial ATP synthase has been studied in many different organisms, including yeast, algae, plants, pigs, cows and humans. These studies show that most of these ATP synthases are similar to each other, but obtaining a high resolution structure has been a challenge. Some single-cell organisms have unusual ATP synthases, which provide clues about how the enzyme evolved in pursuit of the most energy efficient arrangement. One such organism is the photosynthetic Euglena gracilis, which is closely related to the human parasites that cause sleeping sickness and Chagas disease. Now, Mü̈hleip et al. have extracted ATP synthase from E. gracilis and reconstructed its structure using electron cryo-microscopy. The high resolution of this reconstruction allowed for the first time to examine the fatty molecules associated with ATP synthase, called cardiolipins. This is important, because cardiolipins are thought to modulate the rotating motor of the enzyme and affect how the complex sits in the membrane. The analysis revealed that the ATP synthase in E. gracilis has 29 different protein subunits, 13 of which are only found in organisms of the same family. Some of the newly discovered subunits are glued together by fatty molecules and extend into the surrounding mitochondrial membrane. This distinctive structure suggests an adaptation which likely evolved independently in E. gracilis for efficiency. These results represent an important advance in the field, and provide direct evidence for the functional roles of cardiolipin. This information will be used to reconstruct the evolution of this mighty molecule and to further study the roles of cardiolipin in energy conversion. Moreover, the analysis identified similarities between the ATP synthase in E. gracilis and human parasites, which could provide new therapeutic targets in disease-causing parasites.
Collapse
Affiliation(s)
- Alexander Mühleip
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Sarah E McComas
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Alexey Amunts
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
31
|
Piao L, Yang Z, Feng Y, Zhang C, Cui C, Xuan Y. LETM1 is a potential biomarker of prognosis in lung non-small cell carcinoma. BMC Cancer 2019; 19:898. [PMID: 31500591 PMCID: PMC6734262 DOI: 10.1186/s12885-019-6128-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/03/2019] [Indexed: 02/07/2023] Open
Abstract
Background Although the leucine zipper-EF-hand-containing transmembrane protein 1 (LETM1) is one of the mitochondrial inner membrane proteins that is involved in cancer prognosis in various tumors, LETM1 as a biomarker for prognostic evaluation of non-small cell lung carcinoma (NSCLC) has not been well studied. Methods To address this issue, we used 75 cases NSCLC, 20 cases adjacent normal lung tissues and NSCLC cell lines. We performed immunohistochemistry staining and western blot analysis as well as immunofluorescence imaging. Results Our studies show that expression of LETM1 is significantly correlated with the lymph node metastasis (p = 0.003) and the clinical stage (p = 0.005) of NSCLC. The Kaplan-Meier survival analysis revealed that NSCLC patients with positive expression of LETM1 exhibits a shorter overall survival (OS) rate (p = 0.005). The univariate and multivariate Cox regression analysis indicated that LETM1 is a independent poor prognostic marker of NSCLC. In addition, the LETM1 expression is correlated with cancer stemness-related gene LGR5 (p < 0.001) and HIF1α expression (p < 0.001), but not with others. Moreover, LETM1 expression was associated with the expression of cyclin D1 (p = 0.003), p27 (p = 0.001), pPI3K(p85) (p = 0.025), and pAkt-Thr308 (p = 0.004). Further, our studies show in LETM1-positive NSCLC tissues the microvessel density was significantly higher than in the negative ones (p = 0.024). Conclusion These results indicate that LETM1 is a potential prognostic biomarker of NSCLC. Supplementary information Supplementary information accompanies this paper at 10.1186/s12885-019-6128-9.
Collapse
Affiliation(s)
- Longzhen Piao
- Department of Oncology, Affiliated Hospital of Yanbian University, No.119 Juzi Road, Yanji, 133002, China
| | - Zhaoting Yang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 133002, China.,Department of Pathology, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 13302, China
| | - Ying Feng
- Institute for Regenerative Medicine, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 133002, China.,Department of Pathology, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 13302, China
| | - Chengye Zhang
- Institute for Regenerative Medicine, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 133002, China.,Department of Pathology, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 13302, China
| | - Chunai Cui
- Institute for Regenerative Medicine, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 133002, China. .,Department of Anatomy, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 13302, China.
| | - Yanhua Xuan
- Institute for Regenerative Medicine, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 133002, China. .,Department of Pathology, Yanbian University College of Medicine, No.977 Gongyuan Road, Yanji, 13302, China.
| |
Collapse
|
32
|
Odendall F, Backes S, Tatsuta T, Weill U, Schuldiner M, Langer T, Herrmann JM, Rapaport D, Dimmer KS. The mitochondrial intermembrane space-facing proteins Mcp2 and Tgl2 are involved in yeast lipid metabolism. Mol Biol Cell 2019; 30:2681-2694. [PMID: 31483742 PMCID: PMC6761770 DOI: 10.1091/mbc.e19-03-0166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Mitochondria are unique organelles harboring two distinct membranes, the mitochondrial inner and outer membrane (MIM and MOM, respectively). Mitochondria comprise only a subset of metabolic pathways for the synthesis of membrane lipids; therefore most lipid species and their precursors have to be imported from other cellular compartments. One such import process is mediated by the ER mitochondria encounter structure (ERMES) complex. Both mitochondrial membranes surround the hydrophilic intermembrane space (IMS). Therefore, additional systems are required that shuttle lipids between the MIM and MOM. Recently, we identified the IMS protein Mcp2 as a high-copy suppressor for cells that lack a functional ERMES complex. To understand better how mitochondria facilitate transport and biogenesis of lipids, we searched for genetic interactions of this suppressor. We found that MCP2 has a negative genetic interaction with the gene TGL2 encoding a neutral lipid hydrolase. We show that this lipase is located in the intermembrane space of the mitochondrion and is imported via the Mia40 disulfide relay system. Furthermore, we show a positive genetic interaction of double deletion of MCP2 and PSD1, the gene encoding the enzyme that synthesizes the major amount of cellular phosphatidylethanolamine. Finally, we demonstrate that the nucleotide-binding motifs of the predicted atypical kinase Mcp2 are required for its proper function. Taken together, our data suggest that Mcp2 is involved in mitochondrial lipid metabolism and an increase of this involvement by overexpression suppresses loss of ERMES.
Collapse
Affiliation(s)
- Fenja Odendall
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Sandra Backes
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Takashi Tatsuta
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | - Uri Weill
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Thomas Langer
- Max Planck Institute for Biology of Ageing, 50931 Köln, Germany
| | | | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| | - Kai Stefan Dimmer
- Interfaculty Institute of Biochemistry, University of Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
33
|
Dubinin MV, Belosludtsev KN. Taxonomic Features of Specific Ca2+ Transport Mechanisms in Mitochondria. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2019. [DOI: 10.1134/s1990747819030127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
LETM1: Essential for Mitochondrial Biology and Cation Homeostasis? Trends Biochem Sci 2019; 44:648-658. [DOI: 10.1016/j.tibs.2019.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 02/28/2019] [Accepted: 04/03/2019] [Indexed: 12/28/2022]
|
35
|
Piao L, Feng Y, Yang Z, Qi W, Li H, Han H, Xuan Y. LETM1 is a potential cancer stem-like cell marker and predicts poor prognosis in colorectal adenocarcinoma. Pathol Res Pract 2019; 215:152437. [DOI: 10.1016/j.prp.2019.152437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/12/2019] [Accepted: 05/03/2019] [Indexed: 12/18/2022]
|
36
|
Durigon R, Mitchell AL, Jones AW, Manole A, Mennuni M, Hirst EM, Houlden H, Maragni G, Lattante S, Doronzio PN, Dalla Rosa I, Zollino M, Holt IJ, Spinazzola A. LETM1 couples mitochondrial DNA metabolism and nutrient preference. EMBO Mol Med 2019; 10:emmm.201708550. [PMID: 30012579 PMCID: PMC6127893 DOI: 10.15252/emmm.201708550] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The diverse clinical phenotypes of Wolf–Hirschhorn syndrome (WHS) are the result of haploinsufficiency of several genes, one of which, LETM1, encodes a protein of the mitochondrial inner membrane of uncertain function. Here, we show that LETM1 is associated with mitochondrial ribosomes, is required for mitochondrial DNA distribution and expression, and regulates the activity of an ancillary metabolic enzyme, pyruvate dehydrogenase. LETM1 deficiency in WHS alters mitochondrial morphology and DNA organization, as does substituting ketone bodies for glucose in control cells. While this change in nutrient availability leads to the death of fibroblasts with normal amounts of LETM1, WHS‐derived fibroblasts survive on ketone bodies, which can be attributed to their reduced dependence on glucose oxidation. Thus, remodeling of mitochondrial nucleoprotein complexes results from the inability of mitochondria to use specific substrates for energy production and is indicative of mitochondrial dysfunction. However, the dysfunction could be mitigated by a modified diet—for WHS, one high in lipids and low in carbohydrates.
Collapse
Affiliation(s)
- Romina Durigon
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Alice L Mitchell
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Aleck We Jones
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Andreea Manole
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Mara Mennuni
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | | | - Henry Houlden
- MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK.,Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | - Serena Lattante
- Institute of Genomic Medicine, Catholic University, Rome, Italy
| | | | - Ilaria Dalla Rosa
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK
| | | | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK.,Biodonostia Health Research Institute, San Sebastián, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Institute of Neurology, London, UK .,MRC Centre for Neuromuscular Diseases, UCL Institute of Neurology and National Hospital for Neurology and Neurosurgery, London, UK
| |
Collapse
|
37
|
Li Y, Tran Q, Shrestha R, Piao L, Park S, Park J, Park J. LETM1 is required for mitochondrial homeostasis and cellular viability (Review). Mol Med Rep 2019; 19:3367-3375. [PMID: 30896806 PMCID: PMC6471456 DOI: 10.3892/mmr.2019.10041] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 03/12/2019] [Indexed: 12/13/2022] Open
Abstract
Leucine zipper/EF-hand-containing transmembrane protein 1 (LETM1) has been identified as the gene responsible for Wolf-Hirschhorn syndrome (WHS), which is characterized by intellectual disability, epilepsy, growth delay and craniofacial dysgenesis. LETM1 is a mitochondrial inner membrane protein that encodes a homolog of the yeast protein Mdm38, which is involved in mitochondrial morphology. In the present review, the importance of LETM1 in WHS and its role within the mitochondrion was explored. LETM1 governs the mitochondrion ion channel and is involved in mitochondrial respiration. Recent studies have reported that LETM1 acts as a mitochondrial Ca2+/H+ antiporter. LETM1 has also been identified as a K+/H+ exchanger, and serves a role in Mg2+ homeostasis. The function of LETM1 in mitochondria regulation is regulated by its binding partners, carboxyl-terminal modulator protein and mitochondrial ribosomal protein L36. Therefore, we describe the remarkable role of LETM1 in mitochondrial network physiology and its function in mitochondrion-mediated cell death. In the context of these findings, we suggest that the participation of LETM1 in tumorigenesis through the alteration of cancer metabolism should be investigated. This review provides a comprehensive description of LETM1 function, which is required for mitochondrial homeostasis and cellular viability.
Collapse
Affiliation(s)
- Yuwen Li
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Quangdon Tran
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Robin Shrestha
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Longzhen Piao
- Department of Oncology, Affiliated Hospital of Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Sungjin Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jisoo Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Jongsun Park
- Department of Pharmacology, Metabolic Syndrome and Cell Signaling Laboratory, Institute for Cancer Research, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| |
Collapse
|
38
|
Molecular Mechanisms of Leucine Zipper EF-Hand Containing Transmembrane Protein-1 Function in Health and Disease. Int J Mol Sci 2019; 20:ijms20020286. [PMID: 30642051 PMCID: PMC6358941 DOI: 10.3390/ijms20020286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/08/2019] [Accepted: 01/09/2019] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial calcium (Ca2+) uptake shapes cytosolic Ca2+ signals involved in countless cellular processes and more directly regulates numerous mitochondrial functions including ATP production, autophagy and apoptosis. Given the intimate link to both life and death processes, it is imperative that mitochondria tightly regulate intramitochondrial Ca2+ levels with a high degree of precision. Among the Ca2+ handling tools of mitochondria, the leucine zipper EF-hand containing transmembrane protein-1 (LETM1) is a transporter protein localized to the inner mitochondrial membrane shown to constitute a Ca2+/H+ exchanger activity. The significance of LETM1 to mitochondrial Ca2+ regulation is evident from Wolf-Hirschhorn syndrome patients that harbor a haplodeficiency in LETM1 expression, leading to dysfunctional mitochondrial Ca2+ handling and from numerous types of cancer cells that show an upregulation of LETM1 expression. Despite the significance of LETM1 to cell physiology and pathophysiology, the molecular mechanisms of LETM1 function remain poorly defined. In this review, we aim to provide an overview of the current understanding of LETM1 structure and function and pinpoint the knowledge gaps that need to be filled in order to unravel the underlying mechanistic basis for LETM1 function.
Collapse
|
39
|
Abstract
Mitochondria contain their own genome that encodes for a small number of proteins, while the vast majority of mitochondrial proteins is produced on cytosolic ribosomes. The formation of respiratory chain complexes depends on the coordinated biogenesis of mitochondrially encoded and nuclear-encoded subunits. In this review, we describe pathways that adjust mitochondrial protein synthesis and import of nuclear-encoded subunits to the assembly of respiratory chain complexes. Furthermore, we outline how defects in protein import into mitochondria affect nuclear gene expression to maintain protein homeostasis under physiological and stress conditions.
Collapse
Affiliation(s)
- Chantal Priesnitz
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Center for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
40
|
Tang G, Zhang C, Ju Z, Zheng S, Wen Z, Xu S, Chen Y, Ma Z. The mitochondrial membrane protein FgLetm1 regulates mitochondrial integrity, production of endogenous reactive oxygen species and mycotoxin biosynthesis in Fusarium graminearum. MOLECULAR PLANT PATHOLOGY 2018; 19:1595-1611. [PMID: 29077257 PMCID: PMC6637989 DOI: 10.1111/mpp.12633] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 10/10/2017] [Accepted: 10/23/2017] [Indexed: 05/14/2023]
Abstract
Deoxynivalenol (DON) is a mycotoxin produced in cereal crops infected with Fusarium graminearum. DON poses a serious threat to human and animal health, and is a critical virulence factor. Various environmental factors, including reactive oxygen species (ROS), have been shown to interfere with DON biosynthesis in this pathogen. The regulatory mechanisms of how ROS trigger DON production have been investigated extensively in F. graminearum. However, the role of the endogenous ROS-generating system in DON biosynthesis is largely unknown. In this study, we genetically analysed the function of leucine zipper-EF-hand-containing transmembrane 1 (LETM1) superfamily proteins and evaluated the role of the mitochondrial-produced ROS in DON biosynthesis. Our results show that there are two Letm1 orthologues, FgLetm1 and FgLetm2, in F. graminearum. FgLetm1 is localized to the mitochondria and is essential for mitochondrial integrity, whereas FgLetm2 plays a minor role in the maintenance of mitochondrial integrity. The ΔFgLetm1 mutant demonstrated a vegetative growth defect, abnormal conidia and increased sensitivity to various stress agents. More importantly, the ΔFgLetm1 mutant showed significantly reduced levels of endogenous ROS, decreased DON biosynthesis and attenuated virulence in planta. To our knowledge, this is the first report showing that mitochondrial integrity and endogenous ROS production by mitochondria are important for DON production and virulence in Fusarium species.
Collapse
Affiliation(s)
- Guangfei Tang
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Chengqi Zhang
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
- College of Plant ProtectionAnhui Agricultural UniversityHefei 230036China
| | - Zhenzhen Ju
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Shiyu Zheng
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Ziyue Wen
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Sunde Xu
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Yun Chen
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| | - Zhonghua Ma
- Institute of BiotechnologyZhejiang UniversityHangzhou 310058China
| |
Collapse
|
41
|
Böttinger L, Mårtensson CU, Song J, Zufall N, Wiedemann N, Becker T. Respiratory chain supercomplexes associate with the cysteine desulfurase complex of the iron-sulfur cluster assembly machinery. Mol Biol Cell 2018; 29:776-785. [PMID: 29386296 PMCID: PMC5905291 DOI: 10.1091/mbc.e17-09-0555] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial cytochrome bc1 complex and cytochrome c oxidase associate in respiratory chain supercomplexes. We identified a specific association of the iron–sulfur cluster biogenesis desulfurase with the respiratory chain supercomplexes. Our finding reveals a novel link between respiration and iron–sulfur cluster formation. Mitochondria are the powerhouses of eukaryotic cells. The activity of the respiratory chain complexes generates a proton gradient across the inner membrane, which is used by the F1FO-ATP synthase to produce ATP for cellular metabolism. In baker’s yeast, Saccharomyces cerevisiae, the cytochrome bc1 complex (complex III) and cytochrome c oxidase (complex IV) associate in respiratory chain supercomplexes. Iron–sulfur clusters (ISC) form reactive centers of respiratory chain complexes. The assembly of ISC occurs in the mitochondrial matrix and is essential for cell viability. The cysteine desulfurase Nfs1 provides sulfur for ISC assembly and forms with partner proteins the ISC-biogenesis desulfurase complex (ISD complex). Here, we report an unexpected interaction of the active ISD complex with the cytochrome bc1 complex and cytochrome c oxidase. The individual deletion of complex III or complex IV blocks the association of the ISD complex with respiratory chain components. We conclude that the ISD complex binds selectively to respiratory chain supercomplexes. We propose that this molecular link contributes to coordination of iron–sulfur cluster formation with respiratory activity.
Collapse
Affiliation(s)
- Lena Böttinger
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Christoph U Mårtensson
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,Faculty of Biology, University of Freiburg, D-79104 Freiburg, Germany
| | - Jiyao Song
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nicole Zufall
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany
| | - Nils Wiedemann
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Centre for Biochemistry and Molecular Cell Research (ZBMZ), Faculty of Medicine, University of Freiburg, D-79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, University of Freiburg, D-79104 Freiburg, Germany
| |
Collapse
|
42
|
Malli R, Graier WF. The Role of Mitochondria in the Activation/Maintenance of SOCE: The Contribution of Mitochondrial Ca 2+ Uptake, Mitochondrial Motility, and Location to Store-Operated Ca 2+ Entry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 993:297-319. [PMID: 28900921 DOI: 10.1007/978-3-319-57732-6_16] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most cell types, the depletion of internal Ca2+ stores triggers the activation of Ca2+ entry. This crucial phenomenon is known since the 1980s and referred to as store-operated Ca2+ entry (SOCE). With the discoveries of the stromal-interacting molecules (STIMs) and the Ca2+-permeable Orai channels as the long-awaited molecular constituents of SOCE, the role of mitochondria in controlling the activity of this particular Ca2+ entry pathway is kind of buried in oblivion. However, the capability of mitochondria to locally sequester Ca2+ at sites of Ca2+ release and entry was initially supposed to rule SOCE by facilitating the Ca2+ depletion of the endoplasmic reticulum and removing entering Ca2+ from the Ca2+-inhibitable channels, respectively. Moreover, the central role of these organelles in controlling the cellular energy metabolism has been linked to the activity of SOCE. Nevertheless, the exact molecular mechanisms by which mitochondria actually determine SOCE are still pretty obscure. In this essay we describe the complexity of the mitochondrial Ca2+ uptake machinery and its regulation, molecular components, and properties, which open new ways for scrutinizing the contribution of mitochondria to SOCE. Moreover, data concerning the variability of the morphology and cellular distribution of mitochondria as putative determinants of SOCE activation, maintenance, and termination are summarized.
Collapse
Affiliation(s)
- Roland Malli
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria
| | - Wolfgang F Graier
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstrasse 6/6, 8010, Graz, Austria.
| |
Collapse
|
43
|
Levchenko M, Lorenzi I, Dudek J. The Degradation Pathway of the Mitophagy Receptor Atg32 Is Re-Routed by a Posttranslational Modification. PLoS One 2016; 11:e0168518. [PMID: 27992522 PMCID: PMC5161373 DOI: 10.1371/journal.pone.0168518] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/01/2016] [Indexed: 12/19/2022] Open
Abstract
The outer mitochondrial membrane protein Atg32 is the central receptor for mitophagy, the mitochondria-specific form of autophagy. Atg32 is an unstable protein, and is rapidly degraded under conditions in which mitophagy is not induced. Here we show that Atg32 undergoes a posttranslational modification upon induction of mitophagy. The modification is dependent on the core autophagic machinery, including Atg8, and on the mitophagy-specific adaptor protein Atg11. The modified Atg32 is targeted to the vacuole where it becomes stabilized when vacuolar proteases are deficient. Interestingly, we find that this degradation pathway differs from the degradation pathway of non-modified Atg32, which neither involves vacuolar proteases, nor the proteasome. These analyses reveal that a posttranslational modification discriminates a form of Atg32 targeting mitochondria for mitophagy from that, which escapes mitophagy by rapid degradation.
Collapse
Affiliation(s)
- Mariia Levchenko
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, Georg-August University, Göttingen, Germany
| |
Collapse
|
44
|
Woellhaf MW, Sommer F, Schroda M, Herrmann JM. Proteomic profiling of the mitochondrial ribosome identifies Atp25 as a composite mitochondrial precursor protein. Mol Biol Cell 2016; 27:3031-3039. [PMID: 27582385 PMCID: PMC5063612 DOI: 10.1091/mbc.e16-07-0513] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/18/2016] [Accepted: 08/23/2016] [Indexed: 11/15/2022] Open
Abstract
Whereas the structure and function of cytosolic ribosomes are well characterized, we only have a limited understanding of the mitochondrial translation apparatus. Using SILAC-based proteomic profiling, we identified 13 proteins that cofractionated with the mitochondrial ribosome, most of which play a role in translation or ribosomal biogenesis. One of these proteins is a homologue of the bacterial ribosome-silencing factor (Rsf). This protein is generated from the composite precursor protein Atp25 upon internal cleavage by the matrix processing peptidase MPP, and in this respect, it differs from all other characterized mitochondrial proteins of baker's yeast. We observed that cytosolic expression of Rsf, but not of noncleaved Atp25 protein, is toxic. Our results suggest that eukaryotic cells face the challenge of avoiding negative interference from the biogenesis of their two distinct translation machineries.
Collapse
Affiliation(s)
- Michael W Woellhaf
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | |
Collapse
|
45
|
Römpler K, Müller T, Juris L, Wissel M, Vukotic M, Hofmann K, Deckers M. Overlapping Role of Respiratory Supercomplex Factor Rcf2 and Its N-terminal Homolog Rcf3 in Saccharomyces cerevisiae. J Biol Chem 2016; 291:23769-23778. [PMID: 27662906 DOI: 10.1074/jbc.m116.734665] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial electron transport chain consists of individual protein complexes arranged into large macromolecular structures, termed respiratory chain supercomplexes or respirasomes. In the yeast Saccharomyces cerevisiae, respiratory chain supercomplexes form by association of the bc1 complex with the cytochrome c oxidase. Formation and maintenance of these assemblies are promoted by specific respiratory supercomplex factors, the Rcf proteins. For these proteins a regulatory function in bridging the electron transfer within supercomplexes has been proposed. Here we report on the maturation of Rcf2 into an N- and C-terminal peptide. We show that the previously uncharacterized Rcf3 (YBR255c-A) is a homolog of the N-terminal Rcf2 peptide, whereas Rcf1 is homologous to the C-terminal portion. Both Rcf3 and the C-terminal fragment of Rcf2 associate with monomeric cytochrome c oxidase and respiratory chain supercomplexes. A lack of Rcf2 and Rcf3 increases oxygen flux through the respiratory chain by up-regulation of the cytochrome c oxidase activity. A double gene deletion of RCF2 and RCF3 affects cellular survival under non-fermentable growth conditions, suggesting an overlapping role for both proteins in the regulation of the OXPHOS activity. Furthermore, our data suggest an association of all three Rcf proteins with the bc1 complex in the absence of a functional cytochrome c oxidase and identify a supercomplex independent interaction network of the Rcf proteins.
Collapse
Affiliation(s)
- Katharina Römpler
- From the Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany and
| | - Tobias Müller
- From the Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany and
| | - Lisa Juris
- From the Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany and
| | - Mirjam Wissel
- From the Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany and
| | - Milena Vukotic
- From the Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany and
| | - Kay Hofmann
- the Institute for Genetics, University of Cologne, D-50674 Cologne, Germany
| | - Markus Deckers
- From the Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany and
| |
Collapse
|
46
|
Wagner S, De Bortoli S, Schwarzländer M, Szabò I. Regulation of mitochondrial calcium in plants versus animals. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3809-29. [PMID: 27001920 DOI: 10.1093/jxb/erw100] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Ca(2+) acts as an important cellular second messenger in eukaryotes. In both plants and animals, a wide variety of environmental and developmental stimuli trigger Ca(2+) transients of a specific signature that can modulate gene expression and metabolism. In animals, mitochondrial energy metabolism has long been considered a hotspot of Ca(2+) regulation, with a range of pathophysiology linked to altered Ca(2+) control. Recently, several molecular players involved in mitochondrial Ca(2+) signalling have been identified, including those of the mitochondrial Ca(2+) uniporter. Despite strong evidence for sophisticated Ca(2+) regulation in plant mitochondria, the picture has remained much less clear. This is currently changing aided by live imaging and genetic approaches which allow dissection of subcellular Ca(2+) dynamics and identification of the proteins involved. We provide an update on our current understanding in the regulation of mitochondrial Ca(2+) and signalling by comparing work in plants and animals. The significance of mitochondrial Ca(2+) control is discussed in the light of the specific metabolic and energetic needs of plant and animal cells.
Collapse
Affiliation(s)
- Stephan Wagner
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Sara De Bortoli
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| | - Markus Schwarzländer
- Plant Energy Biology Lab, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Friedrich-Ebert-Allee 144, D-53113 Bonn, Germany
| | - Ildikò Szabò
- Department of Biology and CNR Institute of Neurosciences, University of Padova, Viale G. Colombo 3, 35121 Padova, Italy
| |
Collapse
|
47
|
Levchenko M, Wuttke JM, Römpler K, Schmidt B, Neifer K, Juris L, Wissel M, Rehling P, Deckers M. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1624-32. [PMID: 27083394 DOI: 10.1016/j.bbamcr.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 11/25/2022]
Abstract
The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.
Collapse
Affiliation(s)
- Maria Levchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Jan-Moritz Wuttke
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Katharina Römpler
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Klaus Neifer
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Lisa Juris
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Mirjam Wissel
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
48
|
Breiman A, Fieulaine S, Meinnel T, Giglione C. The intriguing realm of protein biogenesis: Facing the green co-translational protein maturation networks. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1864:531-50. [PMID: 26555180 DOI: 10.1016/j.bbapap.2015.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 01/13/2023]
Abstract
The ribosome is the cell's protein-making factory, a huge protein-RNA complex, that is essential to life. Determining the high-resolution structures of the stable "core" of this factory was among the major breakthroughs of the past decades, and was awarded the Nobel Prize in 2009. Now that the mysteries of the ribosome appear to be more traceable, detailed understanding of the mechanisms that regulate protein synthesis includes not only the well-known steps of initiation, elongation, and termination but also the less comprehended features of the co-translational events associated with the maturation of the nascent chains. The ribosome is a platform for co-translational events affecting the nascent polypeptide, including protein modifications, folding, targeting to various cellular compartments for integration into membrane or translocation, and proteolysis. These events are orchestrated by ribosome-associated protein biogenesis factors (RPBs), a group of a dozen or more factors that act as the "welcoming committee" for the nascent chain as it emerges from the ribosome. In plants these factors have evolved to fit the specificity of different cellular compartments: cytoplasm, mitochondria and chloroplast. This review focuses on the current state of knowledge of these factors and their interaction around the exit tunnel of dedicated ribosomes. Particular attention has been accorded to the plant system, highlighting the similarities and differences with other organisms.
Collapse
Affiliation(s)
- Adina Breiman
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France; Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv 69978, Israel
| | - Sonia Fieulaine
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Thierry Meinnel
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France
| | - Carmela Giglione
- Institute of Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris-Sud, Univ. Paris-Saclay 91198 Gif-sur-Yvette cedex, France.
| |
Collapse
|
49
|
Iype T, Alakbarzade V, Iype M, Singh R, Sreekantan-Nair A, Chioza BA, Mohapatra TM, Baple EL, Patton MA, Warner TT, Proukakis C, Kulkarni A, Crosby AH. A large Indian family with rearrangement of chromosome 4p16 and 3p26.3 and divergent clinical presentations. BMC MEDICAL GENETICS 2015; 16:104. [PMID: 26554554 PMCID: PMC4641370 DOI: 10.1186/s12881-015-0251-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 11/04/2015] [Indexed: 12/03/2022]
Abstract
Background The deletion of the chromosome 4p16.3 Wolf-Hirschhorn syndrome critical region (WHSCR-2) typically results in a characteristic facial appearance, varying intellectual disability, stereotypies and prenatal onset of growth retardation, while gains of the same chromosomal region result in a more variable degree of intellectual deficit and dysmorphism. Similarly the phenotype of individuals with terminal deletions of distal chromosome 3p (3p deletion syndrome) varies from mild to severe intellectual deficit, micro- and trigonocephaly, and a distinct facial appearance. Methods and results We investigated a large Indian five-generation pedigree with ten affected family members in which chromosomal microarray and fluorescence in situ hybridization analyses disclosed a complex rearrangement involving chromosomal subregions 4p16.1 and 3p26.3 resulting in a 4p16.1 deletion and 3p26.3 microduplication in three individuals, and a 4p16.1 duplication and 3p26.3 microdeletion in seven individuals. A typical clinical presentation of WHS was observed in all three cases with 4p16.1 deletion and 3p26.3 microduplication. Individuals with a 4p16.1 duplication and 3p26.3 microdeletion demonstrated a range of clinical features including typical 3p microdeletion or 4p partial trisomy syndrome to more severe neurodevelopmental delay with distinct dysmorphic features. Conclusion We present the largest pedigree with complex t(4p;3p) chromosomal rearrangements and diverse clinical outcomes including Wolf Hirschorn-, 3p deletion-, and 4p duplication syndrome amongst affected individuals. Electronic supplementary material The online version of this article (doi:10.1186/s12881-015-0251-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Thomas Iype
- Department of Neurology, Government Medical College, Thiruvananthapuram, Kerala, India.
| | - Vafa Alakbarzade
- Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK. .,Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK.
| | - Mary Iype
- Department of Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Royana Singh
- Department of Anatomy and Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Ajith Sreekantan-Nair
- Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK
| | - Barry A Chioza
- Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK.
| | - Tribhuvan M Mohapatra
- Department of Anatomy and Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| | - Emma L Baple
- Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK. .,Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK. .,Wessex Clinical Genetics Service, Princess Anne Hospital, Southampton, UK.
| | - Michael A Patton
- Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK.,Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London, SW17 0RE, UK
| | - Thomas T Warner
- Reta Lila Weston Institute of Neurological Studies, UCL Institute of Neurology, London, UK
| | - Christos Proukakis
- Clinical Neuroscience, Royal Free Campus, UCL Institute of Neurology, London, UK.
| | - Abhi Kulkarni
- Southwest Thames Regional Genetics Centre, St George's Healthcare NHS Trust, London, SW17 0RE, UK.
| | - Andrew H Crosby
- Molecular Genetics, RILD Institute, University of Exeter, Royal Devon and Exeter NHS Hospital, Wonford, Exeter, UK.
| |
Collapse
|
50
|
Li N, Zheng Y, Xuan C, Lin Z, Piao L, Liu S. LETM1 overexpression is correlated with the clinical features and survival outcome of breast cancer. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2015; 8:12893-12900. [PMID: 26722481 PMCID: PMC4680426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 09/28/2015] [Indexed: 06/05/2023]
Abstract
BACKGROUND Leucine zipper/EF hand-containing transmembrane-1 (LETM1) is a mitochondrial inner membrane protein that was first identified in Wolf-Hirschhorn syndrome. However, high-level expression of LETM1 has been correlated with multiple human malignancies, suggesting roles in carcinogenesis and tumor progression. This study is aimed to explore the clinicopathological characteristics and prognostic value of LETM1 overexpression in breast cancer. METHODS Immunohistochemical (IHC) staining, and immunofluorescence (IF) were performed to examine LETM1 expression in breast cancer cell line/tissues compared with adjacent normal tissues. Statistical analysis was applied to evaluate the correlation between LETM1 overexpression and the clinicopathological features of breast cancer. Survival rates were calculated using the Kaplan-Meier method, and the relationship between prognostic factors and patient survival was analyzed using the Cox proportional hazard models. RESULTS LETM1 protein showed cytoplasmic staining pattern in breast cancer. The strongly positive rate of LETM1 protein was 61.6% (98/159) in breast cancer, which was significantly higher than in DCIS (29.7%, 11/37), hyperplasia (16.7%, 3/18) and adjacent normal breast tissues (15.9%, 7/44). High-level expression of LETM1 protein was correlated with lymph node metastasis, poor differentiation, late clinical stage, disease-free survival (DFS) and overall survival (OS) rates in breast cancer. Moreover, multivariate analysis suggested that LETM1 emerged as a significant independent prognostic factor along with clinical stage of patients with breast cancer. CONCLUSIONS LETM1 plays an important role in the progression of breast cancer. High level expression of LETM1 is an independent poor prognostic factor of breast cancer.
Collapse
MESH Headings
- Adult
- Aged
- Biomarkers, Tumor/analysis
- Breast Neoplasms/metabolism
- Breast Neoplasms/mortality
- Breast Neoplasms/pathology
- Calcium-Binding Proteins/analysis
- Calcium-Binding Proteins/biosynthesis
- Carcinoma, Ductal, Breast/metabolism
- Carcinoma, Ductal, Breast/mortality
- Carcinoma, Ductal, Breast/pathology
- Carcinoma, Intraductal, Noninfiltrating/metabolism
- Carcinoma, Intraductal, Noninfiltrating/mortality
- Carcinoma, Intraductal, Noninfiltrating/pathology
- Disease Progression
- Disease-Free Survival
- Female
- Fluorescent Antibody Technique
- Humans
- Kaplan-Meier Estimate
- Membrane Proteins/analysis
- Membrane Proteins/biosynthesis
- Middle Aged
- Prognosis
- Proportional Hazards Models
- Up-Regulation
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory Nature Resources of Changbai Mountain & Functional Molecules, Ministry Education, Yanbian UniversityYanji 133002, Jilin, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical CollegeYanji 133002, Jilin, China
| | - Yahui Zheng
- Department of Pathology & Cancer Research Center, Yanbian University Medical CollegeYanji 133002, Jilin, China
| | - Chouhui Xuan
- Department of Pathology & Cancer Research Center, Yanbian University Medical CollegeYanji 133002, Jilin, China
| | - Zhenhua Lin
- Key Laboratory Nature Resources of Changbai Mountain & Functional Molecules, Ministry Education, Yanbian UniversityYanji 133002, Jilin, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical CollegeYanji 133002, Jilin, China
| | - Longzhen Piao
- Key Laboratory Nature Resources of Changbai Mountain & Functional Molecules, Ministry Education, Yanbian UniversityYanji 133002, Jilin, China
- Department of Oncology, Yanbian University HospitalYanji 133002, Jilin, China
| | - Shuangping Liu
- Key Laboratory Nature Resources of Changbai Mountain & Functional Molecules, Ministry Education, Yanbian UniversityYanji 133002, Jilin, China
- Department of Pathology & Cancer Research Center, Yanbian University Medical CollegeYanji 133002, Jilin, China
| |
Collapse
|