1
|
Geijerman E, Terrana F, Peters GJ, Deng D, Diana P, Giovannetti E, Xu G. Targeting a key FAK-tor: the therapeutic potential of combining focal adhesion kinase (FAK) inhibitors and chemotherapy for chemoresistant non-small cell lung cancer. Expert Opin Investig Drugs 2024; 33:1103-1118. [PMID: 39435477 DOI: 10.1080/13543784.2024.2417762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 10/14/2024] [Indexed: 10/23/2024]
Abstract
INTRODUCTION NSCLC is the leading cause of cancer-related deaths globally, with a low survival rate primarily due to NSCLC frequently becoming chemoresistant. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase involved in pathways regulating multiple processes in the cell, including survival, migration, and the TME, that contribute to both tumor progression and drug resistance. Recently, FAK inhibitors (FAKi) have shown promising potential for the treatment of NSCLC. AREAS COVERED This narrative review aims to summarize key signaling pathways involving FAK that contribute to tumor progression and drug resistance. It will further provide an overview of FAKi currently in pre- and early-phase clinical trials for solid tumors, as well as the therapeutic potential of combining FAKi with chemotherapy, as this has emerged as a promising strategy to overcome chemoresistance in NSCLC. EXPERT OPINION It is becoming increasingly clear that FAK is not an oncogenic driver but rather contributes to tumor progression and drug resistance. Hence, while FAKi have only demonstrated modest results in clinical trials when given by themselves, treatment regimens combining other therapies with FAKi have shown promising potential to overcome drug resistance. Lastly, of particular novelty are FAK-PROTACs (proteolysis-targeting chimaeras), which uniquely target both cytosolic and nuclear FAK.
Collapse
Affiliation(s)
- Emma Geijerman
- Amsterdam University College, Amsterdam, The Netherlands
| | - Francesca Terrana
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Godefridus J Peters
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Department of Biochemistry, Medical University of Gdansk, Gdańsk, Poland
| | - Dongmei Deng
- Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrizia Diana
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università degli Studi di Palermo, Palermo, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
- Fondazione Pisana per la Scienza, Pisa, Italy
| | - Geng Xu
- Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Akompong SK, Li Y, Gong W, Ye L, Liu J. Recently reported cell migration inhibitors: Opportunities and challenges for antimetastatic agents. Drug Discov Today 2024; 29:103906. [PMID: 38309689 DOI: 10.1016/j.drudis.2024.103906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/17/2024] [Accepted: 01/25/2024] [Indexed: 02/05/2024]
Abstract
Antimetastatic agents are highly desirable for cancer treatment because of the severe medical challenges and high mortality resulting from tumor metastasis. Having demonstrated antimetastatic effects in numerous in vitro and in vivo studies, migration inhibitors present significant opportunities for developing a new class of anticancer drugs. To provide a useful overview on the latest research in migration inhibitors, this article first discusses their therapeutic significance, targetable proteins, and developmental avenues. Subsequently it reviews over 20 representative migration inhibitors reported in recent journals in terms of their inhibitory mechanism, potency, and potential clinical utility. The relevance of the target proteins to cellular migratory function is focused on as it is crucial for assessing the overall efficacy of the inhibitors.
Collapse
Affiliation(s)
- Samuel K Akompong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Li
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Wenxue Gong
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Long Ye
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jinping Liu
- Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
3
|
Lee D, Ham IH, Oh HJ, Lee DM, Yoon JH, Son SY, Kim TM, Kim JY, Han SU, Hur H. Tubulointerstitial nephritis antigen-like 1 from cancer-associated fibroblasts contribute to the progression of diffuse-type gastric cancers through the interaction with integrin β1. J Transl Med 2024; 22:154. [PMID: 38355577 PMCID: PMC10868052 DOI: 10.1186/s12967-024-04963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 02/07/2024] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Tumor cells of diffuse-type gastric cancer (DGC) are discohesive and infiltrate into the stroma as single cells or small subgroups, so the stroma significantly impacts DGC progression. Cancer-associated fibroblasts (CAFs) are major components of the tumor stroma. Here, we identified CAF-specific secreted molecules and investigated the mechanism underlying CAF-induced DGC progression. METHODS We conducted transcriptome analysis for paired normal fibroblast (NF)-CAF isolated from DGC patient tissues and proteomics for conditioned media (CM) of fibroblasts. The effects of fibroblasts on cancer cells were examined by transwell migration and soft agar assays, western blotting, and in vivo. We confirmed the effect of blocking tubulointerstitial nephritis antigen-like 1 (TINAGL1) in CAFs using siRNA or shRNA. We evaluated the expression of TINAGL1 protein in frozen tissues of DGC and paired normal stomach and mRNA in formalin-fixed, paraffin-embedded (FFPE) tissue using RNA in-situ hybridization (RNA-ISH). RESULTS CAFs more highly expressed TINAGL1 than NFs. The co-culture of CAFs increased migration and tumorigenesis of DGC. Moreover, CAFs enhanced the phosphorylation of focal adhesion kinase (FAK) and mesenchymal marker expression in DGC cells. In an animal study, DGC tumors co-injected with CAFs showed aggressive phenotypes, including lymph node metastasis. However, increased phosphorylation of FAK and migration were reduced by blocking TINAGL1 in CAFs. In the tissues of DGC patients, TINAGL1 was higher in cancer than paired normal tissues and detected with collagen type I alpha 1 chain (COL1A1) in the same spot. Furthermore, high TINAGL1 expression was significantly correlated with poor prognosis in several public databases and our patient cohort diagnosed with DGC. CONCLUSIONS These results indicate that TINAGL1 secreted by CAFs induces phosphorylation of FAK in DGC cells and promotes tumor progression. Thus, targeting TINAGL1 in CAFs can be a novel therapeutic strategy for DGC.
Collapse
Affiliation(s)
- Dagyeong Lee
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Cancer Biology Graduate Program, Ajou University School of Medicine Suwon, Suwon, Republic of Korea
- AI-Super Convergence KIURI Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - In-Hye Ham
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hye Jeong Oh
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Dong Min Lee
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Jung Hwan Yoon
- Department of Pathology, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Functional RNomics Research Center, College of Medicine, The Catholic University of Korea Seoul, Seoul, Republic of Korea
| | - Sang-Yong Son
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Tae-Min Kim
- Department of Medical Informatics, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine and Health Science, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon, Republic of Korea
| | - Sang-Uk Han
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Hoon Hur
- Department of Surgery, Ajou University School of Medicine, Suwon, Republic of Korea.
- Cancer Biology Graduate Program, Ajou University School of Medicine Suwon, Suwon, Republic of Korea.
- Inflamm-Aging Translational Research Center, Ajou University School of Medicine, Suwon, Republic of Korea.
| |
Collapse
|
4
|
Najar MA, Arefian M, Sidransky D, Gowda H, Prasad TSK, Modi PK, Chatterjee A. Tyrosine Phosphorylation Profiling Revealed the Signaling Network Characteristics of CAMKK2 in Gastric Adenocarcinoma. Front Genet 2022; 13:854764. [PMID: 35646067 PMCID: PMC9136244 DOI: 10.3389/fgene.2022.854764] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 03/28/2022] [Indexed: 12/24/2022] Open
Abstract
Calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) is a serine/threonine protein kinase which functions via the calcium-triggered signaling cascade with CAMK1, CAMK4, and AMPKα as the immediate downstream substrates. CAMKK2 is reported to be overexpressed in gastric cancer; however, its signaling mechanism is poorly understood. We carried out label-free quantitative tyrosine phosphoproteomics to investigate tyrosine-mediated molecular signaling associated with CAMKK2 in gastric cancer cells. Using a high-resolution Orbitrap Fusion Tribrid Fourier-transform mass spectrometer, we identified 350 phosphotyrosine sites mapping to 157 proteins. We observed significant alterations in 81 phosphopeptides corresponding to 63 proteins upon inhibition of CAMKK2, among which 16 peptides were hyperphosphorylated corresponding to 13 proteins and 65 peptides were hypophosphorylated corresponding to 51 proteins. We report here that the inhibition of CAMKK2 leads to changes in the phosphorylation of several tyrosine kinases such as PKP2, PTK2, EPHA1, EPHA2, PRKCD, MAPK12, among others. Pathway analyses revealed that proteins are differentially phosphorylated in response to CAMKK2 inhibition involved in focal adhesions, actin cytoskeleton, axon guidance, and signaling by VEGF. The western blot analysis upon inhibition and/or silencing of CAMKK2 revealed a decrease in phosphorylation of PTK2 at Y925, c-JUN at S73, and STAT3 at Y705, which was in concordance with the mass spectrometry data. The study indicates that inhibition of CAMKK2 has an anti-oncogenic effect in gastric cells regulating phosphorylation of STAT3 through PTK2/c-JUN in gastric cancer.
Collapse
Affiliation(s)
- Mohd. Altaf Najar
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Mohammad Arefian
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - David Sidransky
- Department of Oncology and Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Harsha Gowda
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, India
| | - T. S. Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
| | - Prashant Kumar Modi
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| | - Aditi Chatterjee
- Center for Systems Biology and Molecular Medicine, Yenepoya (Deemed to be University), Mangalore, India
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- *Correspondence: Prashant Kumar Modi, ; Aditi Chatterjee,
| |
Collapse
|
5
|
FAK in Cancer: From Mechanisms to Therapeutic Strategies. Int J Mol Sci 2022; 23:ijms23031726. [PMID: 35163650 PMCID: PMC8836199 DOI: 10.3390/ijms23031726] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 01/25/2023] Open
Abstract
Focal adhesion kinase (FAK), a non-receptor tyrosine kinase, is overexpressed and activated in many cancer types. FAK regulates diverse cellular processes, including growth factor signaling, cell cycle progression, cell survival, cell motility, angiogenesis, and the establishment of immunosuppressive tumor microenvironments through kinase-dependent and kinase-independent scaffolding functions in the cytoplasm and nucleus. Mounting evidence has indicated that targeting FAK, either alone or in combination with other agents, may represent a promising therapeutic strategy for various cancers. In this review, we summarize the mechanisms underlying FAK-mediated signaling networks during tumor development. We also summarize the recent progress of FAK-targeted small-molecule compounds for anticancer activity from preclinical and clinical evidence.
Collapse
|
6
|
Chondroitin sulfate proteoglycan 4, a targetable oncoantigen that promotes ovarian cancer growth, invasion, cisplatin resistance and spheroid formation. Transl Oncol 2021; 16:101318. [PMID: 34942534 PMCID: PMC8695353 DOI: 10.1016/j.tranon.2021.101318] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 01/17/2023] Open
Abstract
Epithelial ovarian cancer (EOC) is a highly heterogeneous disease encompassing several distinct molecular subtypes and clinical entities. Despite the initial success of surgical debulking and adjuvant chemotherapy, recurrence with chemotherapy resistant tumors is common in patients with EOC and leads to poor overall survival. The extensive genetic and phenotypic heterogeneity associated with ovarian cancers has hindered the identification of effective prognostic and predictive biomarkers in EOC patients. In the current studies, we identify a tumor cell surface oncoantigen, chondroitin sulfate proteoglycan 4 (CSPG4), as an independent risk factor for decreased survival of patients with EOC. Our results show that CSPG4 promotes EOC cell invasion, cisplatin resistance and spheroid formation in vitro and tumor expansion in vivo. Mechanistically, spheroid formation and tumor cell invasion are due to CSPG4-stimulated expression of the mesenchymal transcription factor ZEB1. Furthermore, we have developed a novel monoclonal anti-CSGP4 antibody against the juxtamembrane domain of the core protein that limits CSPG4-stimulated ZEB1 expression, tumor cell invasion and promotes EOC apoptosis within spheroid cultures. We therefore propose that CSPG4 expression drives phenotypic heterogeneity and malignant progression in EOC tumors. These studies further demonstrate that CSPG4 expression levels are a potential diagnostic biomarker in EOC and indicate that targeting cells which express this oncoantigen could limit recurrence and improve outcomes in patients with EOC.
Collapse
|
7
|
Wang X, Steinberg T, Dieterle MP, Ramminger I, Husari A, Tomakidi P. FAK Shutdown: Consequences on Epithelial Morphogenesis and Biomarker Expression Involving an Innovative Biomaterial for Tissue Regeneration. Int J Mol Sci 2021; 22:ijms22189774. [PMID: 34575938 PMCID: PMC8470904 DOI: 10.3390/ijms22189774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 01/14/2023] Open
Abstract
By employing an innovative biohybrid membrane, the present study aimed at elucidating the mechanistic role of the focal adhesion kinase (FAK) in epithelial morphogenesis in vitro over 4, 7, and 10 days. The consequences of siRNA-mediated FAK knockdown on epithelial morphogenesis were monitored by quantifying cell layers and detecting the expression of biomarkers of epithelial differentiation and homeostasis. Histologic examination of FAK-depleted samples showed a significant increase in cell layers resembling epithelial hyperplasia. Semiquantitative fluorescence imaging (SQFI) revealed tissue homeostatic disturbances by significantly increased involucrin expression over time, persistence of yes-associated protein (YAP) and an increase of keratin (K) 1 at day 4. The dysbalanced involucrin pattern was underscored by ROCK-IISer1366 activity at day 7 and 10. SQFI data were confirmed by quantitative PCR and Western blot analysis, thereby corroborating the FAK shutdown-related expression changes. The artificial FAK shutdown was also associated with a significantly higher expression of filaggrin at day 10, sustained keratinocyte proliferation, and the dysregulated expression of K19 and vimentin. These siRNA-induced consequences indicate the mechanistic role of FAK in epithelial morphogenesis by simultaneously considering prospective biomaterial-based epithelial regenerative approaches.
Collapse
Affiliation(s)
- Xiaoling Wang
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Thorsten Steinberg
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Correspondence:
| | - Martin P. Dieterle
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| | - Imke Ramminger
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
- Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany
| | - Ayman Husari
- Center for Dental Medicine, Department of Orthodontics, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany;
| | - Pascal Tomakidi
- Center for Dental Medicine, Division of Oral Biotechnology, Medical Center—University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstr. 55, 79106 Freiburg, Germany; (X.W.); (M.P.D.); (I.R.); (P.T.)
| |
Collapse
|
8
|
Multi-layered proteogenomic analysis unravels cancer metastasis directed by MMP-2 and focal adhesion kinase signaling. Sci Rep 2021; 11:17130. [PMID: 34429501 PMCID: PMC8385024 DOI: 10.1038/s41598-021-96635-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
The role of matrix metalloproteinase-2 (MMP-2) in tumor cell migration has been widely studied, however, the characteristics and effects of MMP-2 in clinical sample of metastatic colorectal cancer (CRC) remain poorly understood. Here, in order to unveil the perturbed proteomic signal during MMP-2 induced cancer progression, we analyzed plasma proteome of CRC patients according to disease progression, HCT116 cancer secretome upon MMP-2 knockdown, and publicly available CRC tissue proteome data. Collectively, the integrative analysis of multi-layered proteomes revealed that a protein cluster containing EMT (Epithelial-to-Mesenchymal Transition)-associated proteins such as CD9-integrin as well as MMP-2. The proteins of the cluster were regulated by MMP-2 perturbation and exhibited significantly increased expressions in tissue and plasma as disease progressed from TNM (Tumor, Node, and Metastasis) stage I to II. Furthermore, we also identified a plausible association between MMP-2 up-regulation and activation of focal adhesion kinase signaling in the proteogenomic analysis of CRC patient tissues. Based on these comparative and integrative analyses, we suggest that the high invasiveness in the metastatic CRC resulted from increased secretion of MMP-2 and CD9-integrin complex mediated by FAK signaling activation.
Collapse
|
9
|
Blockage of Squamous Cancer Cell Collective Invasion by FAK Inhibition Is Released by CAFs and MMP-2. Cancers (Basel) 2020; 12:cancers12123708. [PMID: 33321813 PMCID: PMC7764466 DOI: 10.3390/cancers12123708] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/07/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Cancers include a diverse collection of cells harboring distinct molecular signatures with different levels of pro-metastatic activities. This intratumoral heterogeneity and phenotypic plasticity are major causes of targeted therapeutic failure and it should be considered when developing prognostic tests. Through the analysis of the Focal Adhesion Kinase (FAK) protein and the matrix metalloprotease MMP-2, both implicated in multiple steps of the metastatic spectrum, in complex multicellular tumor spheroids we show that cancer cell populations over-expressing MMP-2 or cancer-associated fibroblasts can release FAK-deficient cancer cells from their constrained metastatic fitness. Consistently, MMP-2, not FAK, serves as an independent prognostic factor in head and neck squamous cell carcinomas. Measurement of intratumor heterogeneity facilitate the development of more efficient biomarkers to predict the risk of metastasis and of more-effective personalized cancer therapies. Abstract Metastasis remains a clinically unsolved issue in cancer that is initiated by the acquisition of collective migratory properties of cancer cells. Phenotypic and functional heterogeneity that arise among cancer cells within the same tumor increase cellular plasticity and promote metastasis, however, their impact on collective cell migration is incompletely understood. Here, we show that in vitro collective cancer cell migration depends on FAK and MMP-2 and on the presence of cancer-associated fibroblasts (CAFs). The absence of functional FAK rendered cancer cells incapable of invading the surrounding stroma. However, CAFs and cancer cells over-expressing MMP-2 released FAK-deficient cells from this constraint by taking the leader positions in the invasive tracks, pushing FAK-deficient squamous cell carcinoma (SCC) cells towards the stroma and leading to the transformation of non-invasive cells into invasive cells. Our cell-based studies and the RNAseq data from the TCGA cohort of patients with head and neck squamous cell carcinomas reveal that, although both FAK and MMP-2 over-expression are associated with epithelial–mesenchymal transition, it is only MMP-2, not FAK, that functions as an independent prognostic factor. Given the significant role of MMP-2 in cancer dissemination, targeting of this molecule, better than FAK, presents a more promising opportunity to block metastasis.
Collapse
|
10
|
Lu Y, Sun H. Progress in the Development of Small Molecular Inhibitors of Focal Adhesion Kinase (FAK). J Med Chem 2020; 63:14382-14403. [PMID: 33058670 DOI: 10.1021/acs.jmedchem.0c01248] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Focal adhesion kinase (FAK) is a nonreceptor intracellular tyrosine kinase that plays an essential role in cancer cell adhesion, survival, proliferation, and migration through both its enzymatic activities and scaffolding functions. Overexpression of FAK has been found in many human cancer cells from different origins, which promotes tumor progression and influences clinical outcomes in different classes of human tumors. Therefore, FAK has been considered as a promising target for small molecule anticancer drug development. Many FAK inhibitors targeting different domains of FAK with various mechanisms of functions have been reported, including kinase domain inhibitors, FERM domain inhibitors, and FAT domain inhibitors. In addition, FAK-targeting PROTACs, which can induce the degradation of FAK, have also been developed. In this Perspective, we summarized the progress in the development of small molecular FAK inhibitors and proposed the perspectives for the future development of agents targeting FAK.
Collapse
Affiliation(s)
- Yang Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| | - Haiying Sun
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, China
| |
Collapse
|
11
|
Fibrotic Changes and Endothelial-to-Mesenchymal Transition Promoted by VEGFR2 Antagonism Alter the Therapeutic Effects of VEGFA Pathway Blockage in a Mouse Model of Choroidal Neovascularization. Cells 2020; 9:cells9092057. [PMID: 32917003 PMCID: PMC7563259 DOI: 10.3390/cells9092057] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/08/2020] [Accepted: 09/08/2020] [Indexed: 12/15/2022] Open
Abstract
Many patients with wet age-related macular degeneration do not respond well to anti- vascular endothelial growth factor A (VEGFA) therapy for choroidal neovascularization (CNV), and the efficacy of anti-VEGFA decreases over time. We investigated the hypothesis that fibrotic changes, in particular via endothelial-to-mesenchymal transition (EndoMT), play a role in CNV and alter the therapeutic effects of VEGFA pathway blockage. Induction of EndoMT of primary human retinal endothelial cells led to a significantly reduced response to VEGFA at the level of gene expression, cellular proliferation, migration, and tube formation. Suppression of EndoMT restored cell responsiveness to VEGFA. In a mouse model of spontaneous CNV, fibrotic changes and EndoMT persisted as the CNV lesions became more established over time. VEGFA receptor-2 (VEGFR2) antagonism further induced fibrosis and EndoMT in the CNV. The combination of VEGFR2 antagonism and fibrosis/EndoMT inhibition was more effective than either individual treatment in reducing CNV. Our data indicate that fibrosis and EndoMT are involved in the progression of CNV, are exacerbated by VEGFR2 inhibition, and could provide an explanation for the reduced efficacy of anti-VEGFA treatment over time.
Collapse
|
12
|
Semina EV, Rubina KA, Shmakova AA, Rysenkova KD, Klimovich PS, Aleksanrushkina NA, Sysoeva VY, Karagyaur MN, Tkachuk VA. Downregulation of uPAR promotes urokinase translocation into the nucleus and epithelial to mesenchymal transition in neuroblastoma. J Cell Physiol 2020; 235:6268-6286. [PMID: 31990070 PMCID: PMC7318179 DOI: 10.1002/jcp.29555] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022]
Abstract
The urokinase system is involved in a variety of physiological processes, such as fibrinolysis, matrix remodeling, wound healing, and regeneration. Upon binding to its cognate receptor urokinase‐type plasminogen activator receptor (uPAR), urokinase‐type plasminogen activator (uPA) catalyzes the conversion of plasminogen to plasmin and the activation of matrix metalloproteases. Apart from this, uPA–uPAR interaction can lead to the activation of transcription factors, mitogen‐activated protein kinase signaling pathways and RTK cascades. Elevated expression of uPA and uPAR is markedly associated with cancer progression and metastasis and correlates with a poor prognosis in clinics. Targeting the urokinase system has proved to be effective in experimental models in vitro and in vivo, however, in clinics the inhibition of the uPA/uPAR system has fallen short of expectations, suggesting that the question of the functional relevance of uPA/uPAR system is far from being moot. Recently, using CRISPR/Cas9 technology, we have shown that uPAR knockout decreases the proliferation of neuroblastoma Neuro2a cells in vitro. In the present study we demonstrate that uPAR expression is essential for maintaining the epithelial phenotype in Neuro2a cells and that uPAR silencing promotes epithelial‐mesenchymal transition (EMT) and increased cell migration. Accordingly, uPAR knockout results in the downregulation of epithelial markers (E‐cadherin, occludin, and claudin‐5) and in the increase of mesenchymal markers (N‐cadherin, α‐smooth muscle actin, and interleukin‐6). In search of the molecular mechanism underlying these changes, we identified uPA as a key component. Two key insights emerged as a result of this work: in the absence of uPAR, uPA is translocated into the nucleus where it is presumably involved in the activation of transcription factors (nuclear factor κB and Snail) resulting in EMT. In uPAR‐expressing cells, uPAR functions as a uPA “trap” that binds uPA on the cell surface and promotes controlled uPA internalization and degradation in lysosomes.
Collapse
Affiliation(s)
- Ekaterina V Semina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Kseniya A Rubina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Morohogenesis and Tissue Reparation, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Anna A Shmakova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Karina D Rysenkova
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Polina S Klimovich
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| | - Natalya A Aleksanrushkina
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Y Sysoeva
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Maxim N Karagyaur
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Vsevolod A Tkachuk
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia.,Laboratory of Molecular Endocrinology, Institute of Experimental Cardiology, Federal State Budgetary Organization National Cardiology Research Center Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
13
|
Makowiecka A, Malek N, Mazurkiewicz E, Mrówczyńska E, Nowak D, Mazur AJ. Thymosin β4 Regulates Focal Adhesion Formation in Human Melanoma Cells and Affects Their Migration and Invasion. Front Cell Dev Biol 2019; 7:304. [PMID: 31921836 PMCID: PMC6935720 DOI: 10.3389/fcell.2019.00304] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/11/2019] [Indexed: 12/17/2022] Open
Abstract
Thymosin β4 (Tβ4), a multifunctional 44-amino acid polypeptide and a member of actin-binding proteins (ABPs), plays an important role in developmental processes and wound healing. In recent years an increasing number of data has been published suggesting Tβ4's involvement in tumorigenesis. However, Tβ4's role in melanoma tumor development still remains to be elucidated. In our study we demonstrate that Tβ4 is crucial for melanoma adhesion and invasion. For the purpose of our research we tested melanoma cell lines differing in invasive potential. Moreover, we applied shRNAs to silence TMSB4X (gene encoding Tβ4) expression in a cell line with high TMSB4X expression. We found out that Tβ4 is not only a component of focal adhesions (FAs) and interacts with several FAs components but also regulates FAs formation. We demonstrate that Tβ4 level has an impact on FAs' number and morphology. Moreover, manipulation with TMSB4X expression resulted in changes in cells' motility on non-coated and MatrigelTM (resembling basement membrane composition)-coated surfaces and drastically decreased invasion abilities of the cells. Additionally, a correlation between Tβ4 expression level and exhibition of mesenchymal-like [epithelial-mesenchymal transition (EMT)] features was discovered. Cells with lowered TMSB4X expression were less EMT-progressed than control cells. Summarizing, obtained results show that Tβ4 by regulating melanoma cells' adhesion has an impact on motility features and EMT. Our study not only contributes to a better understanding of the processes underlying melanoma cells' capacity to create metastases but also highlights Tβ4 as a potential target for melanoma management therapy.
Collapse
Affiliation(s)
- Aleksandra Makowiecka
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Natalia Malek
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Mazurkiewicz
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Mrówczyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
14
|
Aboubakar Nana F, Vanderputten M, Ocak S. Role of Focal Adhesion Kinase in Small-Cell Lung Cancer and Its Potential as a Therapeutic Target. Cancers (Basel) 2019; 11:E1683. [PMID: 31671774 PMCID: PMC6895835 DOI: 10.3390/cancers11111683] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 02/07/2023] Open
Abstract
Small-cell lung cancer (SCLC) represents 15% of all lung cancers and it is clinically the most aggressive type, being characterized by a tendency for early metastasis, with two-thirds of the patients diagnosed with an extensive stage (ES) disease and a five-year overall survival (OS) as low as 5%. There are still no effective targeted therapies in SCLC despite improved understanding of the molecular steps leading to SCLC development and progression these last years. After four decades, the only modest improvement in OS of patients suffering from ES-SCLC has recently been shown in a trial combining atezolizumab, an anti-PD-L1 immune checkpoint inhibitor, with carboplatin and etoposide, chemotherapy agents. This highlights the need to pursue research efforts in this field. Focal adhesion kinase (FAK) is a non-receptor protein tyrosine kinase that is overexpressed and activated in several cancers, including SCLC, and contributing to cancer progression and metastasis through its important role in cell proliferation, survival, adhesion, spreading, migration, and invasion. FAK also plays a role in tumor immune evasion, epithelial-mesenchymal transition, DNA damage repair, radioresistance, and regulation of cancer stem cells. FAK is of particular interest in SCLC, being known for its aggressiveness. The inhibition of FAK in SCLC cell lines demonstrated significative decrease in cell proliferation, invasion, and migration, and induced cell cycle arrest and apoptosis. In this review, we will focus on the role of FAK in cancer cells and their microenvironment, and its potential as a therapeutic target in SCLC.
Collapse
Affiliation(s)
- Frank Aboubakar Nana
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, Cliniques Universitaires St-Luc, UCL, 1200 Brussels, Belgium.
| | - Marie Vanderputten
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
| | - Sebahat Ocak
- Institut de Recherche Expérimentale et Clinique (IREC), Pôle de Pneumologie, ORL et Dermatologie (PNEU), Université catholique de Louvain (UCLouvain), 1200 Brussels, Belgium.
- Division of Pneumology, CHU UCL Namur (Godinne Site), UCL, 5530 Yvoir, Belgium.
| |
Collapse
|
15
|
Yu Q, Xu L, Chen L, Sun B, Yang Z, Lu K, Yang Z. Vinculin expression in non-small cell lung cancer. J Int Med Res 2019; 48:300060519839523. [PMID: 30947597 PMCID: PMC7140223 DOI: 10.1177/0300060519839523] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Qiuli Yu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Liqin Xu
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China.,Qiuli Yu and Liqin Xu contributed equally to this work
| | - Long Chen
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Baier Sun
- Department of Respiratory and Critical Care Medicine, the Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Zhiyun Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Kunqin Lu
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| | - Zhiyong Yang
- Department of Respiratory Medicine, the People's Hospital of Rugao, Rugao, Jiangsu, China
| |
Collapse
|
16
|
Wang J, Wen T, Li Z, Che X, Gong L, Yang X, Zhang J, Tang H, He L, Qu X, Liu Y. MicroRNA-1224 Inhibits Tumor Metastasis in Intestinal-Type Gastric Cancer by Directly Targeting FAK. Front Oncol 2019; 9:222. [PMID: 31019895 PMCID: PMC6458237 DOI: 10.3389/fonc.2019.00222] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/13/2019] [Indexed: 12/20/2022] Open
Abstract
Intestinal-type gastric cancer (GC) of the Lauren classification system has specific epidemiological characteristics and carcinogenesis patterns. MicroRNAs (miRNAs) have prognostic significance, and some can be used as prognostic biomarkers in GC. In this study, we identified miR-1224 as a potential survival-related miRNA in intestinal-type GC patients by The Cancer Genome Atlas (TCGA) analysis. Using quantitative real-time PCR (qRT-PCR), we showed that the relative expression of miR-1224 was significantly decreased in intestinal-type GC tissues compared to matched adjacent normal mucosa tissues (p < 0.01). We found that high miR-1224 expression was associated with no lymph-node metastasis (p < 0.05) and good prognosis (p = 0.028) in 90 intestinal-type GC tissues. Transfection of intestinal-type GC cells with miR-1224 mimics showed that miR-1224 suppressed cell migration in vitro (wound healing assay and Transwell migration assay), whereas the transfection of cells with miR-1224 inhibitor promoted cell migration in vitro. miR-1224 also suppressed intestinal-type GC cell metastasis in a xenograft mouse model. Furthermore, bioinformatics, luciferase reporter, Western blotting, and immunohistochemistry (IHC) studies demonstrated that miR-1224 directly bound to the focal adhesion kinase (FAK) gene, and downregulated its expression, which decreased STAT3 and NF-κB signaling and subsequent the epithelial-to-mesenchymal transition (EMT). Repression of FAK is required for the miR-1224-mediated inhibition of cell migration in intestinal-type GC. The present study demonstrated that miR-1224 is downregulated in intestinal-type GC. miR-1224 inhibits the metastasis of intestinal-type GC by suppressing FAK-mediated activation of the STAT3 and NF-κB pathways, and subsequent EMT. miR-1224 could represent an important prognostic factor in intestinal-type GC.
Collapse
Affiliation(s)
- Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Ti Wen
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiaofang Che
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Libao Gong
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xianghong Yang
- Department of Pathology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingdong Zhang
- Department of Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Huali Tang
- Department of Medical Oncology, The Central Hospital of Zhuanghe, Zhuanghe, China
| | - Lingzi He
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
da Silva SD, Xu B, Maschietto M, Marchi FA, Alkailani MI, Bijian K, Xiao D, Alaoui-Jamali MA. TRAF2 Cooperates with Focal Adhesion Signaling to Regulate Cancer Cell Susceptibility to Anoikis. Mol Cancer Ther 2018; 18:139-146. [PMID: 30373932 DOI: 10.1158/1535-7163.mct-17-1261] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 05/14/2018] [Accepted: 10/23/2018] [Indexed: 11/16/2022]
Abstract
TRAF2, a RING finger adaptor protein, plays an important function in tumor necrosis factor (TNF)- and TNF-like weak inducer of apoptosis (TWEAK)-dependent signaling, in particular during inflammatory and immune responses. We identified a functional interaction of TRAF2 with focal adhesion (FA) signaling involving the focal adhesion kinase (FAK) in the regulation of cell susceptibility to anoikis. Comparison of TRAF2-proficient (TRAF2+/+) versus TRAF2-deficient (TRAF2-/-), and FAK-proficient (FAK+/+) versus FAK-deficient (FAK-/-) mouse embryonic fibroblasts and their matched reconstituted cells demonstrated that TRAF2 interacts physically with the N-terminal portion of FAK and colocalizes to cell membrane protrusions. This interaction was found to be critical for promoting resistance to cell anoikis. Similar results were confirmed in the human breast cancer cell line MDA-MB-231, where TRAF2 and FAK downregulation promoted cell susceptibility to anoikis. In human breast cancer tissues, genomic analysis of The Cancer Genome Atlas database revealed coamplification of TRAF2 and FAK in breast cancer tissues with a predictive value for shorter survival, further supporting a potential role of TRAF2-FAK cooperative signaling in cancer progression.
Collapse
Affiliation(s)
- Sabrina Daniela da Silva
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Otolaryngology Head and Neck Surgery, Sir Mortimer B. Davis-Jewish General Hospital, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Bin Xu
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | | | - Fabio Albuquerque Marchi
- AC Camargo Cancer Center and National Institute of Science and Technology on Oncogenomics (INCITO), São Paulo, Brazil
| | - Maisa I Alkailani
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Krikor Bijian
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - Dingzhang Xiao
- Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Moulay A Alaoui-Jamali
- Segal Cancer Centre and Lady Davis Institute for Medical Research, Sir Mortimer B. Davis-Jewish General Hospital, Departments of Medicine, Oncology, and Pharmacology and Therapeutics, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
18
|
Zheng D, Duan H, Wang S, Xu Q, Gan L, Li J, Dong Q. FAK regulates epithelial‑mesenchymal transition in adenomyosis. Mol Med Rep 2018; 18:5461-5472. [PMID: 30365102 PMCID: PMC6236295 DOI: 10.3892/mmr.2018.9600] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/25/2018] [Indexed: 12/26/2022] Open
Abstract
Epithelial‑mesenchymal transition (EMT) has been associated with the pathogenesis of adenomyosis; focal adhesion kinase (FAK) serves an important role in the EMT process. The aim of the present study was to determine whether FAK regulates EMT in adenomyosis and to investigate the potential pathway in this process. The expression of FAK and EMT‑associated molecules in adenomyosis and control cells were determined by immunohistochemical staining and immunofluorescence at the protein level, and at the mRNA level by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Small interfering RNAs were designed to knock down FAK expression. Subsequently, molecular expression was detected by immunofluorescence, RT‑qPCR and western blotting; cell migration was investigated via Transwell assays. In addition, the expression levels of members of the phosphoinositide 3‑kinase (PI3K)/protein kinase B (AKT) signaling pathway was also analyzed by RT‑qPCR and western blotting to determine the association between these members and EMT in adenomyosis. The results of the present study revealed that FAK was upregulated and the expression levels of EMT‑associated molecules were altered in adenomyosis. Silencing FAK expression inhibited adenomyosis cell migration in vitro and the expression of EMT‑promoting molecules, suggesting that the FAK/PI3K/AKT signaling pathway may participate in the EMT of endometrial cells in adenomyosis. In conclusion, FAK may regulate EMT in adenomyosis, and this process may be associated with the PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Dexuan Zheng
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Hua Duan
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Sha Wang
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Qian Xu
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Lu Gan
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Jinjiao Li
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| | - Qianjing Dong
- Department of Gynecology Minimally Invasive Center, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing 100000, P.R. China
| |
Collapse
|
19
|
Sagredo AI, Sagredo EA, Pola V, Echeverría C, Andaur R, Michea L, Stutzin A, Simon F, Marcelain K, Armisén R. TRPM4 channel is involved in regulating epithelial to mesenchymal transition, migration, and invasion of prostate cancer cell lines. J Cell Physiol 2018; 234:2037-2050. [PMID: 30343491 DOI: 10.1002/jcp.27371] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Transient Receptor Potential Melastatin 4 (TRPM4) is a Ca2+ -activated and voltage-dependent monovalent cation channel, which depolarizes the plasma cell membrane, thereby modulating Ca2+ influx across Ca2+ -permeable pathways. TRPM4 is involved in different physiological processes such as T cell activation and the migration of endothelial and certain immune cells. Overexpression of this channel has been reported in various types of tumors including prostate cancer. In this study, a significant overexpression of TRPM4 was found only in samples from cancer with a Gleason score higher than 7, which are more likely to spread. To evaluate whether TRPM4 overexpression was related to the spreading capability of tumors, TRPM4 was knockdown by using shRNAs in PC3 prostate cancer cells and the effect on cellular migration and invasion was analyzed. PC3 cells with reduced levels of TRPM4 (shTRPM4) display a decrease of the migration/invasion capability. A reduction in the expression of Snail1, a canonical epithelial to mesenchymal transition (EMT) transcription factor, was also observed. Consistently, these cells showed a significant change in the expression of key EMT markers such as MMP9, E-cadherin/N-cadherin, and vimentin, indicating a partial reversion of the EMT process. Whereas, the overexpression of TRPM4 in LnCaP cells resulted in increased levels of Snail1, reduction in the expression of E-cadherin and increase in their migration potential. This study suggests a new and indirect mechanism of regulation of migration/invasion process by TRPM4 in prostate cancer cells, by inducing the expression of Snail1 gene and consequently, increasing the EMT.
Collapse
Affiliation(s)
- Alfredo I Sagredo
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile
| | - Eduardo A Sagredo
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile
| | - Victor Pola
- Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - César Echeverría
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Facultad de Medicina, Universidad de Atacama, Copiapo, Chile
| | - Rodrigo Andaur
- Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - Luis Michea
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Andrés Stutzin
- Facultad de Medicina, Instituto de Ciencias Biomédicas, Universidad de Chile, Chile
| | - Felipe Simon
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Millennium Institute on Immunology and Immunotherapy, Santiago, Chile
| | - Katherine Marcelain
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| | - Ricardo Armisén
- Facultad de Medicina, Centro de Investigación y Tratamiento del Cáncer, Universidad de Chile, Chile.,Departamento de Oncología Básico-Clínica, Facultad de Medicina, Universidad de Chile, Chile
| |
Collapse
|
20
|
Cao Z, Livas T, Kyprianou N. Anoikis and EMT: Lethal "Liaisons" during Cancer Progression. Crit Rev Oncog 2017; 21:155-168. [PMID: 27915969 DOI: 10.1615/critrevoncog.2016016955] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anoikis is a unique mode of apoptotic cell death that occurs consequentially to insufficient cell-matrix interactions. Resistance to anoikis is a critical contributor to tumor invasion and metastasis. The phenomenon is regulated by integrins, which upon engagement with components of the extracellular matrix (ECM) form adhesion complexes and the actin cytoskeleton drives the formation of cell protrusions used to adhere to ECM, directing cell migration. The epithelial-mesenchymal transition (EMT) confers stem cell properties and leads to acquisition of a migratory and invasive phenotype by causing adherens junction breakdown and circumventing anoikis in the tumor microenvironment. The investigation of drug discovery platforms for apoptosis-driven therapeutics identified several novel agents with antitumor action via reversing resistance to anoikis, inhibiting survival pathways and impacting the EMT landscape in human cancer. In this review, we discuss current evidence on the contribution of the anoikis phenomenon functionally linked to EMT to cancer metastasis and the therapeutic value of antitumor drugs that selectively reverse anoikis resistance and/or EMT to impair tumor progression toward the development/optimization of apoptosis-driven therapeutic targeting of metastatic disease.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Theodore Livas
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| | - Natasha Kyprianou
- Department of Urology, Molecular Biochemistry, Pathology, Toxicology & Cancer Biology, Markey Cancer Center, University of Kentucky, Lexington, KY, U.S.A
| |
Collapse
|
21
|
Autophagy and epithelial-mesenchymal transition: an intricate interplay in cancer. Cell Death Dis 2016; 7:e2520. [PMID: 27929542 PMCID: PMC5260980 DOI: 10.1038/cddis.2016.415] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 11/10/2016] [Accepted: 11/11/2016] [Indexed: 12/19/2022]
Abstract
Autophagy and epithelial to mesenchymal transition (EMT) are major biological processes in cancer. Autophagy is a catabolic pathway that aids cancer cells to overcome intracellular or environmental stress, including nutrient deprivation, hypoxia and drugs effect. EMT is a complex transdifferentiation through which cancer cells acquire mesenchymal features, including motility and metastatic potential. Recent observations indicate that these two processes are linked in a complex relationship. On the one side, cells that underwent EMT require autophagy activation to survive during the metastatic spreading. On the other side, autophagy, acting as oncosuppressive signal, tends to inhibit the early phases of metastasization, contrasting the activation of the EMT mainly by selectively destabilizing crucial mediators of this process. Currently, still limited information is available regarding the molecular hubs at the interplay between autophagy and EMT. However, a growing number of evidence points to the functional interaction between cytoskeleton and mitochondria as one of the crucial regulatory center at the crossroad between these two biological processes. Cytoskeleton and mitochondria are linked in a tight functional relationship. Controlling mitochondria dynamics, the cytoskeleton cooperates to dictate mitochondria availability for the cell. Vice versa, the number and structure of mitochondria, which are primarily affected by autophagy-related processes, define the energy supply that cancer cells use to reorganize the cytoskeleton and to sustain cell movement during EMT. In this review, we aim to revise the evidence on the functional crosstalk between autophagy and EMT in cancer and to summarize the data supporting a parallel regulation of these two processes through shared signaling pathways. Furthermore, we intend to highlight the relevance of cytoskeleton and mitochondria in mediating the interaction between autophagy and EMT in cancer.
Collapse
|
22
|
Zhu W, Ye L, Zhang J, Yu P, Wang H, Ye Z, Tian J. PFK15, a Small Molecule Inhibitor of PFKFB3, Induces Cell Cycle Arrest, Apoptosis and Inhibits Invasion in Gastric Cancer. PLoS One 2016; 11:e0163768. [PMID: 27669567 PMCID: PMC5036843 DOI: 10.1371/journal.pone.0163768] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 09/14/2016] [Indexed: 01/15/2023] Open
Abstract
PFKFB3 (6-phosphofructo-2-kinase) synthesizes fructose 2,6-bisphosphate (F2,6P2), which is an allosteric activator of 6-phosphofructo-1-kinase (PFK-1), the rate-limiting enzyme of glycolysis. Overexpression of the PFKFB3 enzyme leads to high glycolytic metabolism, which is required for cancer cells to survive in the harsh tumor microenvironment. The objective of this study was to investigate the antitumor activity of PFK15 (1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one), a small molecule inhibitor of PFKFB3, against gastric cancer and to explore its potential mechanisms. The effects of PFK15 on proliferation, apoptosis and cell cycle progression in gastric cancer cells were evaluated by cytotoxicity and apoptosis assays, flow cytometry, and western blotting. In addition, the invasion inhibition effects of PFK15 were measured by transwell invasion assay and western blot analysis, and a xenograft tumor model was used to verify the therapeutic effect of PFK15 in vivo. Results showed that PFK15 inhibited the proliferation, caused cell cycle arrest in G0/G1 phase by blocking the Cyclin-CDKs/Rb/E2F signaling pathway, and induced apoptosis through mitochondria in gastric cancer cells. Tumor volume and weight were also significantly reduced upon intraperitoneal injection with PFK15 at 25 mg/kg. In addition, PFK15 inhibited the invasion of gastric cancer cells by downregulating focal adhesion kinase (FAK) expression and upregulating E-cadherin expression. Taken together, our findings indicate that PFK15 is a promising anticancer drug for treating gastric cancer.
Collapse
Affiliation(s)
- Wei Zhu
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liang Ye
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmaceutical Sciences and Institute of Material Medical, Binzhou Medical University, Yantai, Shandong 264005, China
| | - Jianzhao Zhang
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
| | - Pengfei Yu
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
| | - Hongbo Wang
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
| | - Zuguang Ye
- School of Life Science and Bio-pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
- * E-mail: (ZGY); (JWT)
| | - Jingwei Tian
- State Key Laboratory of Long-acting and Targeting Drug Delivery System, Non-clinical Research Department, Luye Pharma Group Ltd., Yantai, Shandong 264003, China
- School of Pharmacy, Yantai University, Yantai, Shandong 264005, China
- * E-mail: (ZGY); (JWT)
| |
Collapse
|
23
|
Ling Zhi-8 reduces lung cancer mobility and metastasis through disruption of focal adhesion and induction of MDM2-mediated Slug degradation. Cancer Lett 2016; 375:340-348. [DOI: 10.1016/j.canlet.2016.03.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/26/2016] [Accepted: 03/10/2016] [Indexed: 12/19/2022]
|
24
|
Constanzo JD, Tang KJ, Rindhe S, Melegari M, Liu H, Tang X, Rodriguez-Canales J, Wistuba I, Scaglioni PP. PIAS1-FAK Interaction Promotes the Survival and Progression of Non-Small Cell Lung Cancer. Neoplasia 2016; 18:282-293. [PMID: 27237320 PMCID: PMC4887597 DOI: 10.1016/j.neo.2016.03.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/01/2016] [Accepted: 03/14/2016] [Indexed: 12/27/2022] Open
Abstract
The sequence of genomic alterations acquired by cancer cells during tumor progression and metastasis is poorly understood. Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that integrates cytoskeleton remodeling, mitogenic signaling and cell survival. FAK has previously been reported to undergo nuclear localization during cell migration, cell differentiation and apoptosis. However, the mechanism behind FAK nuclear accumulation and its contribution to tumor progression has remained elusive. We report that amplification of FAK and the SUMO E3 ligase PIAS1 gene loci frequently co-occur in non-small cell lung cancer (NSCLC) cells, and that both gene products are enriched in a subset of primary NSCLCs. We demonstrate that endogenous FAK and PIAS1 proteins interact in the cytoplasm and the cell nucleus of NSCLC cells. Ectopic expression of PIAS1 promotes proteolytic cleavage of the FAK C-terminus, focal adhesion maturation and FAK nuclear localization. Silencing of PIAS1 deregulates focal adhesion turnover, increases susceptibility to apoptosis in vitro and impairs tumor xenograft formation in vivo. Nuclear FAK in turn stimulates gene transcription favoring DNA repair, cell metabolism and cytoskeleton regulation. Consistently, ablation of FAK by CRISPR/Cas9 editing, results in basal DNA damage, susceptibility to ionizing radiation and impaired oxidative phosphorylation. Our findings provide insight into a mechanism regulating FAK cytoplasm-nuclear distribution and demonstrate that FAK activity in the nucleus promotes NSCLC survival and progression by increasing cell-ECM interaction and DNA repair regulation.
Collapse
Affiliation(s)
- Jerfiz D Constanzo
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Ke-Jing Tang
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA; Department of Pulmonary Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Smita Rindhe
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Margherita Melegari
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA
| | - Hui Liu
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ximing Tang
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jaime Rodriguez-Canales
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Thoracic, Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pier Paolo Scaglioni
- Department of Internal Medicine and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center Dallas, TX, USA.
| |
Collapse
|
25
|
Herrera A, Herrera M, Peña C. The emerging role of Snail1 in the tumor stroma. Clin Transl Oncol 2015; 18:872-7. [PMID: 26687368 DOI: 10.1007/s12094-015-1474-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 12/08/2015] [Indexed: 01/11/2023]
Abstract
The transcription factor Snail1 leads to the epithelial-mesenchymal transition by repressing the adherent and tight junctions in epithelial cells. This process is related to an increase of cell migratory and mesenchymal properties during both embryonic development and tumor progression. Although Snail1 expression is very limited in adult animals, emerging evidence has placed Snail at the forefront of medical science. As a transcriptional repressor, Snail1 confers cancer stem cell-like traits on tumor cells and promotes drug resistance, tumor recurrence and metastasis. In this review, we summarize recent reports that suggest the pro-tumorigenic roles of Snail1 expression in tumor stroma. The crosstalk between tumor and stromal cells mediated by Snail1 regulates paracrine communication, pro-tumorigenic abilities of cancer cells, extracellular matrix characteristics and mesenchymal differentiation in cancer stem cells and cancer-associated fibroblasts. Therefore, understanding the regulation and functional roles of Snail1 in the tumor microenvironment will provide us with new therapies for treating metastatic disease.
Collapse
Affiliation(s)
- A Herrera
- "Cancer Cell Signaling" Research Group, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain
| | - M Herrera
- "Cancer Cell Signaling" Research Group, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain
| | - C Peña
- "Cancer Cell Signaling" Research Group, Hospital Universitario Puerta de Hierro de Majadahonda, Majadahonda, Madrid, Spain.
| |
Collapse
|
26
|
Atypical role of sprouty in colorectal cancer: sprouty repression inhibits epithelial-mesenchymal transition. Oncogene 2015; 35:3151-62. [PMID: 26434583 PMCID: PMC4850112 DOI: 10.1038/onc.2015.365] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 08/07/2015] [Accepted: 08/28/2015] [Indexed: 02/07/2023]
Abstract
Sprouty (SPRY) appears to act as a tumor suppressor in cancer, whereas we demonstrated that SPRY2 functions as a putative oncogene in colorectal cancer (CRC) (Oncogene, 2010, 29: 5241-5253). We investigated the mechanisms by which SPRY regulates epithelial-mesenchymal transition (EMT) in CRC. SPRY1 and SPRY2 mRNA transcripts were significantly upregulated in human CRC. Suppression of SPRY2 repressed AKT2 and EMT-inducing transcription factors and significantly increased E-cadherin expression. Concurrent downregulation of SPRY1 and SPRY2 also increased E-cadherin and suppressed mesenchymal markers in colon cancer cells. An inverse expression pattern between AKT2 and E-cadherin was established in a human CRC tissue microarray. SPRY2 negatively regulated miR-194-5p that interacts with AKT2 3' untranslated region. Mir-194 mimics increased E-cadherin expression and suppressed cancer cell migration and invasion. By confocal microscopy, we demonstrated redistribution of E-cadherin to plasma membrane in colon cancer cells transfected with miR-194. Spry1(-/-) and Spry2(-/-) double mutant mouse embryonic fibroblasts exhibited decreased cell migration while acquiring several epithelial markers. In CRC, SPRY drive EMT and may serve as a biomarker of poor prognosis.
Collapse
|
27
|
Baquero P, Jiménez-Mora E, Santos A, Lasa M, Chiloeches A. TGFβ induces epithelial-mesenchymal transition of thyroid cancer cells by both the BRAF/MEK/ERK and Src/FAK pathways. Mol Carcinog 2015; 55:1639-1654. [PMID: 26392228 DOI: 10.1002/mc.22415] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/08/2015] [Accepted: 09/14/2015] [Indexed: 11/10/2022]
Abstract
The epithelial-mesenchymal transition (EMT) is a crucial process in tumour progression, by which epithelial cells acquire a mesenchymal phenotype, increasing its motility and the ability to invade distant sites. Here, we describe the molecular mechanisms by which V600E BRAF, TGFβ and the Src/FAK complex cooperatively regulate EMT induction and cell motility of anaplastic thyroid cancer cells. Analysis of EMT marker levels reveals a positive correlation between TGFβ and Snail expression, with a concomitant downregulation of E-cadherin, accompanied by an increase of cell migration and invasion. Furthermore, we show that V600E BRAF depletion by siRNA or inhibition of its activity by treatment with its inhibitor PLX4720 reverses the TGFβ-mediated effects on Snail, E-cadherin, migration and invasion. Moreover, V600E BRAF induces TGFβ secretion through a MEK/ERK-dependent mechanism. In addition, TGFβ activates the Src/FAK complex, which in turn regulates the expression of Snail and E-cadherin as well as cell migration. The inhibition of Src with the inhibitor SU6656 or abrogation of FAK expression with a specific siRNA reverses the TGFβ-induced effects. Interestingly, we demonstrate that activation of the Src/FAK complex by TGFβ is independent of V600E BRAF signalling, since inhibition of this oncogene does not affect its phosphorylation. Our data strongly suggest that TGFβ induces EMT and aggressiveness of thyroid cancer cells by parallel mechanisms involving both the V600E BRAF/MEK/ERK and Src/FAK pathways independently. Thus, we describe novel functions for Src/FAK in mediating the EMT program and aggressiveness regulated by TGFβ, establishing the inhibition of these proteins as a possible effective approach in preventing tumour progression of V600E BRAF-expressing thyroid tumours. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Pablo Baquero
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain
| | - Eva Jiménez-Mora
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain
| | - Adrián Santos
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain
| | - Marina Lasa
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Instituto de Investigaciones Biomédicas "Alberto Sols", CSIC-UAM, Madrid, Spain
| | - Antonio Chiloeches
- Departamento de Biología de Sistemas, Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Alcalá, Campus Universitario, Alcalá de Henares, Madrid, Spain.
| |
Collapse
|
28
|
Requisite role for Nck adaptors in cardiovascular development, endothelial-to-mesenchymal transition, and directed cell migration. Mol Cell Biol 2015; 35:1573-87. [PMID: 25691664 DOI: 10.1128/mcb.00072-15] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023] Open
Abstract
Development of the cardiovascular system is critically dependent on the ability of endothelial cells (ECs) to reorganize their intracellular actin architecture to facilitate migration, adhesion, and morphogenesis. Nck family cytoskeletal adaptors function as key mediators of actin dynamics in numerous cell types, though their role in EC biology remains largely unexplored. Here, we demonstrate an essential requirement for Nck within ECs. Mouse embryos lacking endothelial Nck1/2 expression develop extensive angiogenic defects that result in lethality at about embryonic day 10. Mutant embryos show immature vascular networks, with decreased vessel branching, aberrant perivascular cell recruitment, and reduced cardiac trabeculation. Strikingly, embryos deficient in endothelial Nck also fail to undergo the endothelial-to-mesenchymal transition (EnMT) required for cardiac valve morphogenesis, with loss of Nck disrupting expression of major EnMT markers, as well as suppressing mesenchymal outgrowth. Furthermore, we show that Nck-null ECs are unable to migrate downstream of vascular endothelial growth factor and angiopoietin-1, and they exhibit profound perturbations in cytoskeletal patterning, with disorganized cellular projections, impaired focal adhesion turnover, and disrupted actin-based signaling. Our collective findings thereby reveal a crucial role for Nck as a master regulator within the endothelium to control actin cytoskeleton organization, vascular network remodeling, and EnMT during cardiovascular development.
Collapse
|
29
|
Yoon H, Dehart JP, Murphy JM, Lim STS. Understanding the roles of FAK in cancer: inhibitors, genetic models, and new insights. J Histochem Cytochem 2014; 63:114-28. [PMID: 25380750 DOI: 10.1369/0022155414561498] [Citation(s) in RCA: 173] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Focal adhesion kinase (FAK) is a protein tyrosine kinase that regulates cellular adhesion, motility, proliferation and survival in various types of cells. Interestingly, FAK is activated and/or overexpressed in advanced cancers, and promotes cancer progression and metastasis. For this reason, FAK became a potential therapeutic target in cancer, and small molecule FAK inhibitors have been developed and are being tested in clinical phase trials. These inhibitors have demonstrated to be effective by inducing tumor cell apoptosis in addition to reducing metastasis and angiogenesis. Furthermore, several genetic FAK mouse models have made advancements in understanding the specific role of FAK both in tumors and in the tumor environment. In this review, we discuss FAK inhibitors as well as genetic mouse models to provide mechanistic insights into FAK signaling and its potential in cancer therapy.
Collapse
Affiliation(s)
- Hyunho Yoon
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Joshua P Dehart
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - James M Murphy
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ssang-Taek Steve Lim
- Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
30
|
Abstract
Focal adhesion kinase (FAK) is a cytoplasmic protein tyrosine kinase that is overexpressed and activated in several advanced-stage solid cancers. FAK promotes tumour progression and metastasis through effects on cancer cells, as well as stromal cells of the tumour microenvironment. The kinase-dependent and kinase-independent functions of FAK control cell movement, invasion, survival, gene expression and cancer stem cell self-renewal. Small molecule FAK inhibitors decrease tumour growth and metastasis in several preclinical models and have initial clinical activity in patients with limited adverse events. In this Review, we discuss FAK signalling effects on both tumour and stromal cell biology that provide rationale and support for future therapeutic opportunities.
Collapse
Affiliation(s)
- Florian J. Sulzmaier
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - Christine Jean
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
| | - David D. Schlaepfer
- Department of Reproductive Medicine, UCSD Moores Cancer Center, La Jolla, CA 92093
- Address correspondence to: David D. Schlaepfer, Ph.D., University of California San Diego, Moores Cancer Center, Department of Reproductive Medicine, 3855 Health Sciences Dr., MC0803, La Jolla, CA 92093,
| |
Collapse
|
31
|
Goodwin JM, Svensson RU, Lou HJ, Winslow MM, Turk BE, Shaw RJ. An AMPK-independent signaling pathway downstream of the LKB1 tumor suppressor controls Snail1 and metastatic potential. Mol Cell 2014; 55:436-50. [PMID: 25042806 DOI: 10.1016/j.molcel.2014.06.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 04/08/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
The serine/threonine kinase LKB1 is a tumor suppressor whose loss is associated with increased metastatic potential. In an effort to define biochemical signatures of metastasis associated with LKB1 loss, we discovered that the epithelial-to-mesenchymal transition transcription factor Snail1 was uniquely upregulated upon LKB1 deficiency across cell types. The ability of LKB1 to suppress Snail1 levels was independent of AMPK but required the related kinases MARK1 and MARK4. In a screen for substrates of these kinases involved in Snail regulation, we identified the scaffolding protein DIXDC1. Similar to loss of LKB1, DIXDC1 depletion results in upregulation of Snail1 in a FAK-dependent manner, leading to increased cell invasion. MARK1 phosphorylation of DIXDC1 is required for its localization to focal adhesions and ability to suppress metastasis in mice. DIXDC1 is frequently downregulated in human cancers, which correlates with poor survival. This study defines an AMPK-independent phosphorylation cascade essential for LKB1-dependent control of metastatic behavior.
Collapse
Affiliation(s)
- Jonathan M Goodwin
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Robert U Svensson
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Hua Jane Lou
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Monte M Winslow
- Department of Genetics and Pathology, Stanford University, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University, Stanford, CA 94305, USA
| | - Benjamin E Turk
- Department of Pharmacology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Reuben J Shaw
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| |
Collapse
|
32
|
De Antonellis P, Carotenuto M, Vandenbussche J, De Vita G, Ferrucci V, Medaglia C, Boffa I, Galiero A, Di Somma S, Magliulo D, Aiese N, Alonzi A, Spano D, Liguori L, Chiarolla C, Verrico A, Schulte JH, Mestdagh P, Vandesompele J, Gevaert K, Zollo M. Early targets of miR-34a in neuroblastoma. Mol Cell Proteomics 2014; 13:2114-31. [PMID: 24912852 DOI: 10.1074/mcp.m113.035808] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Several genes encoding for proteins involved in proliferation, invasion, and apoptosis are known to be direct miR-34a targets. Here, we used proteomics to screen for targets of miR-34a in neuroblastoma (NBL), a childhood cancer that originates from precursor cells of the sympathetic nervous system. We examined the effect of miR-34a overexpression using a tetracycline inducible system in two NBL cell lines (SHEP and SH-SY5Y) at early time points of expression (6, 12, and 24 h). Proteome analysis using post-metabolic labeling led to the identification of 2,082 proteins, and among these 186 were regulated (112 proteins down-regulated and 74 up-regulated). Prediction of miR-34a targets via bioinformatics showed that 32 transcripts held miR-34a seed sequences in their 3'-UTR. By combining the proteomics data with Kaplan Meier gene-expression studies, we identified seven new gene products (ALG13, TIMM13, TGM2, ABCF2, CTCF, Ki67, and LYAR) that were correlated with worse clinical outcomes. These were further validated in vitro by 3'-UTR seed sequence regulation. In addition, Michigan Molecular Interactions searches indicated that together these proteins affect signaling pathways that regulate cell cycle and proliferation, focal adhesions, and other cellular properties that overall enhance tumor progression (including signaling pathways such as TGF-β, WNT, MAPK, and FAK). In conclusion, proteome analysis has here identified early targets of miR-34a with relevance to NBL tumorigenesis. Along with the results of previous studies, our data strongly suggest miR-34a as a useful tool for improving the chance of therapeutic success with NBL.
Collapse
Affiliation(s)
- Pasqualino De Antonellis
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Marianeve Carotenuto
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Jonathan Vandenbussche
- ‖Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; **Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Gennaro De Vita
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Veronica Ferrucci
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Chiara Medaglia
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Iolanda Boffa
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Alessandra Galiero
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Sarah Di Somma
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Daniela Magliulo
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Nadia Aiese
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Alessandro Alonzi
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Daniela Spano
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Lucia Liguori
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Cristina Chiarolla
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy
| | - Antonio Verrico
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy; ‡‡Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, 80131 Naples, Italy
| | | | - Pieter Mestdagh
- ¶¶Center for Medical Genetics, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Jo Vandesompele
- ¶¶Center for Medical Genetics, Ghent University Hospital, B-9000 Ghent, Belgium
| | - Kris Gevaert
- ‖Department of Medical Protein Research, VIB, B-9000 Ghent, Belgium; **Department of Biochemistry, Ghent University, B-9000 Ghent, Belgium
| | - Massimo Zollo
- From the ‡Centro di Ingegneria Genetica e Biotecnologie Avanzate (CEINGE), 80145 Naples, Italy; §Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università Federico II, 80131 Naples, Italy; ‖‖Centro di Medicina Trasfusionale, Azienda Ospedaliera Federico II, 80131 Naples, Italy
| |
Collapse
|
33
|
Hsieh YS, Chu SC, Hsu LS, Chen KS, Lai MT, Yeh CH, Chen PN. Rubus idaeus L. reverses epithelial-to-mesenchymal transition and suppresses cell invasion and protease activities by targeting ERK1/2 and FAK pathways in human lung cancer cells. Food Chem Toxicol 2013; 62:908-18. [PMID: 24161487 DOI: 10.1016/j.fct.2013.10.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 10/03/2013] [Accepted: 10/14/2013] [Indexed: 01/09/2023]
Abstract
Epithelial to mesenchymal transition (EMT) has been considered essential for cancer metastasis, a multistep complicated process including local invasion, intravasation, extravasation, and proliferation at distant sites. Herein we provided molecular evidence associated with the antimetastatic effect of Rubus idaeus L. extracts (RIE) by showing a nearly complete inhibition on the invasion (p<0.001) of highly metastatic A549 cells via reduced activities of matrix metalloproteinase-2 (MMP-2) and urokinasetype plasminogen activator (u-PA). We performed Western blot to find that RIE could induce up-regulation of epithelial marker such as E-cadherin and α-catenin and inhibit the mesenchymal markers such as N-cadherin, fibronectin, snail-1, and vimentin. Selective snail-1 inhibition by snail-1-specific-siRNA also showed increased E-cadherin expression in A549 cells suggesting a possible involvement of snail-1 inhibition in RIE-caused increase in E-cadherin level. RIE also inhibited p-FAK, p-paxillin and AP-1 by Western blot analysis, indicating the anti-EMT effect of RIE in human lung carcinoma. Importantly, an in vivo BALB/c nude mice xenograft model showed that RIE treatment reduced tumor growth by oral gavage, and RIE represent promising candidates for future phytochemical-based mechanistic pathway-targeted cancer prevention strategies.
Collapse
Affiliation(s)
- Yih-Shou Hsieh
- Clinical Laboratory, Chung Shan Medical University Hospital, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan; Institute of Biochemistry and Biotechnology, Chung Shan Medical University, No. 110, Section 1, Jianguo N. Road, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
34
|
Suppression of SCARA5 by Snail1 is essential for EMT-associated cell migration of A549 cells. Oncogenesis 2013; 2:e73. [PMID: 24061576 PMCID: PMC3816226 DOI: 10.1038/oncsis.2013.37] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 06/13/2013] [Accepted: 08/13/2013] [Indexed: 12/31/2022] Open
Abstract
Accumulating evidence indicates that epithelial-to-mesenchymal transition (EMT) might be a key event for cancer progression. The upregulation of Snail1, one of the most extensively studied EMT regulators, has been implicated in cancer metastasis, but the underlying mechanisms remain unclear. This study aims to identify that Snail1 targets regulating EMT-associated cancer cell migration. Human lung carcinoma A549 cells were treated with transforming growth factor beta 1 (TGF-β1), and EMT-associated phenotypic and functional alterations were monitored. TGF-β1 induced typical EMT-like morphological changes, ‘cadherin switching' and cell migration in A549 cells. TGF-β1 stimulation induced rapid and persistent upregulation of Snail1. Moreover, Snail1 upregulation was required for EMT-associated cell migration. Several metastasis suppressors with putative Snail1-binding sites in their promoters were dramatically repressed in A549 cells during TGF-β1-induced EMT. Gain- and loss-of Snail1 function experiments demonstrated that scavenger receptor class A member 5 (SCARA5) was negatively regulated by Snail1. Importantly, SCARA5 downregulation was essential for EMT-induced migration in A549 cells. The chromatin immunoprecipitation assay revealed that Snail1 could bind to the E-box elements in SCARA5 promoter, implying that SCARA5 is a direct Snail1 target modulating cancer cell mobility during EMT. In addition, we showed that DNA methyltransferase 1 was physically associated with Snail1 to silence SCARA5 expression with an unidentified DNA methylation-independent mechanism, suggesting the complexity of Snail1-mediated epigenetic regulation. Collectively, our data demonstrated that EMT-regulator Snail1 suppresses the expression of SCARA5 to promote cancer progression, highlighting the possibility to target Snail1 and SCARA5 for cancer treatment.
Collapse
|
35
|
Frisch SM, Schaller M, Cieply B. Mechanisms that link the oncogenic epithelial-mesenchymal transition to suppression of anoikis. J Cell Sci 2013; 126:21-9. [PMID: 23516327 DOI: 10.1242/jcs.120907] [Citation(s) in RCA: 217] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The oncogenic epithelial-mesenchymal transition (EMT) contributes to tumor progression in various context-dependent ways, including increased metastatic potential, expansion of cancer stem cell subpopulations, chemo-resistance and disease recurrence. One of the hallmarks of EMT is resistance of tumor cells to anoikis. This resistance contributes to metastasis and is a defining property not only of EMT but also of cancer stem cells. Here, we review the mechanistic coupling between EMT and resistance to anoikis. The discussion focuses on several key aspects. First, we provide an update on new pathways that lead from the loss of E-cadherin to anoikis resistance. We then discuss the relevance of transcription factors that are crucial in wound healing in the context of oncogenic EMT. Next, we explore the consequences of the breakdown of cell-polarity complexes upon anoikis sensitivity, through the Hippo, Wnt and transforming growth factor β (TGF-β) pathways, emphasizing points of crossregulation. Finally, we summarize the direct regulation of cell survival genes through EMT-inducing transcription factors, and the roles of the tyrosine kinases focal adhesion kinase (FAK) and TrkB neurotrophin receptor in EMT-related regulation of anoikis. Emerging from these studies are unifying principles that will lead to improvements in cancer therapy by reprogramming sensitivity of anoikis.
Collapse
Affiliation(s)
- Steven M Frisch
- Department of Biochemistry, West Virginia University, Morgantown, WV 26506, USA.
| | | | | |
Collapse
|
36
|
Lange J, Auernheimer V, Strissel PL, Goldmann WH. Influence of focal adhesion kinase on the mechanical behavior of cell populations. Biochem Biophys Res Commun 2013; 436:246-51. [DOI: 10.1016/j.bbrc.2013.05.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 05/21/2013] [Indexed: 01/08/2023]
|
37
|
Goldmann WH, Auernheimer V, Thievessen I, Fabry B. Vinculin, cell mechanics and tumour cell invasion. Cell Biol Int 2013; 37:397-405. [PMID: 23494917 DOI: 10.1002/cbin.10064] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 01/20/2013] [Indexed: 01/13/2023]
Abstract
The focal adhesion protein, vinculin, is important for transmitting mechanical forces and orchestrating mechanical signalling events. Deregulation of vinculin results in altered cell adhesion, contractility, motility and growth, all of which are important processes in cancer metastasis. This review summarises recent reports on the role of vinculin in cellular force generation and signalling, and discusses implications for a role of vinculin in promoting cancer cell migration in 3D environments.
Collapse
Affiliation(s)
- Wolfgang H Goldmann
- Center for Medical Physics and Technology, Biophysics Group, Friedrich-Alexander-University of Erlangen-Nuremberg, Germany.
| | | | | | | |
Collapse
|
38
|
Canel M, Serrels A, Frame MC, Brunton VG. E-cadherin-integrin crosstalk in cancer invasion and metastasis. J Cell Sci 2013; 126:393-401. [PMID: 23525005 DOI: 10.1242/jcs.100115] [Citation(s) in RCA: 495] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
E-cadherin is a single-pass transmembrane protein that mediates homophilic cell-cell interactions. Tumour progression is often associated with the loss of E-cadherin function and the transition to a more motile and invasive phenotype. This requires the coordinated regulation of both E-cadherin-mediated cell-cell adhesions and integrin-mediated adhesions that contact the surrounding extracellular matrix (ECM). Regulation of both types of adhesion is dynamic as cells respond to external cues from the tumour microenvironment that regulate polarity, directional migration and invasion. Here, we review the mechanisms by which tumour cells control the cross-regulation between dynamic E-cadherin-mediated cell-cell adhesions and integrin-mediated cell-matrix contacts, which govern the invasive and metastatic potential of tumours. In particular, we will discuss the role of the adhesion-linked kinases Src, focal adhesion kinase (FAK) and integrin-linked kinase (ILK), and the Rho family of GTPases.
Collapse
Affiliation(s)
- Marta Canel
- Edinburgh Cancer Research UK Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XR, UK
| | | | | | | |
Collapse
|
39
|
Fan H, Zhao X, Sun S, Luo M, Guan JL. Function of focal adhesion kinase scaffolding to mediate endophilin A2 phosphorylation promotes epithelial-mesenchymal transition and mammary cancer stem cell activities in vivo. J Biol Chem 2012; 288:3322-33. [PMID: 23255596 DOI: 10.1074/jbc.m112.420497] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tyrosine kinases have been shown to play critical roles in cancer development and progression, and their inhibitors hold the potential as effective targeted therapies for breast and other cancers. However, some of these kinases like focal adhesion kinase (FAK) also possess scaffolding functions in intracellular signaling, but such kinase-independent functions of FAK or other kinases have not been examined in cancer directly in vivo. Here, we report that disruption of the function of FAK scaffolding through its Pro-878/881 motif suppressed mammary tumor growth and metastasis in a well characterized murine model of human breast cancer. P878A/P881A mutation in the endogenous FAK gene decreased the expression of markers for epithelial-mesenchymal transition (EMT) and mammary cancer stem cell (MaCSC) activities in tumors derived from mutant mice. This mutation disrupted the function of FAK scaffolding to mediate endophilin A2 phosphorylation at Tyr-315 by Src, leading to the decreased surface expression of MT1-MMP, as observed previously in transformed fibroblasts in vitro. Inhibition of the downstream components of this FAK scaffolding function by Y315F endophilin A2 mutant or MT1-MMP knockdown reduced markers for EMT and MaCSC activities. Conversely, bypass of the scaffolding function using the phosphorylation mimic mutant Y315E endophilin A2 or endophilin A2 knockdown rescued the decreased markers for EMT and MaCSCs as well as surface expression of MT1-MMP in tumor cells harboring the P878A/P881A mutation. Together, these results identify a novel role of FAK scaffolding function in breast cancer, which could serve as a new target in combination with kinase inhibition for more effective treatment strategies.
Collapse
Affiliation(s)
- Huaping Fan
- Division of Molecular Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109-2200, USA
| | | | | | | | | |
Collapse
|
40
|
Grabias BM, Konstantopoulos K. Epithelial-mesenchymal transition and fibrosis are mutually exclusive reponses in shear-activated proximal tubular epithelial cells. FASEB J 2012; 26:4131-41. [PMID: 22744866 DOI: 10.1096/fj.12-207324] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Renal fibrosis (RF) is thought to be a direct consequence of dedifferentiation of resident epithelial cells via an epithelial-mesenchymal transition (EMT). Increased glomerular flow is a critical initiator of fibrogenesis. Yet, the responses of proximal tubular epithelial cells (PTECs) to fluid flow remain uncharacterized. Here, we investigate the effects of pathological shear stresses on the development of fibrosis in PTECs. Our data reveal that type I collagen accumulation in shear-activated PTECs is accompanied by a ∼40-60% decrease in cell motility, thus excluding EMT as a relevant pathological process. In contrast, static incubation of PTECs with TGFβ1 increases cell motility by ∼50%, and induces stable expression of key mesenchymal markers, including Snail1, N-cadherin, and vimentin. Ectopic expression of TGFβ1 in shear-activated PTECs fails to induce EMT-associated changes but abrogates collagen accumulation via SMAD2-dependent mechanisms. Shear-mediated inhibition of EMT occurs via cyclic oscillations in both ERK2 activity and downstream expression of EMT genes. A constitutive ERK2 mutant induces stable expression of Snail1, N-cadherin, and vimentin, and increases cell motility in shear-activated PTECs by 250% without concomitant collagen deposition. Collectively, our data reveal that RF not only occurs without EMT but also that these two responses represent mutually exclusive cell fates.
Collapse
Affiliation(s)
- Bryan M Grabias
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, New Engineering Bldg. 114, 3400 N. Charles St., Baltimore, MD 21218, USA
| | | |
Collapse
|
41
|
Martin-Castillo B, Oliveras-Ferraros C, Vazquez-Martin A, Cufí S, Moreno JM, Corominas-Faja B, Urruticoechea A, Martín ÁG, López-Bonet E, Menendez JA. Basal/HER2 breast carcinomas: integrating molecular taxonomy with cancer stem cell dynamics to predict primary resistance to trastuzumab (Herceptin). Cell Cycle 2012; 12:225-45. [PMID: 23255137 DOI: 10.4161/cc.23274] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
High rates of inherent primary resistance to the humanized monoclonal antibody trastuzumab (Herceptin) are frequent among HER2 gene-amplified breast carcinomas in both metastatic and adjuvant settings. The clinical efficacy of trastuzumab is highly correlated with its ability to specifically and efficiently target HER2-driven populations of breast cancer stem cells (CSCs). Intriguingly, many of the possible mechanisms by which cancer cells escape trastuzumab involve many of the same biomarkers that have been implicated in the biology of CS-like tumor-initiating cells. In the traditional, one-way hierarchy of CSCs in which all cancer cells descend from special self-renewing CSCs, HER2-positive CSCs can occur solely by self-renewal. Therefore, by targeting CSC self-renewal and resistance, trastuzumab is expected to induce tumor shrinkage and further reduce breast cancer recurrence rates when used alongside traditional therapies. In a new, alternate model, more differentiated non-stem cancer cells can revert to trastuzumab-refractory, CS-like cells via the activation of intrinsic or microenvironmental paths-to-stemness, such as the epithelial-to-mesenchymal transition (EMT). Alternatively, stochastic transitions of trastuzumab-responsive CSCs might also give rise to non-CSC cellular states that lack major attributes of CSCs and, therefore, can remain "hidden" from trastuzumab activity. Here, we hypothesize that a better understanding of the CSC/non-CSC social structure within HER2-overexpressing breast carcinomas is critical for trastuzumab-based treatment decisions in the clinic. First, we decipher the biological significance of CSC features and the EMT on the molecular effects and efficacy of trastuzumab in HER2-positive breast cancer cells. Second, we reinterpret the genetic heterogeneity that differentiates trastuzumab-responders from non-responders in terms of CSC cellular states. Finally, we propose that novel predictive approaches aimed at better forecasting early tumor responses to trastuzumab should identify biological determinants that causally underlie the intrinsic flexibility of HER2-positive CSCs to "enter" into or "exit" from trastuzumab-sensitive states. An accurate integration of CSC cellular states and EMT-related biomarkers with the currently available breast cancer molecular taxonomy may significantly improve our ability to make a priori decisions about whether patients belonging to HER2 subtypes differentially enriched with a "mesenchymal transition signature" (e.g., luminal/HER2 vs. basal/HER2) would distinctly benefit from trastuzumab-based therapy ab initio.
Collapse
Affiliation(s)
- Begoña Martin-Castillo
- Unit of Clinical Research, Catalan Institute of Oncology-Girona (ICO-Girona), Catalonia, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS. Matrix rigidity regulates a switch between TGF-β1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 2012; 23:781-91. [PMID: 22238361 PMCID: PMC3290638 DOI: 10.1091/mbc.e11-06-0537] [Citation(s) in RCA: 338] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Matrix rigidity regulates a switch between TGF-β1–induced cell functions in two epithelial cell lines. On compliant polyacrylamide gels, TGF-β1 induced apoptosis, whereas on rigid gels, cells underwent an epithelial–mesenchymal transition (EMT). Compliant gels reduced PI3K/Akt activity, which was essential for cell survival and EMT on rigid gels. The transforming growth factor-β (TGF-β) signaling pathway is often misregulated during cancer progression. In early stages of tumorigenesis, TGF-β acts as a tumor suppressor by inhibiting proliferation and inducing apoptosis. However, as the disease progresses, TGF-β switches to promote tumorigenic cell functions, such as epithelial–mesenchymal transition (EMT) and increased cell motility. Dramatic changes in the cellular microenvironment are also correlated with tumor progression, including an increase in tissue stiffness. However, it is unknown whether these changes in tissue stiffness can regulate the effects of TGF-β. To this end, we examined normal murine mammary gland cells and Madin–Darby canine kidney epithelial cells cultured on polyacrylamide gels with varying rigidity and treated with TGF-β1. Varying matrix rigidity switched the functional response to TGF-β1. Decreasing rigidity increased TGF-β1–induced apoptosis, whereas increasing rigidity resulted in EMT. Matrix rigidity did not change Smad signaling, but instead regulated the PI3K/Akt signaling pathway. Direct genetic and pharmacologic manipulations further demonstrated a role for PI3K/Akt signaling in the apoptotic and EMT responses. These findings demonstrate that matrix rigidity regulates a previously undescribed switch in TGF-β–induced cell functions and provide insight into how changes in tissue mechanics during disease might contribute to the cellular response to TGF-β.
Collapse
Affiliation(s)
- Jennifer L Leight
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|