1
|
Hao M, Sebag SC, Qian Q, Yang L. Lysosomal physiology and pancreatic lysosomal stress in diabetes mellitus. EGASTROENTEROLOGY 2024; 2:e100096. [PMID: 39512752 PMCID: PMC11542681 DOI: 10.1136/egastro-2024-100096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Endocrine and exocrine functions of the pancreas control nutritional absorption, utilisation and systemic metabolic homeostasis. Under basal conditions, the lysosome is pivotal in regulating intracellular organelles and metabolite turnover. In response to acute or chronic stress, the lysosome senses metabolic flux and inflammatory challenges, thereby initiating the adaptive programme to re-establish cellular homeostasis. A growing body of evidence has demonstrated the pathophysiological relevance of the lysosomal stress response in metabolic diseases in diverse sets of tissues/organs, such as the liver and the heart. In this review, we discuss the pathological relevance of pancreatic lysosome stress in diabetes mellitus. We begin by summarising lysosomal biology, followed by exploring the immune and metabolic functions of lysosomes and finally discussing the interplay between lysosomal stress and the pathogenesis of pancreatic diseases. Ultimately, our review aims to enhance our understanding of lysosomal stress in disease pathogenesis, which could potentially lead to the discovery of innovative treatment methods for these conditions.
Collapse
Affiliation(s)
- Meihua Hao
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Sara C Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| |
Collapse
|
2
|
Calvo B, Torres-Vidal P, Delrio-Lorenzo A, Rodriguez C, Aulestia FJ, Rojo-Ruiz J, McVeigh BM, Moiseenkova-Bell V, Yule DI, Garcia-Sancho J, Patel S, Alonso MT. Direct measurements of luminal Ca 2+ with endo-lysosomal GFP-aequorin reveal functional IP 3 receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.11.547422. [PMID: 39211134 PMCID: PMC11360962 DOI: 10.1101/2023.07.11.547422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Endo-lysosomes are considered acidic Ca 2+ stores but direct measurements of luminal Ca 2+ within them are limited. Here we report that the Ca 2+ -sensitive luminescent protein aequorin does not reconstitute with its cofactor at highly acidic pH but that a significant fraction of the probe is functional within a mildly acidic compartment when targeted to the endo-lysosomal system. We leveraged this probe (ELGA) to report Ca 2+ dynamics in this compartment. We show that Ca 2+ uptake is ATP-dependent and sensitive to blockers of endoplasmic reticulum Ca 2+ pumps. We find that the Ca 2+ mobilizing messenger IP 3 which typically targets the endoplasmic reticulum evokes robust luminal responses in wild type cells, but not in IP 3 receptor knock-out cells. Responses were comparable to those evoked by activation of the endo-lysosomal ion channel TRPML1. Stimulation with IP 3 -forming agonists also mobilized the store in intact cells. Super-resolution microscopy analysis confirmed the presence of IP 3 receptors within the endo-lysosomal system, both in live and fixed cells. Our data reveal a physiologically-relevant, IP 3 -sensitive store of Ca 2+ within the endo-lysosomal system.
Collapse
|
3
|
Lin G, Rennie M, Adeeko A, Scarlata S. The role of calcium in neuronal membrane tension and synaptic plasticity. Biochem Soc Trans 2024; 52:937-945. [PMID: 38533899 DOI: 10.1042/bst20231518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Calcium is a primary second messenger that plays a role in cellular functions including growth, movement and responses to drugs. The role that calcium plays in mediating communication between neurons by synaptic vesicle release is well established. This review focuses on the dependence of the physical properties of neuronal plasma membranes on calcium levels. After describing the key features of synaptic plasticity, we summarize the general role of calcium in cell function and the signaling pathways responsible for intracellular increase in calcium levels. We then present findings showing that increases in intracellular calcium levels cause neurites to contract and break synaptic connections by changes in membrane tension.
Collapse
Affiliation(s)
- Guanyu Lin
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Madison Rennie
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Ayobami Adeeko
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| | - Suzanne Scarlata
- Department of Chemistry and Biochemistry, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA 01609, U.S.A
| |
Collapse
|
4
|
Tsvilovskyy V, Ottenheijm R, Kriebs U, Schütz A, Diakopoulos KN, Jha A, Bildl W, Wirth A, Böck J, Jaślan D, Ferro I, Taberner FJ, Kalinina O, Hildebrand S, Wissenbach U, Weissgerber P, Vogt D, Eberhagen C, Mannebach S, Berlin M, Kuryshev V, Schumacher D, Philippaert K, Camacho-Londoño JE, Mathar I, Dieterich C, Klugbauer N, Biel M, Wahl-Schott C, Lipp P, Flockerzi V, Zischka H, Algül H, Lechner SG, Lesina M, Grimm C, Fakler B, Schulte U, Muallem S, Freichel M. OCaR1 endows exocytic vesicles with autoregulatory competence by preventing uncontrolled Ca2+ release, exocytosis, and pancreatic tissue damage. J Clin Invest 2024; 134:e169428. [PMID: 38557489 PMCID: PMC10977991 DOI: 10.1172/jci169428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.
Collapse
Affiliation(s)
- Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Roger Ottenheijm
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ulrich Kriebs
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Aline Schütz
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Kalliope Nina Diakopoulos
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Archana Jha
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Wolfgang Bildl
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Angela Wirth
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Julia Böck
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dawid Jaślan
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Irene Ferro
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Francisco J. Taberner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández–Consejo Superior de Investigaciones Científicas, Sant Joan d’Alacant, Spain
| | - Olga Kalinina
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarbrücken, Germany
| | - Staffan Hildebrand
- Institut für Pharmakologie und Toxikologie, Universität Bonn, Bonn, Germany
| | - Ulrich Wissenbach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Petra Weissgerber
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Dominik Vogt
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Carola Eberhagen
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
| | - Stefanie Mannebach
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Michael Berlin
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Vladimir Kuryshev
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Dagmar Schumacher
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Koenraad Philippaert
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | | | - Ilka Mathar
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Christoph Dieterich
- University Hospital Heidelberg, Department of Medicine III: Cardiology, Angiology and Pneumology, Heidelberg, Germany
| | - Norbert Klugbauer
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Fakultät für Medizin, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Martin Biel
- Center for Integrated Protein Science Munich (CIPS-M) and Center for Drug Research, Department of Pharmacy, Ludwig-Maximilians-Universität München, and DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Wahl-Schott
- Walter Brendel Centre of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Medical Faculty, Ludwig-Maximilians-Universität München, Planegg-Martinsried, Germany
| | - Peter Lipp
- Institute for Molecular Cell Biology, Center for Molecular Signaling (PZMS), Universität des Saarlandes, Homburg, Germany
| | - Veit Flockerzi
- Experimental and Clinical Pharmacology and Toxicology, Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Hans Zischka
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Toxicology and Environmental Hygiene, Technical University Munich, School of Medicine, Munich, Germany
| | - Hana Algül
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Stefan G. Lechner
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Marina Lesina
- Comprehensive Cancer Center München, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Christian Grimm
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Immunology, Infection and Pandemic Research (IIP), Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Munich, Germany
| | - Bernd Fakler
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute for Physiology, University of Freiburg, Freiburg, Germany
| | - Shmuel Muallem
- Epithelial Signaling and Transport Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, USA
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Sun S, Zhao G, Jia M, Jiang Q, Li S, Wang H, Li W, Wang Y, Bian X, Zhao YG, Huang X, Yang G, Cai H, Pastor-Pareja JC, Ge L, Zhang C, Hu J. Stay in touch with the endoplasmic reticulum. SCIENCE CHINA. LIFE SCIENCES 2024; 67:230-257. [PMID: 38212460 DOI: 10.1007/s11427-023-2443-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 08/28/2023] [Indexed: 01/13/2024]
Abstract
The endoplasmic reticulum (ER), which is composed of a continuous network of tubules and sheets, forms the most widely distributed membrane system in eukaryotic cells. As a result, it engages a variety of organelles by establishing membrane contact sites (MCSs). These contacts regulate organelle positioning and remodeling, including fusion and fission, facilitate precise lipid exchange, and couple vital signaling events. Here, we systematically review recent advances and converging themes on ER-involved organellar contact. The molecular basis, cellular influence, and potential physiological functions for ER/nuclear envelope contacts with mitochondria, Golgi, endosomes, lysosomes, lipid droplets, autophagosomes, and plasma membrane are summarized.
Collapse
Affiliation(s)
- Sha Sun
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Gan Zhao
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China
| | - Shulin Li
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Haibin Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunyun Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xin Bian
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Yan G Zhao
- Brain Research Center, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xun Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ge Yang
- Laboratory of Computational Biology & Machine Intelligence, School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Huaqing Cai
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jose C Pastor-Pareja
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute of Neurosciences, Consejo Superior de Investigaciones Cientfflcas-Universidad Miguel Hernandez, San Juan de Alicante, 03550, Spain.
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking University, Beijing, 100871, China.
| | - Junjie Hu
- National Laboratory of Biomacromolecules, Institute of Biophysics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
6
|
Casas M, Dickson EJ. Channels, Transporters, and Receptors at Membrane Contact Sites. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241305593. [PMID: 39742107 PMCID: PMC11686659 DOI: 10.1177/25152564241305593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 11/21/2024] [Indexed: 01/03/2025]
Abstract
Membrane contact sites (MCSs) are specialized regions where two or more organelle membranes come into close apposition, typically separated by only 10-30 nm, while remaining distinct and unfused. These sites play crucial roles in cellular homeostasis, signaling, and metabolism. This review focuses on ion channels, transporters, and receptors localized to MCSs, with particular emphasis on those associated with the plasma membrane and endoplasmic reticulum (ER). We discuss the molecular composition and functional significance of these proteins in shaping both organelle and cellular functions, highlighting their importance in excitable cells and their influence on intracellular calcium signaling. Key MCSs examined include ER-plasma membrane, ER-mitochondria, and ER-lysosome contacts. This review addresses our current knowledge of the ion channels found within these contacts, the dynamic regulation of MCSs, their importance in various physiological processes, and their potential implications in pathological conditions.
Collapse
Affiliation(s)
- Maria Casas
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| | - Eamonn James Dickson
- Department of Physiology and Membrane Biology, University of California, Davis, CA, USA
| |
Collapse
|
7
|
Kohler A, Kohler V. Better Together: Interorganellar Communication in the Regulation of Proteostasis. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2024; 7:25152564241272245. [PMID: 39385949 PMCID: PMC11462569 DOI: 10.1177/25152564241272245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 10/12/2024]
Abstract
An extensive network of chaperones and folding factors is responsible for maintaining a functional proteome, which is the basis for cellular life. The underlying proteostatic mechanisms are not isolated within organelles, rather they are connected over organellar borders via signalling processes or direct association via contact sites. This review aims to provide a conceptual understanding of proteostatic mechanisms across organelle borders, not focussing on individual organelles. This discussion highlights the precision of these finely tuned systems, emphasising the complicated balance between cellular protection and adaptation to stress. In this review, we discuss widely accepted aspects while shedding light on newly discovered perspectives.
Collapse
Affiliation(s)
- Andreas Kohler
- Department of Medical Biochemistry and Biophysics, Umeå University, 901 87 Umeå, Sweden
| | - Verena Kohler
- Department of Molecular Biology, Umeå University, 901 87 Umeå, Sweden
| |
Collapse
|
8
|
Davis LC, Morgan AJ, Galione A. Optical profiling of autonomous Ca 2+ nanodomains generated by lysosomal TPC2 and TRPML1. Cell Calcium 2023; 116:102801. [PMID: 37742482 DOI: 10.1016/j.ceca.2023.102801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/30/2023] [Accepted: 09/17/2023] [Indexed: 09/26/2023]
Abstract
Multiple families of Ca2+-permeable channels co-exist on lysosomal Ca2+ stores but how each family couples to its own unique downstream physiology is unclear. We have therefore investigated the Ca2+-signalling architecture underpinning different channels on the same vesicle that drive separate pathways, using phagocytosis as a physiological stimulus. Lysosomal Ca2+-channels are a major Ca2+ source driving particle uptake in macrophages, but different channels drive different aspects of Fc-receptor-mediated phagocytosis: TPC2 couples to dynamin activation, whilst TRPML1 couples to lysosomal exocytosis. We hypothesised that they are driven by discrete local plumes of Ca2+ around open channels (Ca2+ nanodomains). To test this, we optimized Ca2+-nanodomain recordings by screening panels of genetically encoded Ca2+ indicators (GECIs) fused to TPC2 to monitor the [Ca2+] next to the channel. Signal calibration accounting for the distance of the GECI from the channel mouth reveals that, during phagocytosis, TPC2 generates local Ca2+ nanodomains around itself of up to 42 µM, nearly a hundred-fold greater than the global cytosolic [Ca2+] rise. We further show that TPC2 and TRPML1, though on the same lysosomes, generate autonomous Ca2+ nanodomains of high [Ca2+] that are largely insulated from one another, a platform allowing their discrete Ca2+-decoding to promote unique respective physiologies.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
9
|
Martucci LL, Launay JM, Kawakami N, Sicard C, Desvignes N, Dakouane-Giudicelli M, Spix B, Têtu M, Gilmaire FO, Paulcan S, Callebert J, Vaillend C, Bracher F, Grimm C, Fossier P, de la Porte S, Sakamoto H, Morris J, Galione A, Granon S, Cancela JM. Endolysosomal TPCs regulate social behavior by controlling oxytocin secretion. Proc Natl Acad Sci U S A 2023; 120:e2213682120. [PMID: 36745816 PMCID: PMC9963339 DOI: 10.1073/pnas.2213682120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/14/2022] [Indexed: 02/08/2023] Open
Abstract
Oxytocin (OT) is a prominent regulator of many aspects of mammalian social behavior and stored in large dense-cored vesicles (LDCVs) in hypothalamic neurons. It is released in response to activity-dependent Ca2+ influx, but is also dependent on Ca2+ release from intracellular stores, which primes LDCVs for exocytosis. Despite its importance, critical aspects of the Ca2+-dependent mechanisms of its secretion remain to be identified. Here we show that lysosomes surround dendritic LDCVs, and that the direct activation of endolysosomal two-pore channels (TPCs) provides the critical Ca2+ signals to prime OT release by increasing the releasable LDCV pool without directly stimulating exocytosis. We observed a dramatic reduction in plasma OT levels in TPC knockout mice, and impaired secretion of OT from the hypothalamus demonstrating the importance of priming of neuropeptide vesicles for activity-dependent release. Furthermore, we show that activation of type 1 metabotropic glutamate receptors sustains somatodendritic OT release by recruiting TPCs. The priming effect could be mimicked by a direct application of nicotinic acid adenine dinucleotide phosphate, the endogenous messenger regulating TPCs, or a selective TPC2 agonist, TPC2-A1-N, or blocked by the antagonist Ned-19. Mice lacking TPCs exhibit impaired maternal and social behavior, which is restored by direct OT administration. This study demonstrates an unexpected role for lysosomes and TPCs in controlling neuropeptide secretion, and in regulating social behavior.
Collapse
Affiliation(s)
- Lora L. Martucci
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm, Evolution of Neuromuscular Diseases: Innovative Concepts and Practices, Versailles78000, France
- Department of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| | | | - Natsuko Kawakami
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama701-4303, Japan
| | - Cécile Sicard
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Nathalie Desvignes
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Mbarka Dakouane-Giudicelli
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm, Evolution of Neuromuscular Diseases: Innovative Concepts and Practices, Versailles78000, France
| | - Barbara Spix
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine Ludwig-Maximilians-University, Munich80336, Germany
| | - Maude Têtu
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Franck-Olivier Gilmaire
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Sloane Paulcan
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Jacques Callebert
- Laboratoire de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris75010, France
- Inserm UMR-S 1144 Universités Paris Descartes-Paris Diderot, Optimisation Thérapeutique en Neuropsychopharmacologie - Faculté des Sciences Pharmaceutiques et Biologiques, Paris Descartes,ParisParis 75006, France
| | - Cyrille Vaillend
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich81377, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine Ludwig-Maximilians-University, Munich80336, Germany
| | - Philippe Fossier
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - Sabine de la Porte
- Université Paris-Saclay, Université de Versailles Saint-Quentin-en-Yvelines, Inserm, Evolution of Neuromuscular Diseases: Innovative Concepts and Practices, Versailles78000, France
| | - Hirotaka Sakamoto
- Ushimado Marine Institute, Graduate School of Natural Science and Technology, Okayama University, Ushimado, Setouchi, Okayama701-4303, Japan
| | - John Morris
- Department of Physiology, Anatomy & Genetics, University of Oxford, OxfordOX1 3QX, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, OxfordOX1 3QT, UK
| | - Sylvie Granon
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| | - José-Manuel Cancela
- Neuroscience Paris-Saclay Institute, CNRS UMR 9197, Paris-Sud University, Paris-Saclay University, Saclay91400, France
| |
Collapse
|
10
|
Scorza SI, Milano S, Saponara I, Certini M, De Zio R, Mola MG, Procino G, Carmosino M, Moccia F, Svelto M, Gerbino A. TRPML1-Induced Lysosomal Ca 2+ Signals Activate AQP2 Translocation and Water Flux in Renal Collecting Duct Cells. Int J Mol Sci 2023; 24:ijms24021647. [PMID: 36675161 PMCID: PMC9861594 DOI: 10.3390/ijms24021647] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023] Open
Abstract
Lysosomes are acidic Ca2+ storage organelles that actively generate local Ca2+ signaling events to regulate a plethora of cell functions. Here, we characterized lysosomal Ca2+ signals in mouse renal collecting duct (CD) cells and we assessed their putative role in aquaporin 2 (AQP2)-dependent water reabsorption. Bafilomycin A1 and ML-SA1 triggered similar Ca2+ oscillations, in the absence of extracellular Ca2+, by alkalizing the acidic lysosomal pH or activating the lysosomal cation channel mucolipin 1 (TRPML1), respectively. TRPML1-dependent Ca2+ signals were blocked either pharmacologically or by lysosomes' osmotic permeabilization, thus indicating these organelles as primary sources of Ca2+ release. Lysosome-induced Ca2+ oscillations were sustained by endoplasmic reticulum (ER) Ca2+ content, while bafilomycin A1 and ML-SA1 did not directly interfere with ER Ca2+ homeostasis per se. TRPML1 activation strongly increased AQP2 apical expression and depolymerized the actin cytoskeleton, thereby boosting water flux in response to an hypoosmotic stimulus. These effects were strictly dependent on the activation of the Ca2+/calcineurin pathway. Conversely, bafilomycin A1 led to perinuclear accumulation of AQP2 vesicles without affecting water permeability. Overall, lysosomal Ca2+ signaling events can be differently decoded to modulate Ca2+-dependent cellular functions related to the dock/fusion of AQP2-transporting vesicles in principal cells of the CD.
Collapse
Affiliation(s)
- Simona Ida Scorza
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Serena Milano
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Ilenia Saponara
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maira Certini
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Roberta De Zio
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Maria Grazia Mola
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giuseppe Procino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Monica Carmosino
- Department of Sciences, University of Basilicata, 85100 Potenza, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology Lazzaro Spallanzani, University of Pavia, 27100 Pavia, Italy
| | - Maria Svelto
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Andrea Gerbino
- Department of Biosciences, Biotechnologies and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
- Correspondence: ; Tel.: +39-0805443334
| |
Collapse
|
11
|
Abstract
The discovery of NAADP-evoked Ca2+ release in sea urchin eggs and then as a ubiquitous Ca2+ mobilizing messenger has introduced several novel paradigms to our understanding of Ca2+ signalling, not least in providing a link between cell stimulation and Ca2+ release from lysosomes and other acidic Ca2+ storage organelles. In addition, the hallmark concentration-response relationship of NAADP-mediated Ca2+ release, shaped by striking activation/desensitization mechanisms, influences its actions as an intracellular messenger. There has been recent progress in our understanding of the molecular mechanisms underlying NAADP-evoked Ca2+ release, such as the identification of the endo-lysosomal two-pore channel family of cation channels (TPCs) as their principal target and the identity of NAADP-binding proteins that complex with them. The NAADP/TPC signalling axis has gained recent prominence in pathophysiology for their roles in such disease processes as neurodegeneration, tumorigenesis and cellular viral entry.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Lora L Martucci
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
12
|
GABA A and GABA B Receptors Mediate GABA-Induced Intracellular Ca 2+ Signals in Human Brain Microvascular Endothelial Cells. Cells 2022; 11:cells11233860. [PMID: 36497118 PMCID: PMC9739010 DOI: 10.3390/cells11233860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous studies recently showed that the inhibitory neurotransmitter, γ-aminobutyric acid (GABA), can stimulate cerebral angiogenesis and promote neurovascular coupling by activating the ionotropic GABAA receptors on cerebrovascular endothelial cells, whereas the endothelial role of the metabotropic GABAB receptors is still unknown. Preliminary evidence showed that GABAA receptor stimulation can induce an increase in endothelial Ca2+ levels, but the underlying signaling pathway remains to be fully unraveled. In the present investigation, we found that GABA evoked a biphasic elevation in [Ca2+]i that was initiated by inositol-1,4,5-trisphosphate- and nicotinic acid adenine dinucleotide phosphate-dependent Ca2+ release from neutral and acidic Ca2+ stores, respectively, and sustained by store-operated Ca2+ entry. GABAA and GABAB receptors were both required to trigger the endothelial Ca2+ response. Unexpectedly, we found that the GABAA receptors signal in a flux-independent manner via the metabotropic GABAB receptors. Likewise, the full Ca2+ response to GABAB receptors requires functional GABAA receptors. This study, therefore, sheds novel light on the molecular mechanisms by which GABA controls endothelial signaling at the neurovascular unit.
Collapse
|
13
|
Two-pore channels: going with the flows. Biochem Soc Trans 2022; 50:1143-1155. [PMID: 35959977 PMCID: PMC9444070 DOI: 10.1042/bst20220229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/21/2022] [Accepted: 07/25/2022] [Indexed: 11/26/2022]
Abstract
In recent years, our understanding of the structure, mechanisms and functions of the endo-lysosomal TPC (two-pore channel) family have grown apace. Gated by the second messengers, NAADP and PI(3,5)P2, TPCs are an integral part of fundamental signal-transduction pathways, but their array and plasticity of cation conductances (Na+, Ca2+, H+) allow them to variously signal electrically, osmotically or chemically. Their relative tissue- and organelle-selective distribution, together with agonist-selective ion permeabilities provides a rich palette from which extracellular stimuli can choose. TPCs are emerging as mediators of immunity, cancer, metabolism, viral infectivity and neurodegeneration as this short review attests.
Collapse
|
14
|
Guerrero-Navarro L, Jansen-Dürr P, Cavinato M. Age-Related Lysosomal Dysfunctions. Cells 2022; 11:cells11121977. [PMID: 35741106 PMCID: PMC9221958 DOI: 10.3390/cells11121977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022] Open
Abstract
Organismal aging is normally accompanied by an increase in the number of senescent cells, growth-arrested metabolic active cells that affect normal tissue function. These cells present a series of characteristics that have been studied over the last few decades. The damage in cellular organelles disbalances the cellular homeostatic processes, altering the behavior of these cells. Lysosomal dysfunction is emerging as an important factor that could regulate the production of inflammatory molecules, metabolic cellular state, or mitochondrial function.
Collapse
Affiliation(s)
- Lena Guerrero-Navarro
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Pidder Jansen-Dürr
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
| | - Maria Cavinato
- Institute for Biomedical Aging Research, Universität Innsbruck, 6020 Innsbruck, Austria; (L.G.-N.); (P.J.-D.)
- Center for Molecular Biosciences Innsbruck, Innrain 58, 6020 Innsbruck, Austria
- Correspondence:
| |
Collapse
|
15
|
Tang H, Huang X, Pang S. Regulation of the lysosome by sphingolipids: potential role in aging. J Biol Chem 2022; 298:102118. [PMID: 35691340 PMCID: PMC9257404 DOI: 10.1016/j.jbc.2022.102118] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 02/04/2023] Open
Abstract
Sphingolipids are a class of bioactive complex lipids that have been closely associated with aging and aging-related diseases. However, the mechanism through which sphingolipids control aging has long been a mystery. Emerging studies reveal that sphingolipids exert tight control over lysosomal homeostasis and function, as evidenced by sphingolipid-related diseases, including but not limited to lysosomal storage disorders. These diseases are defined by primary lysosomal defects and a few secondary defects such as mitochondrial dysfunction. Intriguingly, recent research indicates that the majority of these defects are also associated with aging, implying that sphingolipid-related diseases and aging may share common mechanisms. We propose that the lysosome is a pivotal hub for sphingolipid-mediated aging regulation. This review discusses the critical roles of sphingolipid metabolism in regulating various lysosomal functions, with an emphasis on how such regulation may contribute to aging and aging-related diseases.
Collapse
Affiliation(s)
- Haiqing Tang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiaokun Huang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shanshan Pang
- School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
16
|
Barral DC, Staiano L, Guimas Almeida C, Cutler DF, Eden ER, Futter CE, Galione A, Marques ARA, Medina DL, Napolitano G, Settembre C, Vieira OV, Aerts JMFG, Atakpa‐Adaji P, Bruno G, Capuozzo A, De Leonibus E, Di Malta C, Escrevente C, Esposito A, Grumati P, Hall MJ, Teodoro RO, Lopes SS, Luzio JP, Monfregola J, Montefusco S, Platt FM, Polishchuck R, De Risi M, Sambri I, Soldati C, Seabra MC. Current methods to analyze lysosome morphology, positioning, motility and function. Traffic 2022; 23:238-269. [PMID: 35343629 PMCID: PMC9323414 DOI: 10.1111/tra.12839] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 01/09/2023]
Abstract
Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.
Collapse
Affiliation(s)
- Duarte C. Barral
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Leopoldo Staiano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute for Genetic and Biomedical ResearchNational Research Council (CNR)MilanItaly
| | | | - Dan F. Cutler
- MRC Laboratory for Molecular Cell BiologyUniversity College LondonLondonUK
| | - Emily R. Eden
- University College London (UCL) Institute of OphthalmologyLondonUK
| | - Clare E. Futter
- University College London (UCL) Institute of OphthalmologyLondonUK
| | | | | | - Diego Luis Medina
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Clinical Medicine and Surgery DepartmentFederico II UniversityNaplesItaly
| | - Otília V. Vieira
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | | | | | - Gemma Bruno
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | | | - Elvira De Leonibus
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Institute of Biochemistry and Cell Biology, CNRRomeItaly
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | | | | | - Paolo Grumati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Michael J. Hall
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Rita O. Teodoro
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - Susana S. Lopes
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| | - J. Paul Luzio
- Cambridge Institute for Medical ResearchUniversity of CambridgeCambridgeUK
| | | | | | | | | | - Maria De Risi
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Irene Sambri
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
- Medical Genetics Unit, Department of Medical and Translational ScienceFederico II UniversityNaplesItaly
| | - Chiara Soldati
- Telethon Institute of Genetics and Medicine (TIGEM)PozzuoliItaly
| | - Miguel C. Seabra
- CEDOC, NOVA Medical School, NMS, Universidade NOVA de LisboaLisbonPortugal
| |
Collapse
|
17
|
Martucci LL, Cancela JM. Neurophysiological functions and pharmacological tools of acidic and non-acidic Ca2+ stores. Cell Calcium 2022; 104:102582. [DOI: 10.1016/j.ceca.2022.102582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 02/08/2023]
|
18
|
Hulsurkar MM, Lahiri SK, Karch J, Wang MC, Wehrens XHT. Targeting calcium-mediated inter-organellar crosstalk in cardiac diseases. Expert Opin Ther Targets 2022; 26:303-317. [PMID: 35426759 PMCID: PMC9081256 DOI: 10.1080/14728222.2022.2067479] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 04/14/2022] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Abnormal calcium signaling between organelles such as the sarcoplasmic reticulum (SR), mitochondria and lysosomes is a key feature of heart diseases. Calcium serves as a secondary messenger mediating inter-organellar crosstalk, essential for maintaining the cardiomyocyte function. AREAS COVERED This article examines the available literature related to calcium channels and transporters involved in inter-organellar calcium signaling. The SR calcium-release channels ryanodine receptor type-2 (RyR2) and inositol 1,4,5-trisphosphate receptor (IP3R), and calcium-transporter SR/ER-ATPase 2a (SERCA2a) are illuminated. The roles of mitochondrial voltage-dependent anion channels (VDAC), the mitochondria Ca2+ uniporter complex (MCUC), and the lysosomal H+/Ca2+ exchanger, two pore channels (TPC), and transient receptor potential mucolipin (TRPML) are discussed. Furthermore, recent studies showing calcium-mediated crosstalk between the SR, mitochondria, and lysosomes as well as how this crosstalk is dysregulated in cardiac diseases are placed under the spotlight. EXPERT OPINION Enhanced SR calcium release via RyR2 and reduced SR reuptake via SERCA2a, increased VDAC and MCUC-mediated calcium uptake into mitochondria, and enhanced lysosomal calcium-release via lysosomal TPC and TRPML may all contribute to aberrant calcium homeostasis causing heart disease. While mechanisms of this crosstalk need to be studied further, interventions targeting these calcium channels or combinations thereof might represent a promising therapeutic strategy.
Collapse
Affiliation(s)
- Mohit M Hulsurkar
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Satadru K Lahiri
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Jason Karch
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
| | - Meng C Wang
- Baylor College of Medicine, Houston TX USA
- Huffington Center on Aging, Baylor College of Medicine, Houston TX USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Xander H T Wehrens
- Baylor College of Medicine, Houston TX USA
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics (Cardiology), Baylor College of Medicine, Houston, TX, USA
- Center for Space Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Davis LC, Morgan AJ, Galione A. Acidic Ca 2+ stores and immune-cell function. Cell Calcium 2021; 101:102516. [PMID: 34922066 DOI: 10.1016/j.ceca.2021.102516] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/11/2022]
Abstract
Acidic organelles act as intracellular Ca2+ stores; they actively sequester Ca2+ in their lumina and release it to the cytosol upon activation of endo-lysosomal Ca2+ channels. Recent data suggest important roles of endo-lysosomal Ca2+ channels, the Two-Pore Channels (TPCs) and the TRPML channels (mucolipins), in different aspects of immune-cell function, particularly impacting membrane trafficking, vesicle fusion/fission and secretion. Remarkably, different channels on the same acidic vesicles can couple to different downstream physiology. Endo-lysosomal Ca2+ stores can act under different modalities, be they acting alone (via local Ca2+ nanodomains around TPCs/TRPMLs) or in conjunction with the ER Ca2+ store (to either promote or suppress global ER Ca2+ release). These different modalities impinge upon functions as broad as phagocytosis, cell-killing, anaphylaxis, immune memory, thrombostasis, and chemotaxis.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| | - Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK.
| |
Collapse
|
20
|
Kushkevych I, Bychkov M, Bychkova S, Gajdács M, Merza R, Vítězová M. ATPase Activity of the Subcellular Fractions of Colorectal Cancer Samples under the Action of Nicotinic Acid Adenine Dinucleotide Phosphate. Biomedicines 2021; 9:biomedicines9121805. [PMID: 34944620 PMCID: PMC8698369 DOI: 10.3390/biomedicines9121805] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022] Open
Abstract
In tumor cells with defects in apoptosis, autophagy allows prolonged survival. Autophagy leads to an accumulation of damaged mitochondria by autophagosomes. An acidic environment is maintained in compartments of cells, such as autophagosomes, late endosomes, and lysosomes; these organelles belong to the “acid store” of the cells. Nicotinic acid adenine dinucleotide phosphate (NAADP) may affect the release of Ca2+ from these organelles and affect the activity of Ca2+ ATPases and other ion transport proteins. Recently, a growing amount of evidence has shown that the variations in the expression of calcium channels or pumps are associated with the occurrence, disease-presentation, and the prognosis of colorectal cancer. We hypothesized that activity of ATPases in cancer tissue is higher because of intensive energy metabolism of tumor cells. The aim of our study was to ascertain the effect of NAADP on ATPase activity on tissue samples of colorectal cancer patients’ and healthy individuals. We tested the effect of NAADP on the activity of Na+/K+ ATPase; Ca2+ ATPase of endoplasmic reticulum (EPR) and plasma membrane (PM) and basal ATPase activity. Patients’ colon mucus cancer samples were obtained during endoscopy from cancer and healthy areas (control) of colorectal mucosa of the same patients. Results. The mean activity of Na+/K+ pump in samples of colorectal cancer patients (n = 5) was 4.66 ± 1.20 μmol Pi/mg of protein per hour, while in control samples from healthy tissues of the same patient (n = 5) this value was 3.88 ± 2.03 μmol Pi/mg of protein per hour. The activity of Ca2+ ATPase PM in control samples was 6.42 ± 0.63 μmol Pi/mg of protein per hour and in cancer −8.50 ± 1.40 μmol Pi/mg of protein per hour (n = 5 pts). The mean activity of Ca2+ ATPase of EPR in control samples was 7.59 ± 1.21 μmol Pi/mg versus 7.76 ± 0.24 μmol Pi/mg in cancer (n = 5 pts). Basal ATPase activity was 3.19 ± 0.87 in control samples versus 4.79 ± 1.86 μmol Pi/mg in cancer (n = 5 pts). In cancer samples, NAADP reduced the activity of Na+/K+ ATPase by 9-times (p < 0.01) and the activity of Ca2+ ATPase EPR about 2-times (p < 0.05). NAADP caused a tendency to decrease the activity of Ca2+ ATPase of PM, but increased basal ATPase activity by 2-fold vs. the mean of this index in cancer samples without the addition of NAADP. In control samples NAADP caused only a tendency to decrease the activities of Na+/K+ ATPase and Ca2+ ATPase EPR, but statistically decreased the activity of Ca2+ ATPase of PM (p < 0.05). In addition, NAADP caused a strong increase in basal ATPase activity in control samples (p < 0.01). Conclusions: We found that the activity of Na+/K+ pump, Ca2+ ATPase of PM and basal ATPase activity in cancer tissues had a strong tendency to be higher than in the controls. NAADP caused a decrease in the activities of Na+/K+ ATPase and Ca2+ ATPase EPR in cancer samples and increased basal ATPase activity. In control samples, NAADP decreased Ca2+ ATPase of PM and increased basal ATPase activity. These data confirmed different roles of NAADP-sensitive “acidic store” (autophagosomes, late endosomes, and lysosomes) in control and cancer tissue, which hypothetically may be connected with autophagy role in cancer development. The effect of NAADP on decreasing the activity of Na+/K+ pump in cancer samples was the most pronounced, both numerically and statistically. Our data shows promising possibilities for the modulation of ion-transport through the membrane of cancer cells by influence on the “acidic store” (autophagosomes, late endosomes and lysosomes) as a new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| | - Mykola Bychkov
- Department of Therapy No 1, Medical Diagnostic and Hematology and Transfusiology of Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Solomiia Bychkova
- Department of Human and Animal Physiology, Faculty of Biology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine;
| | - Márió Gajdács
- Department of Oral Biology and Experimental Dental Research, Faculty of Dentistry, University of Szeged, 6720 Szeged, Hungary;
- Faculty of Medicine, Institute of Medical Microbiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Romana Merza
- Department of Anesthesiology and Intensive Care, Faculty of Postgraduate Education, Danylo Halytsky Lviv National Medical University, 79010 Lviv, Ukraine;
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, 62500 Brno, Czech Republic
- Correspondence: (I.K.); (M.V.); Tel.: +420-549-495-315 (I.K.)
| |
Collapse
|
21
|
Plasma Membrane and Organellar Targets of STIM1 for Intracellular Calcium Handling in Health and Neurodegenerative Diseases. Cells 2021; 10:cells10102518. [PMID: 34685498 PMCID: PMC8533710 DOI: 10.3390/cells10102518] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/21/2021] [Indexed: 01/08/2023] Open
Abstract
Located at the level of the endoplasmic reticulum (ER) membrane, stromal interacting molecule 1 (STIM1) undergoes a complex conformational rearrangement after depletion of ER luminal Ca2+. Then, STIM1 translocates into discrete ER-plasma membrane (PM) junctions where it directly interacts with and activates plasma membrane Orai1 channels to refill ER with Ca2+. Furthermore, Ca2+ entry due to Orai1/STIM1 interaction may induce canonical transient receptor potential channel 1 (TRPC1) translocation to the plasma membrane, where it is activated by STIM1. All these events give rise to store-operated calcium entry (SOCE). Besides the main pathway underlying SOCE, which mainly involves Orai1 and TRPC1 activation, STIM1 modulates many other plasma membrane proteins in order to potentiate the influxof Ca2+. Furthermore, it is now clear that STIM1 may inhibit Ca2+ currents mediated by L-type Ca2+ channels. Interestingly, STIM1 also interacts with some intracellular channels and transporters, including nuclear and lysosomal ionic proteins, thus orchestrating organellar Ca2+ homeostasis. STIM1 and its partners/effectors are significantly modulated in diverse acute and chronic neurodegenerative conditions. This highlights the importance of further disclosing their cellular functions as they might represent promising molecular targets for neuroprotection.
Collapse
|
22
|
Sharma A, Ramena GT, Elble RC. Advances in Intracellular Calcium Signaling Reveal Untapped Targets for Cancer Therapy. Biomedicines 2021; 9:1077. [PMID: 34572262 PMCID: PMC8466575 DOI: 10.3390/biomedicines9091077] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 02/07/2023] Open
Abstract
Intracellular Ca2+ distribution is a tightly regulated process. Numerous Ca2+ chelating, storage, and transport mechanisms are required to maintain normal cellular physiology. Ca2+-binding proteins, mainly calmodulin and calbindins, sequester free intracellular Ca2+ ions and apportion or transport them to signaling hubs needing the cations. Ca2+ channels, ATP-driven pumps, and exchangers assist the binding proteins in transferring the ions to and from appropriate cellular compartments. Some, such as the endoplasmic reticulum, mitochondria, and lysosomes, act as Ca2+ repositories. Cellular Ca2+ homeostasis is inefficient without the active contribution of these organelles. Moreover, certain key cellular processes also rely on inter-organellar Ca2+ signaling. This review attempts to encapsulate the structure, function, and regulation of major intracellular Ca2+ buffers, sensors, channels, and signaling molecules before highlighting how cancer cells manipulate them to survive and thrive. The spotlight is then shifted to the slow pace of translating such research findings into anticancer therapeutics. We use the PubMed database to highlight current clinical studies that target intracellular Ca2+ signaling. Drug repurposing and improving the delivery of small molecule therapeutics are further discussed as promising strategies for speeding therapeutic development in this area.
Collapse
Affiliation(s)
- Aarushi Sharma
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| | - Grace T. Ramena
- Department of Aquaculture, University of Arkansas, Pine Bluff, AR 71601, USA;
| | - Randolph C. Elble
- Department of Pharmacology and Simmons Cancer Institute, Southern Illinois University School of Medicine, Springfield, IL 62702, USA;
| |
Collapse
|
23
|
Tedeschi V, Sisalli MJ, Petrozziello T, Canzoniero LMT, Secondo A. Lysosomal calcium is modulated by STIM1/TRPML1 interaction which participates to neuronal survival during ischemic preconditioning. FASEB J 2021; 35:e21277. [PMID: 33484198 DOI: 10.1096/fj.202001886r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/02/2020] [Accepted: 11/30/2020] [Indexed: 11/11/2022]
Abstract
A robust activity of the lysosomal Ca2+ channel TRPML1 is sufficient to correct cellular defects in neurodegeneration. Importantly, lysosomes are refilled by the endoplasmic reticulum (ER). However, it is unclear how TRPML1 function could be modulated by the ER. Here, we deal with this issue in rat primary cortical neurons exposed to different oxygen conditions affecting neuronal survival. Under normoxic conditions, TRPML1: (1) showed a wide distribution within soma and along neuronal processes; (2) was stimulated by the synthetic agonist ML-SA1 and the analog of its endogenous modulator, PI(3,5)P2 diC8; (3) its knockdown by siRNA strategy produced an ER Ca2+ accumulation; (4) co-localized and co-immunoprecipitated with the ER-located Ca2+ sensor stromal interacting molecule 1 (STIM1). In cortical neurons lacking STIM1, ML-SA1 and PI(3,5)P2 diC8 failed to induce Ca2+ release and, more deeply, they induced a negligible Ca2+ passage through the channel in neurons transfected with the genetically encoded Ca2+ indicator GCaMP3-ML1. Moreover, TRPML1/STIM1 interplay changed at low-oxygen conditions: both proteins were downregulated during the ischemic preconditioning (IPC) while during IPC followed by 1 hour of normoxia, at which STIM1 is upregulated, TRPML1 protein was reduced. However, during oxygen and glucose deprivation (OGD) followed by reoxygenation, TRPML1 and STIM1 proteins peaked at 8 hours of reoxygenation, when the proteins were co-immunoprecipitated and reactive oxygen species (ROS) hyperproduction was measured in cortical neurons. This may lead to a persistent TRPML1 Ca2+ release and lysosomal Ca2+ loss. Collectively, we showed a new modulation exerted by STIM1 on TRPML1 activity that may differently intervene during hypoxia to regulate organellar Ca2+ homeostasis.
Collapse
Affiliation(s)
- Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Maria José Sisalli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | - Tiziana Petrozziello
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| | | | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Odontostomatological Sciences, School of Medicine, "Federico II" University of Naples, Naples, Italy
| |
Collapse
|
24
|
Glucose and NAADP trigger elementary intracellular β-cell Ca 2+ signals. Sci Rep 2021; 11:10714. [PMID: 34021189 PMCID: PMC8140081 DOI: 10.1038/s41598-021-88906-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules. However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation. We have previously proposed that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells. Here we show using total internal reflection fluorescence (TIRF) microscopy that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells, lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). Building on our previous work demonstrating that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells, we provide here the first demonstration of elementary Ca2+ signals in response to NAADP, whose occurrence was previously suspected. Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips, and ryanodine receptor mediated quarks. We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.
Collapse
|
25
|
Gumeni S, Vantaggiato C, Montopoli M, Orso G. Hereditary Spastic Paraplegia and Future Therapeutic Directions: Beneficial Effects of Small Compounds Acting on Cellular Stress. Front Neurosci 2021; 15:660714. [PMID: 34025345 PMCID: PMC8134669 DOI: 10.3389/fnins.2021.660714] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/29/2021] [Indexed: 12/29/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a group of inherited neurodegenerative conditions that share a characteristic feature of degeneration of the longest axons within the corticospinal tract, which leads to progressive spasticity and weakness of the lower limbs. Mutations of over 70 genes produce defects in various biological pathways: axonal transport, lipid metabolism, endoplasmic reticulum (ER) shaping, mitochondrial function, and endosomal trafficking. HSPs suffer from an adequate therapeutic plan. Currently the treatments foreseen for patients affected by this pathology are physiotherapy, to maintain the outgoing tone, and muscle relaxant therapies for spasticity. Very few clinical studies have been conducted, and it's urgent to implement preclinical animal studies devoted to pharmacological test and screening, to expand the rose of compounds potentially attractive for clinical trials. Small animal models, such as Drosophila melanogaster and zebrafish, have been generated, analyzed, and used as preclinical model for screening of compounds and their effects. In this work, we briefly described the role of HSP-linked proteins in the organization of ER endomembrane system and in the regulation of ER homeostasis and stress as a common pathological mechanism for these HSP forms. We then focused our attention on the pharmacodynamic and pharmacokinetic features of some recently identified molecules with antioxidant property, such as salubrinal, guanabenz, N-acetyl cysteine, methylene blue, rapamycin, and naringenin, and on their potential use in future clinical studies. Expanding the models and the pharmacological screening for HSP disease is necessary to give an opportunity to patients and clinicians to test new molecules.
Collapse
Affiliation(s)
- Sentiljana Gumeni
- Department of Cell Biology and Biophysics, Faculty of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Chiara Vantaggiato
- Laboratory of Molecular Biology, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Monica Montopoli
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padua, Italy
| |
Collapse
|
26
|
Negri S, Faris P, Moccia F. Endolysosomal Ca 2+ signaling in cardiovascular health and disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 363:203-269. [PMID: 34392930 DOI: 10.1016/bs.ircmb.2021.03.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An increase in intracellular Ca2+ concentration ([Ca2+]i) regulates a plethora of functions in the cardiovascular (CV) system, including contraction in cardiomyocytes and vascular smooth muscle cells (VSMCs), and angiogenesis in vascular endothelial cells and endothelial colony forming cells. The sarco/endoplasmic reticulum (SR/ER) represents the largest endogenous Ca2+ store, which releases Ca2+ through ryanodine receptors (RyRs) and/or inositol-1,4,5-trisphosphate receptors (InsP3Rs) upon extracellular stimulation. The acidic vesicles of the endolysosomal (EL) compartment represent an additional endogenous Ca2+ store, which is targeted by several second messengers, including nicotinic acid adenine dinucleotide phosphate (NAADP) and phosphatidylinositol 3,5-bisphosphate [PI(3,5)P2], and may release intraluminal Ca2+ through multiple Ca2+ permeable channels, including two-pore channels 1 and 2 (TPC1-2) and Transient Receptor Potential Mucolipin 1 (TRPML1). Herein, we discuss the emerging, pathophysiological role of EL Ca2+ signaling in the CV system. We describe the role of cardiac TPCs in β-adrenoceptor stimulation, arrhythmia, hypertrophy, and ischemia-reperfusion injury. We then illustrate the role of EL Ca2+ signaling in VSMCs, where TPCs promote vasoconstriction and contribute to pulmonary artery hypertension and atherosclerosis, whereas TRPML1 sustains vasodilation and is also involved in atherosclerosis. Subsequently, we describe the mechanisms whereby endothelial TPCs promote vasodilation, contribute to neurovascular coupling in the brain and stimulate angiogenesis and vasculogenesis. Finally, we discuss about the possibility to target TPCs, which are likely to mediate CV cell infection by the Severe Acute Respiratory Disease-Coronavirus-2, with Food and Drug Administration-approved drugs to alleviate the detrimental effects of Coronavirus Disease-19 on the CV system.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Pawan Faris
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Pavia, Italy.
| |
Collapse
|
27
|
Lysosomal Calcium Channels in Autophagy and Cancer. Cancers (Basel) 2021; 13:cancers13061299. [PMID: 33803964 PMCID: PMC8001254 DOI: 10.3390/cancers13061299] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Autophagy is a cellular self-eating process that uses lysosome, the waste disposal system of the cell, to degrade and recycle intracellular materials to maintain cellular homeostasis. Defects in autophagy are linked to a variety of pathological states, including cancer. Calcium is an important cellular messenger that regulates the survival of all animal cells. Alterations to calcium homoeostasis are associated with cancer. While it has long been considered as cellular recycling center, the lysosome is now widely known as an intracellular calcium store that regulates autophagy and cancer progression by releasing calcium via some ion channels residing in the lysosomal membrane. In this review, we summarize existing mechanisms of autophagy regulation by lysosomal calcium channels and their implications in cancer development. We hope to guide readers toward a more in-depth understanding of the importance of lysosomal calcium channels in cancer, and potentially facilitate the development of new therapeutics for some cancers. Abstract Ca2+ is pivotal intracellular messenger that coordinates multiple cell functions such as fertilization, growth, differentiation, and viability. Intracellular Ca2+ signaling is regulated by both extracellular Ca2+ entry and Ca2+ release from intracellular stores. Apart from working as the cellular recycling center, the lysosome has been increasingly recognized as a significant intracellular Ca2+ store that provides Ca2+ to regulate many cellular processes. The lysosome also talks to other organelles by releasing and taking up Ca2+. In lysosomal Ca2+-dependent processes, autophagy is particularly important, because it has been implicated in many human diseases including cancer. This review will discuss the major components of lysosomal Ca2+ stores and their roles in autophagy and human cancer progression.
Collapse
|
28
|
Yuan Y, Kilpatrick BS, Gerndt S, Bracher F, Grimm C, Schapira AH, Patel S. The lysosomotrope GPN mobilises Ca 2+ from acidic organelles. J Cell Sci 2021; 134:jcs.256578. [PMID: 33602742 PMCID: PMC7972315 DOI: 10.1242/jcs.256578] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
Lysosomes are acidic Ca2+ stores often mobilised in conjunction with endoplasmic reticulum (ER) Ca2+ stores. Glycyl-L-phenylalanine 2-naphthylamide (GPN) is a widely used lysosomotropic agent that evokes cytosolic Ca2+ signals in many cells. However, whether these signals are the result of a primary action on lysosomes is unclear in light of recent evidence showing that GPN mediates direct ER Ca2+ release through changes in cytosolic pH. Here, we show that GPN evoked rapid increases in cytosolic pH but slower Ca2+ signals. NH4Cl evoked comparable changes in pH but failed to affect Ca2+. The V-type ATPase inhibitor, bafilomycin A1, increased lysosomal pH over a period of hours. Acute treatment modestly affected lysosomal pH and potentiated Ca2+ signals evoked by GPN. In contrast, chronic treatment led to more profound changes in luminal pH and selectively inhibited GPN action. GPN blocked Ca2+ responses evoked by the novel nicotinic acid adenine dinucleotide phosphate-like agonist, TPC2-A1-N. Therefore, GPN-evoked Ca2+ signals were better correlated with associated pH changes in the lysosome compared to the cytosol, and were coupled to lysosomal Ca2+ release. We conclude that Ca2+ signals evoked by GPN most likely derive from acidic organelles. Summary: Methods of releasing calcium from lysosomes are limited but characterization of the effects of GPN in primary cultured human fibroblasts confirmed that it probably targets acidic organelles.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| | | | - Susanne Gerndt
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich 81377, Germany
| | - Franz Bracher
- Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians University, Munich 81377, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians University, Munich 80336, Germany
| | - Anthony H Schapira
- Department of Clinical Neurosciences, UCL Institute of Neurology, London NW3 2PF, UK
| | - Sandip Patel
- Department of Cell and Developmental Biology, UCL, London WC1E 6BT, UK
| |
Collapse
|
29
|
Parys JB, Bultynck G, Vervliet T. IP 3 Receptor Biology and Endoplasmic Reticulum Calcium Dynamics in Cancer. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:215-237. [PMID: 34050869 DOI: 10.1007/978-3-030-67696-4_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Intracellular Ca2+ signaling regulates a plethora of cellular functions. A central role in these processes is reserved for the inositol 1,4,5-trisphosphate receptor (IP3R), a ubiquitously expressed Ca2+-release channel, mainly located in the endoplasmic reticulum (ER). Three IP3R isoforms (IP3R1, IP3R2 and IP3R3) exist, encoded respectively by ITPR1, ITPR2 and ITPR3. The proteins encoded by these genes are each about 2700 amino acids long and assemble into large tetrameric channels, which form the target of many regulatory proteins, including several tumor suppressors and oncogenes. Due to the important role of the IP3Rs in cell function, their dysregulation is linked to multiple pathologies. In this review, we highlight the complex role of the IP3R in cancer, as it participates in most of the so-called "hallmarks of cancer". In particular, the IP3R directly controls cell death and cell survival decisions via regulation of autophagy and apoptosis. Moreover, the IP3R impacts cellular proliferation, migration and invasion. Typical examples of the role of the IP3Rs in these various processes are discussed. The relative levels of the IP3R isoforms expressed and their subcellular localization, e.g. at the ER-mitochondrial interface, is hereby important. Finally, evidence is provided about how the knowledge of the regulation of the IP3R by tumor suppressors and oncogenes can be exploited to develop novel therapeutic approaches to fight cancer.
Collapse
Affiliation(s)
- Jan B Parys
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium.
| | - Geert Bultynck
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Tim Vervliet
- Laboratory for Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine & Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
30
|
Chen OCW, Colaco A, Davis LC, Kiskin FN, Farhat NY, Speak AO, Smith DA, Morris L, Eden E, Tynan P, Churchill GC, Galione A, Porter FD, Platt FM. Defective platelet function in Niemann-Pick disease type C1. JIMD Rep 2020; 56:46-57. [PMID: 33204596 PMCID: PMC7653256 DOI: 10.1002/jmd2.12148] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/24/2020] [Accepted: 06/26/2020] [Indexed: 11/30/2022] Open
Abstract
Niemann-Pick disease type C (NPC) is a neurodegenerative lysosomal storage disorder caused by mutations in either NPC1 (95% of cases) or NPC2. Reduced late endosome/lysosome calcium (Ca2+) levels and the accumulation of unesterified cholesterol and sphingolipids within the late endocytic system characterize this disease. We previously reported impaired lysosome-related organelle (LRO) function in Npc1 -/- Natural Killer cells; however, the potential contribution of impaired acid compartment Ca2+ flux and LRO function in other cell types has not been determined. Here, we investigated LRO function in NPC1 disease platelets. We found elevated numbers of circulating platelets, impaired platelet aggregation and prolonged bleeding times in a murine model of NPC1 disease. Electron microscopy revealed abnormal ultrastructure in murine platelets, consistent with that seen in a U18666A (pharmacological inhibitor of NPC1) treated megakaryocyte cell line (MEG-01) exhibiting lipid storage and acidic compartment Ca2+ flux defects. Furthermore, platelets from NPC1 patients across different ages were found to cluster at the lower end of the normal range when platelet numbers were measured and had platelet volumes that were clustered at the top of the normal range. Taken together, these findings highlight the role of acid compartment Ca2+ flux in the function of platelet LROs.
Collapse
Affiliation(s)
| | | | | | | | - Nicole Y. Farhat
- Division in Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human ServicesBethesdaMarylandUSA
| | | | | | - Lauren Morris
- Department of PharmacologyUniversity of OxfordOxfordUK
| | - Emily Eden
- Institute of Ophthalmology—Cell BiologyUniversity College LondonLondonUK
| | | | | | | | - Forbes D. Porter
- Division in Translational MedicineEunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Department of Health and Human ServicesBethesdaMarylandUSA
| | | |
Collapse
|
31
|
Yu P, Cai X, Liang Y, Wang M, Yang W. Roles of NAD + and Its Metabolites Regulated Calcium Channels in Cancer. Molecules 2020; 25:molecules25204826. [PMID: 33092205 PMCID: PMC7587972 DOI: 10.3390/molecules25204826] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 02/08/2023] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor for redox enzymes, but also moonlights as a regulator for ion channels, the same as its metabolites. Ca2+ homeostasis is dysregulated in cancer cells and affects processes such as tumorigenesis, angiogenesis, autophagy, progression, and metastasis. Herein, we summarize the regulation of the most common calcium channels (TRPM2, TPCs, RyRs, and TRPML1) by NAD+ and its metabolites, with a particular focus on their roles in cancers. Although the mechanisms of NAD+ metabolites in these pathological processes are yet to be clearly elucidated, these ion channels are emerging as potential candidates of alternative targets for anticancer therapy.
Collapse
Affiliation(s)
- Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Xiaobo Cai
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
| | - Yan Liang
- Department of Toxicology, and Department of Medical Oncology of Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; (P.Y.); (Y.L.)
| | - Mingxiang Wang
- BrioPryme Biologics, Inc., Hangzhou 310058, Zhejiang, China;
| | - Wei Yang
- Department of Biophysics, and Department of Neurosurgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China;
- Correspondence: ; Tel.: +86-571-8820-8713
| |
Collapse
|
32
|
Guo C, Webb SE, Chan CM, Miller AL. TPC2-mediated Ca 2+ signaling is required for axon extension in caudal primary motor neurons in zebrafish embryos. J Cell Sci 2020; 133:jcs244780. [PMID: 32546534 DOI: 10.1242/jcs.244780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Accepted: 05/27/2020] [Indexed: 12/13/2022] Open
Abstract
The role of two-pore channel type 2 (TPC2, encoded by tcpn2)-mediated Ca2+ release was recently characterized in zebrafish during establishment of the early spinal circuitry, one of the key events in the coordination of neuromuscular activity. Here, we extend our study to investigate the in vivo role of TPC2 in the regulation of caudal primary motor neuron (CaP) axon extension. We used a combination of TPC2 knockdown with a translation-blocking morpholino antisense oligonucleotide (MO), TPC2 knockout via the generation of a tpcn2dhkz1a mutant line of zebrafish using CRISPR/Cas9 gene-editing and pharmacological inhibition of TPC2 via incubation with bafilomycin A1 (an H+-ATPase inhibitor) or trans-ned-19 (an NAADP receptor antagonist), and showed that these treatments attenuated CaP Ca2+ signaling and inhibited axon extension. We also characterized the expression of an arc1-like transcript in CaPs grown in primary culture. MO-mediated knockdown of ARC1-like in vivo led to attenuation of the Ca2+ transients in the CaP growth cones and an inhibition of axon extension. Together, our new data suggest a link between ARC1-like, TPC2 and Ca2+ signaling during axon extension in zebrafish.
Collapse
Affiliation(s)
- Chenxi Guo
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Ching Man Chan
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory for Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, China
| |
Collapse
|
33
|
Stein P, Savy V, Williams AM, Williams CJ. Modulators of calcium signalling at fertilization. Open Biol 2020; 10:200118. [PMID: 32673518 PMCID: PMC7574550 DOI: 10.1098/rsob.200118] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/18/2020] [Indexed: 12/16/2022] Open
Abstract
Calcium (Ca2+) signals initiate egg activation across the animal kingdom and in at least some plants. These signals are crucial for the success of development and, in the case of mammals, health of the offspring. The mechanisms associated with fertilization that trigger these signals and the molecules that regulate their characteristic patterns vary widely. With few exceptions, a major contributor to fertilization-induced elevation in cytoplasmic Ca2+ is release from endoplasmic reticulum stores through the IP3 receptor. In some cases, Ca2+ influx from the extracellular space and/or release from alternative intracellular stores contribute to the rise in cytoplasmic Ca2+. Following the Ca2+ rise, the reuptake of Ca2+ into intracellular stores or efflux of Ca2+ out of the egg drive the return of cytoplasmic Ca2+ back to baseline levels. The molecular mediators of these Ca2+ fluxes in different organisms include Ca2+ release channels, uptake channels, exchangers and pumps. The functions of these mediators are regulated by their particular activating mechanisms but also by alterations in their expression and spatial organization. We discuss here the molecular basis for modulation of Ca2+ signalling at fertilization, highlighting differences across several animal phyla, and we mention key areas where questions remain.
Collapse
Affiliation(s)
- Paula Stein
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Virginia Savy
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Audrey M. Williams
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Carmen J. Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
34
|
Moccia F, Zuccolo E, Di Nezza F, Pellavio G, Faris PS, Negri S, De Luca A, Laforenza U, Ambrosone L, Rosti V, Guerra G. Nicotinic acid adenine dinucleotide phosphate activates two-pore channel TPC1 to mediate lysosomal Ca 2+ release in endothelial colony-forming cells. J Cell Physiol 2020; 236:688-705. [PMID: 32583526 DOI: 10.1002/jcp.29896] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/15/2022]
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is the most recently discovered Ca2+ -releasing messenger that increases the intracellular Ca2+ concentration by mobilizing the lysosomal Ca2+ store through two-pore channels 1 (TPC1) and 2 (TPC2). NAADP-induced lysosomal Ca2+ release regulates multiple endothelial functions, including nitric oxide release and proliferation. A sizeable acidic Ca2+ pool endowed with TPC1 is also present in human endothelial colony-forming cells (ECFCs), which represent the only known truly endothelial precursors. Herein, we sought to explore the role of the lysosomal Ca2+ store and TPC1 in circulating ECFCs by harnessing Ca2+ imaging and molecular biology techniques. The lysosomotropic agent, Gly-Phe β-naphthylamide, and nigericin, which dissipates the proton gradient which drives Ca2+ sequestration by acidic organelles, caused endogenous Ca2+ release in the presence of a replete inositol-1,4,5-trisphosphate (InsP3 )-sensitive endoplasmic reticulum (ER) Ca2+ pool. Likewise, the amount of ER releasable Ca2+ was reduced by disrupting lysosomal Ca2+ content. Liposomal delivery of NAADP induced a transient Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store and by pharmacological and genetic blockade of TPC1. Pharmacological manipulation revealed that NAADP-induced Ca2+ release also required ER-embedded InsP3 receptors. Finally, NAADP-induced lysosomal Ca2+ release was found to trigger vascular endothelial growth factor-induced intracellular Ca2+ oscillations and proliferation, while it did not contribute to adenosine-5'-trisphosphate-induced Ca2+ signaling. These findings demonstrated that NAADP-induced TPC1-mediated Ca2+ release can selectively be recruited to induce the Ca2+ response to specific cues in circulating ECFCs.
Collapse
Affiliation(s)
- Francesco Moccia
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Estella Zuccolo
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Francesca Di Nezza
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Pawan S Faris
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Department of Biology and Biotechnology, Laboratory of General Physiology, University of Pavia, Pavia, Italy
| | - Antonio De Luca
- Department of Mental and Physical Health and Preventive Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Luigi Ambrosone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Vittorio Rosti
- Laboratory of Biochemistry Biotechnology and Advanced Diagnostic, Myelofibrosis Study Centre, IRCCS Ospedale Policlinico San Matteo, Pavia, Italy
| | - Germano Guerra
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
35
|
Davis LC, Morgan AJ, Galione A. NAADP-regulated two-pore channels drive phagocytosis through endo-lysosomal Ca 2+ nanodomains, calcineurin and dynamin. EMBO J 2020; 39:e104058. [PMID: 32510172 PMCID: PMC7360967 DOI: 10.15252/embj.2019104058] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 04/22/2020] [Accepted: 04/29/2020] [Indexed: 12/15/2022] Open
Abstract
Macrophages clear pathogens by phagocytosis and lysosomes that fuse with phagosomes are traditionally regarded as to a source of membranes and luminal degradative enzymes. Here, we reveal that endo-lysosomes act as platforms for a new phagocytic signalling pathway in which FcγR activation recruits the second messenger NAADP and thereby promotes the opening of Ca2+ -permeable two-pore channels (TPCs). Remarkably, phagocytosis is driven by these local endo-lysosomal Ca2+ nanodomains rather than global cytoplasmic or ER Ca2+ signals. Motile endolysosomes contact nascent phagosomes to promote phagocytosis, whereas endo-lysosome immobilization prevents it. We show that TPC-released Ca2+ rapidly activates calcineurin, which in turn dephosphorylates and activates the GTPase dynamin-2. Finally, we find that different endo-lysosomal Ca2+ channels play diverse roles, with TPCs providing a universal phagocytic signal for a wide range of particles and TRPML1 being only required for phagocytosis of large targets.
Collapse
Affiliation(s)
- Lianne C Davis
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | | - Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
36
|
Luo X, Li Y, Yang P, Chen Y, Wei L, Yu T, Xia J, Ruan XZ, Zhao L, Chen Y. Obesity induces preadipocyte CD36 expression promoting inflammation via the disruption of lysosomal calcium homeostasis and lysosome function. EBioMedicine 2020; 56:102797. [PMID: 32516742 PMCID: PMC7281849 DOI: 10.1016/j.ebiom.2020.102797] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/13/2020] [Accepted: 04/28/2020] [Indexed: 12/31/2022] Open
Abstract
Background Preadipocyte is closely related to obesity-induced inflammation. The impairment of autophagic flux by defective lysosomal function has been observed in adipose tissue from obese mice. While the fatty acid translocase CD36 is an important immuno-metabolic receptor, it remains unclear whether preadipocyte CD36 is involved in adipose tissue inflammation and whether CD36 regulates lysosomal function. Methods Using visceral adipose tissue from obese patients, a high-fat diet (HFD)-induced obese mice model, primary mouse preadipocytes and 3T3L1 cells we analyzed whether and how preadipocyte CD36 modulates lysosomal function and adipose tissue inflammation. Findings CD36 expression in preadipocytes is induced in obese patients and HFD-fed mice, accompanied with the disruption of lysosome function. CD36 knockout protects primary preadipocytes of HFD-fed mice from lysosomal impairment. In vitro, CD36 interacts with Fyn to phosphorylate and activate Inositol (1,4,5)-trisphosphate receptor 1 (IP3R1), causing excess calcium transport from endoplasmic reticulum (ER) to lysosome, which results in lysosomal impairment and inflammation. Moreover, IP3R inhibitor 2-aminoethoxydiphenyl borate (2APB) attenuates lysosomal impairment, inflammation and lipid accumulation in CD36-overexpressing preadipocytes. Interpretation Our data support that the abnormal upregulation of CD36 in preadipocytes may contribute to the development of adipose tissue inflammation. CD36/Fyn/IP3R1-mediated lysosomal calcium overload leads to lysosomal impairment and inflammation in preadipocyte. Thus targeting improving lysosomal calcium homeostasis may represent a novel strategy for treating obesity-induced inflammation.
Collapse
Affiliation(s)
- Xiaoxiao Luo
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yanping Li
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ping Yang
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Yao Chen
- Medical Examination Center, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Ting Yu
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Jun Xia
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China
| | - Xiong Z Ruan
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China; National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Hanghai, China; John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, United Kingdom
| | - Lei Zhao
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Yaxi Chen
- Centre for Lipid Research, Key Laboratory of Molecular Biology for Infectious Diseases, Ministry of Education, Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
37
|
Lloyd-Evans E, Waller-Evans H. Lysosomal Ca 2+ Homeostasis and Signaling in Health and Disease. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a035311. [PMID: 31653642 DOI: 10.1101/cshperspect.a035311] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Calcium (Ca2+) signaling is an essential process in all cells that is maintained by a plethora of channels, pumps, transporters, receptors, and intracellular Ca2+ sequestering stores. Changes in cytosolic Ca2+ concentration govern processes as far reaching as fertilization, cell growth, and motility through to cell death. In recent years, lysosomes have emerged as a major intracellular Ca2+ storage organelle with an increasing involvement in triggering or regulating cellular functions such as endocytosis, autophagy, and Ca2+ release from the endoplasmic reticulum. This review will summarize recent work in the area of lysosomal Ca2+ signaling and homeostasis, including newly identified functions, and the involvement of lysosome-derived Ca2+ signals in human disease. In addition, we explore recent controversies in the techniques used for measurement of lysosomal Ca2+ content.
Collapse
Affiliation(s)
- Emyr Lloyd-Evans
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, United Kingdom
| | - Helen Waller-Evans
- Medicines Discovery Institute, Cardiff University, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
38
|
Trivedi PC, Bartlett JJ, Pulinilkunnil T. Lysosomal Biology and Function: Modern View of Cellular Debris Bin. Cells 2020; 9:cells9051131. [PMID: 32375321 PMCID: PMC7290337 DOI: 10.3390/cells9051131] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Lysosomes are the main proteolytic compartments of mammalian cells comprising of a battery of hydrolases. Lysosomes dispose and recycle extracellular or intracellular macromolecules by fusing with endosomes or autophagosomes through specific waste clearance processes such as chaperone-mediated autophagy or microautophagy. The proteolytic end product is transported out of lysosomes via transporters or vesicular membrane trafficking. Recent studies have demonstrated lysosomes as a signaling node which sense, adapt and respond to changes in substrate metabolism to maintain cellular function. Lysosomal dysfunction not only influence pathways mediating membrane trafficking that culminate in the lysosome but also govern metabolic and signaling processes regulating protein sorting and targeting. In this review, we describe the current knowledge of lysosome in influencing sorting and nutrient signaling. We further present a mechanistic overview of intra-lysosomal processes, along with extra-lysosomal processes, governing lysosomal fusion and fission, exocytosis, positioning and membrane contact site formation. This review compiles existing knowledge in the field of lysosomal biology by describing various lysosomal events necessary to maintain cellular homeostasis facilitating development of therapies maintaining lysosomal function.
Collapse
Affiliation(s)
- Purvi C. Trivedi
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Jordan J. Bartlett
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
| | - Thomas Pulinilkunnil
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS B3H 4H7, Canada; (P.C.T.); (J.J.B.)
- Dalhousie Medicine New Brunswick, Saint John, NB E2L 4L5, Canada
- Correspondence: ; Tel.: +1-(506)-636-6973
| |
Collapse
|
39
|
Martello A, Platt FM, Eden ER. Staying in touch with the endocytic network: The importance of contacts for cholesterol transport. Traffic 2020; 21:354-363. [PMID: 32129938 PMCID: PMC8650999 DOI: 10.1111/tra.12726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/16/2022]
Abstract
Cholesterol homeostasis is critical for cell function and human health. Cholesterol is heterogeneously distributed among cellular membranes, with the redistribution of endocytosed dietary cholesterol playing a pivotal role in the regulation of cholesterol homeostasis. While gaps remain in our understanding of intracellular dietary cholesterol transport, a highly complex network of pathways is starting to emerge, often involving inter‐dependent vesicular and non‐vesicular transport mechanisms. The last decade has seen a surge in interest in non‐vesicular transport and inter‐organellar communication at membrane contact sites. By providing platforms for protein interactions, signalling events, lipid exchange and calcium flux, membrane contact sites (MCS) are now appreciated as controlling the fate of large amounts of lipid and play central roles in the regulation and co‐ordination of endocytic trafficking. Here, we review the role of MCS in multiple pathways for cholesterol export from the endocytic pathway and highlight the intriguing interplay between vesicular and non‐vesicular transport mechanisms and relationship with neurodegenerative disease.
Collapse
Affiliation(s)
| | - Fran M Platt
- Department of Pharmacology, University of Oxford, Oxford, UK
| | | |
Collapse
|
40
|
Chang FS, Wang Y, Dmitriev P, Gross J, Galione A, Pears C. A two-pore channel protein required for regulating mTORC1 activity on starvation. BMC Biol 2020; 18:8. [PMID: 31969153 PMCID: PMC6977259 DOI: 10.1186/s12915-019-0735-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Two-pore channels (TPCs) release Ca2+ from acidic intracellular stores and are implicated in a number of diseases, but their role in development is unclear. The social amoeba Dictyostelium discoideum proliferates as single cells that aggregate to form a multicellular organism on starvation. Starvation is sensed by the mTORC1 complex which, like TPC proteins, is found on acidic vesicles. Here, we address the role of TPCs in development and under starvation. RESULTS We report that disruption of the gene encoding the single Dictyostelium TPC protein, TPC2, leads to a delay in early development and prolonged growth in culture with delayed expression of early developmental genes, although a rapid starvation-induced increase in autophagy is still apparent. Ca2+ signals induced by extracellular cAMP are delayed in developing tpc2- cells, and aggregation shows increased sensitivity to weak bases, consistent with reduced acidity of the vesicles. In mammalian cells, the mTORC1 protein kinase has been proposed to suppress TPC channel opening. Here, we show a reciprocal effect as tpc2- cells show an increased level of phosphorylation of an mTORC1 substrate, 4E-BP1. mTORC1 inhibition reverses the prolonged growth and increases the efficiency of aggregation of tpc2- cells. CONCLUSION TPC2 is required for efficient growth development transition in Dictyostelium and acts through modulation of mTORC1 activity revealing a novel mode of regulation.
Collapse
Affiliation(s)
- Fu-Sheng Chang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Yuntao Wang
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Phillip Dmitriev
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK
| | - Julian Gross
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, UK
| | - Catherine Pears
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK.
| |
Collapse
|
41
|
Webb SE, Kelu JJ, Miller AL. Role of Two-Pore Channels in Embryonic Development and Cellular Differentiation. Cold Spring Harb Perspect Biol 2020; 12:a035170. [PMID: 31358517 PMCID: PMC6942120 DOI: 10.1101/cshperspect.a035170] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Since the identification of nicotinic acid adenine dinucleotide phosphate (NAADP) and its putative target, the two-pore channel (TPC), the NAADP/TPC/Ca2+ signaling pathway has been reported to play a role in a diverse range of functions in a variety of different cell types. TPCs have also been associated with a number of diseases, which arise when their activity is perturbed. In addition, TPCs have been shown to play key roles in various embryological processes and during the differentiation of a variety of cell types. Here, we review the role of NAADP/TPC/Ca2+ signaling during early embryonic development and cellular differentiation. We pay particular attention to the role of TPC2 in the development and maturation of early neuromuscular activity in zebrafish, and during the differentiation of isolated osteoclasts, endothelial cells, and keratinocytes. Our aim is to emphasize the conserved features of TPC-mediated Ca2+ signaling in a number of selected examples.
Collapse
Affiliation(s)
- Sarah E Webb
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Jeffrey J Kelu
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| | - Andrew L Miller
- Division of Life Science & State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology (HKUST), Clearwater Bay, Hong Kong, PRC
| |
Collapse
|
42
|
Tran QK. Reciprocality Between Estrogen Biology and Calcium Signaling in the Cardiovascular System. Front Endocrinol (Lausanne) 2020; 11:568203. [PMID: 33133016 PMCID: PMC7550652 DOI: 10.3389/fendo.2020.568203] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/19/2020] [Indexed: 12/30/2022] Open
Abstract
17β-Estradiol (E2) is the main estrogenic hormone in the body and exerts many cardiovascular protective effects. Via three receptors known to date, including estrogen receptors α (ERα) and β (ERβ) and the G protein-coupled estrogen receptor 1 (GPER, aka GPR30), E2 regulates numerous calcium-dependent activities in cardiovascular tissues. Nevertheless, effects of E2 and its receptors on components of the calcium signaling machinery (CSM), the underlying mechanisms, and the linked functional impact are only beginning to be elucidated. A picture is emerging of the reciprocality between estrogen biology and Ca2+ signaling. Therein, E2 and GPER, via both E2-dependent and E2-independent actions, moderate Ca2+-dependent activities; in turn, ERα and GPER are regulated by Ca2+ at the receptor level and downstream signaling via a feedforward loop. This article reviews current understanding of the effects of E2 and its receptors on the cardiovascular CSM and vice versa with a focus on mechanisms and combined functional impact. An overview of the main CSM components in cardiovascular tissues will be first provided, followed by a brief review of estrogen receptors and their Ca2+-dependent regulation. The effects of estrogenic agonists to stimulate acute Ca2+ signals will then be reviewed. Subsequently, E2-dependent and E2-independent effects of GPER on components of the Ca2+ signals triggered by other stimuli will be discussed. Finally, a case study will illustrate how the many mechanisms are coordinated to moderate Ca2+-dependent activities in the cardiovascular system.
Collapse
|
43
|
Morgan AJ, Yuan Y, Patel S, Galione A. Does lysosomal rupture evoke Ca 2+ release? A question of pores and stores. Cell Calcium 2019; 86:102139. [PMID: 31881482 DOI: 10.1016/j.ceca.2019.102139] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/05/2019] [Accepted: 12/05/2019] [Indexed: 02/04/2023]
Abstract
Lysosomotropic agents have been used to permeabilize lysosomes and thereby implicate these organelles in diverse cellular processes. Since lysosomes are Ca2+ stores, this rupturing action, particularly that induced by GPN, has also been used to rapidly release Ca2+ from lysosomes. However, a recent study has questioned the mechanism of action of GPN and concluded that, acutely, it does not permeabilize lysosomes but releases Ca2+ directly from the ER instead. We therefore appraise these provocative findings in the context of the existing literature. We suggest that further work is required to unequivocally rule out lysosomes as contributors to GPN-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Anthony J Morgan
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom.
| | - Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, London, WC1E 6BT, United Kingdom
| | - Antony Galione
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford, OX1 3QT, United Kingdom
| |
Collapse
|
44
|
Atakpa P, Thillaiappan NB, Mataragka S, Prole DL, Taylor CW. IP 3 Receptors Preferentially Associate with ER-Lysosome Contact Sites and Selectively Deliver Ca 2+ to Lysosomes. Cell Rep 2019; 25:3180-3193.e7. [PMID: 30540949 PMCID: PMC6302550 DOI: 10.1016/j.celrep.2018.11.064] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 07/30/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) allow extracellular stimuli to redistribute Ca2+ from the ER to cytosol or other organelles. We show, using small interfering RNA (siRNA) and vacuolar H+-ATPase (V-ATPase) inhibitors, that lysosomes sequester Ca2+ released by all IP3R subtypes, but not Ca2+ entering cells through store-operated Ca2+ entry (SOCE). A low-affinity Ca2+ sensor targeted to lysosomal membranes reports large, local increases in cytosolic [Ca2+] during IP3-evoked Ca2+ release, but not during SOCE. Most lysosomes associate with endoplasmic reticulum (ER) and dwell at regions populated by IP3R clusters, but IP3Rs do not assemble ER-lysosome contacts. Increasing lysosomal pH does not immediately prevent Ca2+ uptake, but it causes lysosomes to slowly redistribute and enlarge, reduces their association with IP3Rs, and disrupts Ca2+ exchange with ER. In a "piston-like" fashion, ER concentrates cytosolic Ca2+ and delivers it, through large-conductance IP3Rs, to a low-affinity lysosomal uptake system. The involvement of IP3Rs allows extracellular stimuli to regulate Ca2+ exchange between the ER and lysosomes.
Collapse
Affiliation(s)
- Peace Atakpa
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | | | - Stefania Mataragka
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - David L Prole
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK.
| |
Collapse
|
45
|
Wang WA, Agellon LB, Michalak M. Organellar Calcium Handling in the Cellular Reticular Network. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a038265. [PMID: 31358518 DOI: 10.1101/cshperspect.a038265] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ca2+ is an important intracellular messenger affecting diverse cellular processes. In eukaryotic cells, Ca2+ is handled by a myriad of Ca2+-binding proteins found in organelles that are organized into the cellular reticular network (CRN). The network is comprised of the endoplasmic reticulum, Golgi apparatus, lysosomes, membranous components of the endocytic and exocytic pathways, peroxisomes, and the nuclear envelope. Membrane contact sites between the different components of the CRN enable the rapid movement of Ca2+, and communication of Ca2+ status, within the network. Ca2+-handling proteins that reside in the CRN facilitate Ca2+ sensing, buffering, and cellular signaling to coordinate the many processes that operate within the cell.
Collapse
Affiliation(s)
- Wen-An Wang
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Ste. Anne de Bellevue, Quebec H9X 3V9, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2S7, Canada
| |
Collapse
|
46
|
Fedeli C, Filadi R, Rossi A, Mammucari C, Pizzo P. PSEN2 (presenilin 2) mutants linked to familial Alzheimer disease impair autophagy by altering Ca 2+ homeostasis. Autophagy 2019; 15:2044-2062. [PMID: 30892128 PMCID: PMC6844518 DOI: 10.1080/15548627.2019.1596489] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 02/14/2019] [Accepted: 02/28/2019] [Indexed: 02/05/2023] Open
Abstract
PSEN2 (presenilin 2) is one of the 3 proteins that, when mutated, causes early onset familial Alzheimer disease (FAD) cases. In addition to its well-known role within the γ-secretase complex (the enzyme ultimately responsible for Aβ peptides formation), PSEN2 is endowed with some γ-secretase-independent functions in distinct cell signaling pathways, such as the modulation of intracellular Ca2+ homeostasis. Here, by using different FAD-PSEN2 cell models, we demonstrate that mutated PSEN2 impairs autophagy by causing a block in the degradative flux at the level of the autophagosome-lysosome fusion step. The defect does not depend on an altered lysosomal functionality but rather on a decreased recruitment of the small GTPase RAB7 to autophagosomes, a key event for normal autophagy progression. Importantly, FAD-PSEN2 action on autophagy is unrelated to its γ-secretase activity but depends on its previously reported ability to partially deplete ER Ca2+ content, thus reducing cytosolic Ca2+ response upon IP3-linked cell stimulations. Our data sustain the pivotal role for Ca2+ signaling in autophagy and reveal a novel mechanism by which FAD-linked presenilins alter the degradative process, reinforcing the view of a causative role for a dysfunctional quality control pathway in AD neurodegeneration.Abbreviations: Aβ: amyloid β; AD: Alzheimer disease; ACTB: actin beta; AMPK: AMP-activated protein kinase; APP: amyloid-beta precursor protein; BafA: bafilomycin A1; BAPTA-AM: 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester; CFP: cyan fluorescent protein; EGTA-AM: ethylene glycol-bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid acetoxymethyl ester; ER: endoplasmic reticulum; EGFP-HDQ74: enhanced GFP-huntingtin exon 1 containing 74 polyglutamine repeats; FAD: familial Alzheimer disease; FCS: fetal calf serum; FRET: fluorescence/Förster resonance energy transfer; GFP: green fluorescent protein; IP3: inositol trisphosphate; KD: knockdown; LAMP1: lysosomal associated membrane protein 1; MAP1LC3-II/LC3-II: lipidated microtubule-associated protein 1 light chain 3; MCU: mitochondrial calcium uniporter; MICU1: mitochondrial calcium uptake 1; MEFs: mouse embryonic fibroblasts; MFN2: mitofusin 2; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; SQSTM1/p62: sequestosome 1; PSEN1: presenilin 1; PSEN2: presenilin 2; RAB7: RAB7A: member RAS oncogene family; RFP: red fluorescent protein; ATP2A/SERCA: ATPase sarcoplasmic/endoplasmic reticulum Ca2+ transporting; siRNA: small interference RNA; V-ATPase: vacuolar-type H+-ATPase; WT: wild type.
Collapse
Affiliation(s)
- Chiara Fedeli
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alice Rossi
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | | | - Paola Pizzo
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Neuroscience Institute – Italian National Research Council (CNR), Padua, Italy
| |
Collapse
|
47
|
Abstract
Of the established Ca2+-mobilizing messengers, NAADP is arguably the most tantalizing. It is the most potent, often efficacious at low nanomolar concentrations, and its receptors undergo dramatic desensitization. Recent studies have identified a new class of calcium-release channel, the two-pore channels (TPCs), as the likely targets for NAADP regulation, even though the effect may be indirect. These channels localized at endolysosomes, where they mediate local Ca2+ release, and have highlighted a new role of acidic organelles as targets for messenger-evoked Ca2+ mobilization. Three distinct roles of TPCs have been identified. The first is to effect local Ca2+ release that may play a role in endolysosomal function including vesicular fusion and trafficking. The second is to trigger global calcium release by recruiting Ca2+-induced Ca2+-release (CICR) channels at lysosomal-endoplasmic reticulum (ER) junctions. The third is to regulate plasma membrane excitability by the targeting of Ca2+ release from appropriately positioned subplasma membrane stores to regulate plasma membrane Ca2+-activated channels. In this review, I discuss the role of nicotinic acid adenine nucleotide diphosphate (NAADP)-mediated Ca2+ release from endolysosomal stores as a widespread trigger for intracellular calcium signaling mechanisms, and how studies of TPCs are beginning to enhance our understanding of the central role of lysosomes in Ca2+ signaling.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom
| |
Collapse
|
48
|
Lee CA, Blackstone C. ER morphology and endo-lysosomal crosstalk: Functions and disease implications. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1865:158544. [PMID: 31678515 DOI: 10.1016/j.bbalip.2019.158544] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/13/2019] [Accepted: 09/16/2019] [Indexed: 02/03/2023]
Abstract
The endoplasmic reticulum (ER) is a continuous endomembrane system comprising the nuclear envelope, ribosome-studded sheets, dense peripheral matrices, and an extensive polygonal network of interconnected tubules. In addition to performing numerous critical cellular functions, the ER makes extensive contacts with other organelles, including endosomes and lysosomes. The molecular and functional characterization of these contacts has advanced significantly over the past several years. These contacts participate in key functions such as cholesterol transfer, endosome tubule fission, and Ca2+ exchange. Disruption of key proteins at these sites can result in often severe diseases, particularly those affecting the nervous system.
Collapse
Affiliation(s)
- Crystal A Lee
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
49
|
Galione A, Chuang KT. Pyridine Nucleotide Metabolites and Calcium Release from Intracellular Stores. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1131:371-394. [PMID: 31646518 DOI: 10.1007/978-3-030-12457-1_15] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Ca2+ signals are probably the most common intracellular signaling cellular events, controlling an extensive range of responses in virtually all cells. Many cellular stimuli, often acting at cell surface receptors, evoke Ca2+ signals by mobilizing Ca2+ from intracellular stores. Inositol trisphosphate (IP3) was the first messenger shown to link events at the plasma membrane to release Ca2+ from the endoplasmic reticulum (ER), through the activation of IP3-gated Ca2+ release channels (IP3 receptors). Subsequently, two additional Ca2+ mobilizing messengers were discovered, cADPR and NAADP. Both are metabolites of pyridine nucleotides, and may be produced by the same class of enzymes, ADP-ribosyl cyclases, such as CD38. Whilst cADPR mobilizes Ca2+ from the ER by activation of ryanodine receptors (RyRs), NAADP releases Ca2+ from acidic stores by a mechanism involving the activation of two pore channels (TPCs). In addition, other pyridine nucleotides have emerged as intracellular messengers. ADP-ribose and 2'-deoxy-ADPR both activate TRPM2 channels which are expressed at the plasma membrane and in lysosomes.
Collapse
Affiliation(s)
- Antony Galione
- Department of Pharmacology, University of Oxford, Oxford, UK.
| | - Kai-Ting Chuang
- Department of Pharmacology, University of Oxford, Oxford, UK
| |
Collapse
|
50
|
Calcium Dyshomeostasis and Lysosomal Ca 2+ Dysfunction in Amyotrophic Lateral Sclerosis. Cells 2019; 8:cells8101216. [PMID: 31597311 PMCID: PMC6829585 DOI: 10.3390/cells8101216] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 09/24/2019] [Accepted: 10/03/2019] [Indexed: 12/11/2022] Open
Abstract
Recent findings in the understanding of amyotrophic lateral sclerosis (ALS) revealed that alteration in calcium (Ca2+) homeostasis may largely contribute to motor neuron demise. A large part of these alterations is due to dysfunctional Ca2+-storing organelles, including the endoplasmic reticulum (ER) and mitochondria. Very recently, lysosomal Ca2+ dysfunction has emerged as an important pathological change leading to neuronal loss in ALS. Remarkably, the Ca2+-storing organelles are interacting with each other at specialized domains controlling mitochondrial dynamics, ER/lysosomal function, and autophagy. This occurs as a result of interaction between specific ionic channels and Ca2+-dependent proteins located in each structure. Therefore, the dysregulation of these ionic mechanisms could be considered as a key element in the neurodegenerative process. This review will focus on the possible role of lysosomal Ca2+ dysfunction in the pathogenesis of several neurodegenerative diseases, including ALS and shed light on the possibility that specific lysosomal Ca2+ channels might represent new promising targets for preventing or at least delaying neurodegeneration in ALS.
Collapse
|