1
|
Fiedler J, Moennig T, Hinrichs JH, Weber A, Wagner T, Hemmer T, Schröter R, Weide T, Epting D, Bergmann C, Nedvetsky P, Krahn MP. PATJ inhibits histone deacetylase 7 to control tight junction formation and cell polarity. Cell Mol Life Sci 2023; 80:333. [PMID: 37878054 PMCID: PMC10600057 DOI: 10.1007/s00018-023-04994-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/26/2023]
Abstract
The conserved multiple PDZ-domain containing protein PATJ stabilizes the Crumbs-Pals1 complex to regulate apical-basal polarity and tight junction formation in epithelial cells. However, the molecular mechanism of PATJ's function in these processes is still unclear. In this study, we demonstrate that knockout of PATJ in epithelial cells results in tight junction defects as well as in a disturbed apical-basal polarity and impaired lumen formation in three-dimensional cyst assays. Mechanistically, we found PATJ to associate with and inhibit histone deacetylase 7 (HDAC7). Inhibition or downregulation of HDAC7 restores polarity and lumen formation. Gene expression analysis of PATJ-deficient cells revealed an impaired expression of genes involved in cell junction assembly and membrane organization, which is rescued by the downregulation of HDAC7. Notably, the function of PATJ regulating HDAC7-dependent cilia formation does not depend on its canonical interaction partner, Pals1, indicating a new role of PATJ, which is distinct from its function in the Crumbs complex. By contrast, polarity and lumen phenotypes observed in Pals1- and PATJ-deficient epithelial cells can be rescued by inhibition of HDAC7, suggesting that the main function of this polarity complex in this process is to modulate the transcriptional profile of epithelial cells by inhibiting HDAC7.
Collapse
Affiliation(s)
- Julia Fiedler
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Moennig
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Johanna H Hinrichs
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Annika Weber
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Wagner
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Tim Hemmer
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Thomas Weide
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Daniel Epting
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Carsten Bergmann
- Department of Medicine IV, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
- Medizinische Genetik Mainz, Limbach Genetics, 55128, Mainz, Germany
| | - Pavel Nedvetsky
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany
| | - Michael P Krahn
- Department of Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer-Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
2
|
Harms J, Lüttgenau SM, Emming C, Guske J, Weber K, Wagner T, Schowe L, Nedvetsky P, Krahn MP. Pals1 functions in redundancy with SMAP1 to inhibit Arf6 in order to prevent Rac1-dependent colorectal cancer cell migration and invasion. Cancer Gene Ther 2023; 30:497-506. [PMID: 36494580 PMCID: PMC10014575 DOI: 10.1038/s41417-022-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/15/2022] [Accepted: 11/22/2022] [Indexed: 12/14/2022]
Abstract
Downregulation of cell-cell adhesion and increased motility are prerequisites for the metastasis of cancer cells. We have recently shown that downregulation of the tight junction adapter protein Pals1 in colorectal cancer cells results in an increase of cell migration, invasion, and metastasis due to the enhanced activation of Arf6 and Rac1. We now reveal a redundancy between the Arf6-GAP SMAP1 and Pals1 in regulating Arf6 activity and thereby Rac1-dependent cell migration. The gene encoding SMAP1 is frequently disrupted in microsatellite instable colorectal cancer specimen and cell lines. In cells expressing SMAP1, deletion of Pals1 leads to disturbed formation of tight junctions but has no impact on Arf6 activity and cell migration. In contrast, inactivation of both SMAP1 and Pals1 results in enhanced Arf6/Rac1 activity and increased cell migration and invasion. Furthermore, analyzing patient cohorts, we found a significant decrease in patient's survival when both genes were downregulated, in contrast to cases, when expression of only one of both genes was affected. Taken together, we identified a redundancy between SMAP1 and Pals1 in the regulation of activation of Arf6/Rac1, thereby controlling cell migration, invasion, and metastasis of colorectal cancer cells.
Collapse
Affiliation(s)
- Julia Harms
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | | | - Christin Emming
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Justine Guske
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Katrin Weber
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Thomas Wagner
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Larissa Schowe
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Pavel Nedvetsky
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany
| | - Michael P Krahn
- Medical Clinic D, Medical Cell Biology, University Hospital of Münster, Münster, Germany.
| |
Collapse
|
3
|
Trabuco Amaral D, Mitani Y, Aparecida Silva Bonatelli I, Cerri R, Ohmiya Y, Viviani V. Genome analysis of Phrixothrix hirtus (Phengodidae) railroad worm shows the expansion of odorant-binding gene families and positive selection on morphogenesis and sex determination genes. Gene X 2022; 850:146917. [PMID: 36174905 DOI: 10.1016/j.gene.2022.146917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/14/2022] [Accepted: 09/21/2022] [Indexed: 10/14/2022] Open
Abstract
Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growths and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.
Collapse
Affiliation(s)
- Danilo Trabuco Amaral
- Programa de Pós-Graduação em Biotecnociência, Centro de Ciências Naturais e Humanas. Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Yasuo Mitani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Sapporo, Japan
| | | | - Ricardo Cerri
- Department of Computational Science, Universidade Federal de São Carlos (UFSCar), São Carlos, Brazil
| | - Yoshihiro Ohmiya
- Biomedical Research Institute, AIST, Ikeda-Osaka, Japan; Osaka Institute of Technology, OIT, Osaka, Japan
| | - Vadim Viviani
- Graduate Program of Evolutive Genetics and Molecular Biology, Federal University of São Carlos (UFSCar), São Carlos, Brazil; Graduate Program of Biotechnology and Environmental Monitoring, Federal University of São Carlos (UFSCar), Sorocaba, Brazil.
| |
Collapse
|
4
|
Tassi AD, Ramos-González PL, Sinico TE, Kitajima EW, Freitas-Astúa J. Circulative Transmission of Cileviruses in Brevipalpus Mites May Involve the Paracellular Movement of Virions. Front Microbiol 2022; 13:836743. [PMID: 35464977 PMCID: PMC9019602 DOI: 10.3389/fmicb.2022.836743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Plant viruses transmitted by mites of the genus Brevipalpus are members of the genera Cilevirus, family Kitaviridae, or Dichorhavirus, family Rhabdoviridae. They produce non-systemic infections that typically display necrotic and/or chlorotic lesions around the inoculation loci. The cilevirus citrus leprosis virus C (CiLV-C) causes citrus leprosis, rated as one of the most destructive diseases affecting this crop in the Americas. CiLV-C is vectored in a persistent manner by the flat mite Brevipalpus yothersi. Upon the ingestion of viral particles with the content of the infected plant cell, virions must pass through the midgut epithelium and the anterior podocephalic gland of the mites. Following the duct from this gland, virions reach the salivary canal before their inoculation into a new plant cell through the stylet canal. It is still unclear whether CiLV-C multiplies in mite cells and what mechanisms contribute to its movement through mite tissues. In this study, based on direct observation of histological sections from viruliferous mites using the transmission electron microscope, we posit the hypothesis of the paracellular movement of CiLV-C in mites which may involve the manipulation of septate junctions. We detail the presence of viral particles aligned in the intercellular spaces between cells and the gastrovascular system of Brevipalpus mites. Accordingly, we propose putative genes that could control either active or passive paracellular circulation of viral particles inside the mites.
Collapse
Affiliation(s)
- Aline Daniele Tassi
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | | | - Thais Elise Sinico
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Centro de Citricultura Sylvio Moreira, Cordeirópolis, Brazil
| | - Elliot Watanabe Kitajima
- Escola Superior de Agricultura Luiz de Queiroz (ESALQ), Universidade de São Paulo, Piracicaba, Brazil
| | - Juliana Freitas-Astúa
- Laboratório de Biologia Molecular Aplicada, Instituto Biológico, São Paulo, Brazil.,Embrapa Mandioca e Fruticultura, Cruz das Almas, Brazil
| |
Collapse
|
5
|
Castiglioni VG, Ramalho JJ, Kroll JR, Stucchi R, van Beuzekom H, Schmidt R, Altelaar M, Boxem M. Identification and characterization of Crumbs polarity complex proteins in Caenorhabditis elegans. J Biol Chem 2022; 298:101786. [PMID: 35247383 PMCID: PMC9006659 DOI: 10.1016/j.jbc.2022.101786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/12/2022] [Accepted: 02/16/2022] [Indexed: 11/23/2022] Open
Abstract
Crumbs proteins are evolutionarily conserved transmembrane proteins with essential roles in promoting the formation of the apical domain in epithelial cells. The short intracellular tail of Crumbs proteins are known to interact with several proteins, including the scaffolding protein PALS1 (protein associated with LIN7, Stardust in Drosophila). PALS1 in turn binds to a second scaffolding protein PATJ (PALS1-associated tight junction protein) to form the core Crumbs/PALS1/PATJ complex. While essential roles in epithelial organization have been shown for Crumbs proteins in Drosophila and mammalian systems, the three Caenorhabditis elegans crumbs genes are dispensable for epithelial polarization and development. Here, we investigated the presence and function of PALS1 and PATJ orthologs in C. elegans. We identified MAGU-2 as the C. elegans ortholog of PALS1 and show that MAGU-2 interacts with all three Crumbs proteins and localizes to the apical membrane domain of intestinal epithelial cells in a Crumbs-dependent fashion. Similar to crumbs mutants, magu-2 deletion showed no epithelial polarity defects. We also identified MPZ-1 as a candidate ortholog of PATJ based on the physical interaction with MAGU-2 and sequence similarity with PATJ proteins. However, MPZ-1 is not broadly expressed in epithelial tissues and, therefore, not likely a core component of the C. elegans Crumbs complex. Finally, we show overexpression of the Crumbs proteins EAT-20 or CRB-3 can lead to apical membrane expansion in the intestine. Our results shed light on the composition of the C. elegans Crumbs complex and indicate that the role of Crumbs proteins in promoting apical domain formation is conserved.
Collapse
Affiliation(s)
- Victoria G Castiglioni
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - João J Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Jason R Kroll
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Riccardo Stucchi
- Division of Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands; Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Hanna van Beuzekom
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Ruben Schmidt
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands
| | - Maarten Altelaar
- Division of Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
6
|
Shard C, Luna-Escalante J, Schweisguth F. Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized. J Cell Biol 2021; 219:152101. [PMID: 32946560 PMCID: PMC7594497 DOI: 10.1083/jcb.202005035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.
Collapse
Affiliation(s)
- Chloé Shard
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| | - Juan Luna-Escalante
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Physique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, Paris, France
| | - François Schweisguth
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
7
|
Heiden S, Siwek R, Lotz ML, Borkowsky S, Schröter R, Nedvetsky P, Rohlmann A, Missler M, Krahn MP. Apical-basal polarity regulators are essential for slit diaphragm assembly and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci 2021; 78:3657-3672. [PMID: 33651172 PMCID: PMC8038974 DOI: 10.1007/s00018-021-03769-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/02/2022]
Abstract
Apical-basal polarity is a key feature of most epithelial cells and it is regulated by highly conserved protein complexes. In mammalian podocytes, which emerge from columnar epithelial cells, this polarity is preserved and the tight junctions are converted to the slit diaphragms, establishing the filtration barrier. In Drosophila, nephrocytes show several structural and functional similarities with mammalian podocytes and proximal tubular cells. However, in contrast to podocytes, little is known about the role of apical-basal polarity regulators in these cells. In this study, we used expansion microscopy and found the apical polarity determinants of the PAR/aPKC and Crb-complexes to be predominantly targeted to the cell cortex in proximity to the nephrocyte diaphragm, whereas basolateral regulators also accumulate intracellularly. Knockdown of PAR-complex proteins results in severe endocytosis and nephrocyte diaphragm defects, which is due to impaired aPKC recruitment to the plasma membrane. Similar, downregulation of most basolateral polarity regulators disrupts Nephrin localization but had surprisingly divergent effects on endocytosis. Our findings suggest that morphology and slit diaphragm assembly/maintenance of nephrocytes is regulated by classical apical-basal polarity regulators, which have distinct functions in endocytosis.
Collapse
Affiliation(s)
- Stefanie Heiden
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rebecca Siwek
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Marie-Luise Lotz
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Sarah Borkowsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Rita Schröter
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Pavel Nedvetsky
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany
| | - Astrid Rohlmann
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Markus Missler
- Institute of Anatomy and Molecular Neurobiology, University of Münster, Vesaliusweg 2-4, 48149, Münster, Germany
| | - Michael P Krahn
- Medical Cell Biology, Medical Clinic D, University Hospital of Münster, Albert-Schweitzer Campus 1-A14, 48149, Münster, Germany.
| |
Collapse
|
8
|
Martin E, Girardello R, Dittmar G, Ludwig A. New insights into the organization and regulation of the apical polarity network in mammalian epithelial cells. FEBS J 2021; 288:7073-7095. [DOI: 10.1111/febs.15710] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Eleanor Martin
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Rossana Girardello
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
| | - Gunnar Dittmar
- Proteomics of Cellular Signaling Luxembourg Institute of Health Strassen Luxembourg
- Department of Life Sciences and Medicine University of Luxembourg Luxembourg
| | - Alexander Ludwig
- School of Biological Sciences Nanyang Technological University Singapore City Singapore
- NTU Institute of Structural Biology (NISB) Experimental Medicine Building Nanyang Technological University Singapore City Singapore
| |
Collapse
|
9
|
Wang WJ, Lyu TJ, Li Z. Research Progress on PATJ and Underlying Mechanisms Associated with Functional Outcomes After Stroke. Neuropsychiatr Dis Treat 2021; 17:2811-2818. [PMID: 34471355 PMCID: PMC8405222 DOI: 10.2147/ndt.s310764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/24/2021] [Indexed: 12/05/2022] Open
Abstract
Cell polarity is an intrinsic property of epithelial cells regulated by scaffold proteins. The CRB (crumbs) complex is known to play a predominant role in the dynamic cooperative network of polarity scaffold proteins. PATJ (PALS1-associated tight junction) is the core component in the CRB complex and has been highly conserved throughout evolution. PATJ is crucial to several important events in organisms' survival, including embryonic development, cell polarity, and barrier establishment. A recent study shows that PATJ plays an important role in functional outcomes of stroke. In this article, we elaborate on the biological structure and physiological functions of PATJ and explore the underlying mechanisms of PATJ genetic polymorphism that are associated with poor functional outcomes in ischemic stroke.
Collapse
Affiliation(s)
- Wen-Jie Wang
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China
| | - Tian-Jie Lyu
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People's Republic of China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, 100070, People's Republic of China
| | - Zixiao Li
- Vascular Neurology, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People's Republic of China.,China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People's Republic of China.,National Center for Healthcare Quality Management in Neurological Diseases, Beijing, 100070, People's Republic of China.,Chinese Institute for Brain Research, Beijing, 100070, People's Republic of China.,Research Unit of Artificial Intelligence in Cerebrovascular Disease, Chinese Academy of Medical Sciences, Beijing, 100070, People's Republic of China
| |
Collapse
|
10
|
Chowdhary S, Madan S, Tomer D, Mavrakis M, Rikhy R. Mitochondrial morphology and activity regulate furrow ingression and contractile ring dynamics in Drosophila cellularization. Mol Biol Cell 2020; 31:2331-2347. [PMID: 32755438 PMCID: PMC7851960 DOI: 10.1091/mbc.e20-03-0177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Mitochondria are maternally inherited in many organisms. Mitochondrial morphology and activity regulation is essential for cell survival, differentiation, and migration. An analysis of mitochondrial dynamics and function in morphogenetic events in early metazoan embryogenesis has not been carried out. In our study we find a crucial role of mitochondrial morphology regulation in cell formation in Drosophila embryogenesis. We find that mitochondria are small and fragmented and translocate apically on microtubules and distribute progressively along the cell length during cellularization. Embryos mutant for the mitochondrial fission protein, Drp1 (dynamin-related protein 1), die in embryogenesis and show an accumulation of clustered mitochondria on the basal side in cellularization. Additionally, Drp1 mutant embryos contain lower levels of reactive oxygen species (ROS). ROS depletion was previously shown to decrease myosin II activity. Drp1 loss also leads to myosin II depletion at the membrane furrow, thereby resulting in decreased cell height and larger contractile ring area in cellularization similar to that in myosin II mutants. The mitochondrial morphology and cellularization defects in Drp1 mutants are suppressed by reducing mitochondrial fusion and increasing cytoplasmic ROS in superoxide dismutase mutants. Our data show a key role for mitochondrial morphology and activity in supporting the morphogenetic events that drive cellularization in Drosophila embryos.
Collapse
Affiliation(s)
- Sayali Chowdhary
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Somya Madan
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Darshika Tomer
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| | - Manos Mavrakis
- Aix Marseille University, CNRS, Centrale Marseille, Institut Fresnel, 13013 Marseille, France
| | - Richa Rikhy
- Department of Biology, Indian Institute of Science Education and Research, Pashan, Pune 411008, India
| |
Collapse
|
11
|
Silver JT, Wirtz-Peitz F, Simões S, Pellikka M, Yan D, Binari R, Nishimura T, Li Y, Harris TJC, Perrimon N, Tepass U. Apical polarity proteins recruit the RhoGEF Cysts to promote junctional myosin assembly. J Cell Biol 2019; 218:3397-3414. [PMID: 31409654 PMCID: PMC6781438 DOI: 10.1083/jcb.201807106] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 04/20/2019] [Accepted: 07/29/2019] [Indexed: 12/20/2022] Open
Abstract
Silver et al. show that the RhoGEF Cysts links apical polarity proteins to Rho1 and myosin activation at adherens junctions to support junctional and epithelial integrity in the Drosophila ectoderm. The spatio-temporal regulation of small Rho GTPases is crucial for the dynamic stability of epithelial tissues. However, how RhoGTPase activity is controlled during development remains largely unknown. To explore the regulation of Rho GTPases in vivo, we analyzed the Rho GTPase guanine nucleotide exchange factor (RhoGEF) Cysts, the Drosophila orthologue of mammalian p114RhoGEF, GEF-H1, p190RhoGEF, and AKAP-13. Loss of Cysts causes a phenotype that closely resembles the mutant phenotype of the apical polarity regulator Crumbs. This phenotype can be suppressed by the loss of basolateral polarity proteins, suggesting that Cysts is an integral component of the apical polarity protein network. We demonstrate that Cysts is recruited to the apico-lateral membrane through interactions with the Crumbs complex and Bazooka/Par3. Cysts activates Rho1 at adherens junctions and stabilizes junctional myosin. Junctional myosin depletion is similar in Cysts- and Crumbs-compromised embryos. Together, our findings indicate that Cysts is a downstream effector of the Crumbs complex and links apical polarity proteins to Rho1 and myosin activation at adherens junctions, supporting junctional integrity and epithelial polarity.
Collapse
Affiliation(s)
- Jordan T Silver
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - Sérgio Simões
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Milena Pellikka
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Dong Yan
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Richard Binari
- Department of Genetics, Harvard Medical School, Boston, MA
| | - Takashi Nishimura
- RIKEN Center for Biosystems Dynamics Research, Minatojima-minamimachi, Kobe, Japan
| | - Yan Li
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Tony J C Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Norbert Perrimon
- Department of Genetics, Harvard Medical School, Boston, MA .,Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| | - Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Bajur AT, Iyer KV, Knust E. Cytocortex-dependent dynamics of Drosophila Crumbs controls junctional stability and tension during germ band retraction. J Cell Sci 2019; 132:jcs.228338. [PMID: 31300472 DOI: 10.1242/jcs.228338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/05/2019] [Indexed: 12/21/2022] Open
Abstract
During morphogenesis, epithelia undergo dynamic rearrangements, which requires continuous remodelling of junctions and cell shape, but at the same time mechanisms preserving cell polarity and tissue integrity. Apico-basal polarity is key for the localisation of the machinery that enables cell shape changes. The evolutionarily conserved Drosophila Crumbs protein is critical for maintaining apico-basal polarity and epithelial integrity. How Crumbs is maintained in a dynamically developing embryo remains largely unknown. Here, we applied quantitative fluorescence techniques to show that, during germ band retraction, Crumbs dynamics correlates with the morphogenetic activity of the epithelium. Genetic and pharmacological perturbations revealed that the mobile pool of Crumbs is fine-tuned by the actomyosin cortex in a stage-dependent manner. Stabilisation of Crumbs at the plasma membrane depends on a proper link to the actomyosin cortex via an intact FERM-domain-binding site in its intracellular domain, loss of which leads to increased junctional tension and higher DE-cadherin (also known as Shotgun) turnover, resulting in impaired junctional rearrangements. These data define Crumbs as a mediator between polarity and junctional regulation to orchestrate epithelial remodelling in response to changes in actomyosin activity.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anna T Bajur
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - K Venkatesan Iyer
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| |
Collapse
|
13
|
Kullmann L, Krahn MP. Redundant regulation of localization and protein stability of DmPar3. Cell Mol Life Sci 2018; 75:3269-3282. [PMID: 29523893 PMCID: PMC11105499 DOI: 10.1007/s00018-018-2792-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/03/2018] [Accepted: 03/07/2018] [Indexed: 11/25/2022]
Abstract
Apical-basal polarity is an important characteristic of epithelia and Drosophila neural stem cells. The conserved Par complex, which consists of the atypical protein kinase C and the scaffold proteins Baz and Par6, is a key player in the establishment of apical-basal cell polarity. Membrane recruitment of Baz has been reported to be accomplished by several mechanisms, which might function in redundancy, to ensure the correct localization of the complex. However, none of the described interactions was sufficient to displace the protein from the apical junctions. Here, we dissected the role of the oligomerization domain and the lipid-binding motif of Baz in vivo in the Drosophila embryo. We found that these domains function in redundancy to ensure the apical junctional localization of Baz: inactivation of only one domain is not sufficient to disrupt the function of Baz during apical-basal polarization of epithelial cells and neural stem cells. In contrast, mutation of both domains results in a strongly impaired protein stability and a phenotype characterized by embryonic lethality and an impaired apical-basal polarity in the embryonic epithelium and neural stem cells, resembling a baz-loss of function allele. Strikingly, the binding of Baz to the transmembrane proteins E-Cadherin, Echinoid, and Starry Night was not affected in this mutant protein. Our findings reveal a redundant function of the oligomerization and the lipid-binding domain, which is required for protein stability, correct subcellular localization, and apical-basal cell polarization.
Collapse
Affiliation(s)
- Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Internal Medicine D, University Hospital of Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
14
|
Wang H, Qiu Z, Xu Z, Chen SJ, Luo J, Wang X, Chen J. aPKC is a key polarity determinant in coordinating the function of three distinct cell polarities during collective migration. Development 2018; 145:dev.158444. [PMID: 29636381 DOI: 10.1242/dev.158444] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 04/03/2018] [Indexed: 12/30/2022]
Abstract
Apical-basal polarity is a hallmark of epithelia and needs to be remodeled when epithelial cells undergo morphogenetic cell movements. Here, we analyze border cells in the Drosophila ovary to address how apical-basal polarity is remodeled and turned into front-back and inside-outside as well as apical-basal polarities, during collective migration. We find that the Crumbs (Crb) complex is required for the generation of the three distinct but interconnected cell polarities of border cells. Specifically, the Crb complex, together with the Par complex and the endocytic recycling machinery, ensures the strict distribution of two distinct populations of aPKC at the inside apical junction and near the outside lateral membrane. Interestingly, aPKC distributed near the outside lateral membrane interacts with Sif and promotes Rac-induced protrusions, whereas alteration of the aPKC distribution pattern changes the pattern of protrusion formation, leading to disruption of all three polarities. Therefore, we demonstrate that aPKC, spatially controlled by the Crb complex, is a key polarity molecule coordinating the generation of three distinct but interconnected cell polarities during collective migration.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Zhiqian Qiu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Zehao Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Samuel John Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Jun Luo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| | - Xiaobo Wang
- LBCMCP, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 12 Xue-fu Road, Nanjing, China 210061
| |
Collapse
|
15
|
Ratheesh A, Biebl J, Vesela J, Smutny M, Papusheva E, Krens SG, Kaufmann W, Gyoergy A, Casano AM, Siekhaus DE. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Dev Cell 2018; 45:331-346.e7. [DOI: 10.1016/j.devcel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
|
16
|
Renschler FA, Bruekner SR, Salomon PL, Mukherjee A, Kullmann L, Schütz-Stoffregen MC, Henzler C, Pawson T, Krahn MP, Wiesner S. Structural basis for the interaction between the cell polarity proteins Par3 and Par6. Sci Signal 2018; 11:11/517/eaam9899. [PMID: 29440511 DOI: 10.1126/scisignal.aam9899] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polarity is a fundamental property of most cell types. The Par protein complex is a major driving force in generating asymmetrically localized protein networks and consists of atypical protein kinase C (aPKC), Par3, and Par6. Dysfunction of this complex causes developmental abnormalities and diseases such as cancer. We identified a PDZ domain-binding motif in Par6 that was essential for its interaction with Par3 in vitro and for Par3-mediated membrane localization of Par6 in cultured cells. In fly embryos, we observed that the PDZ domain-binding motif was functionally redundant with the PDZ domain in targeting Par6 to the cortex of epithelial cells. Our structural analyses by x-ray crystallography and NMR spectroscopy showed that both the PDZ1 and PDZ3 domains but not the PDZ2 domain in Par3 engaged in a canonical interaction with the PDZ domain-binding motif in Par6. Par3 thus has the potential to recruit two Par6 proteins simultaneously, which may facilitate the assembly of polarity protein networks through multivalent PDZ domain interactions.
Collapse
Affiliation(s)
- Fabian A Renschler
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Susanne R Bruekner
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Paulin L Salomon
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Amrita Mukherjee
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Lars Kullmann
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany
| | | | - Christine Henzler
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario M5G 1X5, Canada
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstrasse 31, 93053 Regensburg, Germany.,Medical Clinic D, University Hospital of Münster, Domagkstraβe 3a, 48149 Münster, Germany
| | - Silke Wiesner
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany.
| |
Collapse
|
17
|
Hochapfel F, Denk L, Mendl G, Schulze U, Maaßen C, Zaytseva Y, Pavenstädt H, Weide T, Rachel R, Witzgall R, Krahn MP. Distinct functions of Crumbs regulating slit diaphragms and endocytosis in Drosophila nephrocytes. Cell Mol Life Sci 2017; 74:4573-4586. [PMID: 28717874 PMCID: PMC11107785 DOI: 10.1007/s00018-017-2593-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 06/26/2017] [Accepted: 07/13/2017] [Indexed: 10/19/2022]
Abstract
Mammalian podocytes, the key determinants of the kidney's filtration barrier, differentiate from columnar epithelial cells and several key determinants of apical-basal polarity in the conventional epithelia have been shown to regulate podocyte morphogenesis and function. However, little is known about the role of Crumbs, a conserved polarity regulator in many epithelia, for slit-diaphragm formation and podocyte function. In this study, we used Drosophila nephrocytes as model system for mammalian podocytes and identified a conserved function of Crumbs proteins for cellular morphogenesis, nephrocyte diaphragm assembly/maintenance, and endocytosis. Nephrocyte-specific knock-down of Crumbs results in disturbed nephrocyte diaphragm assembly/maintenance and decreased endocytosis, which can be rescued by Drosophila Crumbs as well as human Crumbs2 and Crumbs3, which were both expressed in human podocytes. In contrast to the extracellular domain, which facilitates nephrocyte diaphragm assembly/maintenance, the intracellular FERM-interaction motif of Crumbs is essential for regulating endocytosis. Moreover, Moesin, which binds to the FERM-binding domain of Crumbs, is essential for efficient endocytosis. Thus, we describe here a new mechanism of nephrocyte development and function, which is likely to be conserved in mammalian podocytes.
Collapse
Affiliation(s)
- Florian Hochapfel
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Lucia Denk
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Gudrun Mendl
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ulf Schulze
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Christine Maaßen
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Yulia Zaytseva
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Hermann Pavenstädt
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Thomas Weide
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstr. 3a, 48149, Münster, Germany
| | - Reinhard Rachel
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Ralph Witzgall
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
- Medizinische Klinik und Poliklinik D, Universitätsklinikum Münster, Domagkstr. 3a, 48149, Münster, Germany.
| |
Collapse
|
18
|
Wen JK, Wang YT, Chan CC, Hsieh CW, Liao HM, Hung CC, Chen GC. Atg9 antagonizes TOR signaling to regulate intestinal cell growth and epithelial homeostasis in Drosophila. eLife 2017; 6:29338. [PMID: 29144896 PMCID: PMC5690286 DOI: 10.7554/elife.29338] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/29/2017] [Indexed: 02/06/2023] Open
Abstract
Autophagy is essential for maintaining cellular homeostasis and survival under various stress conditions. Autophagy-related gene 9 (Atg9) encodes a multipass transmembrane protein thought to act as a membrane carrier for forming autophagosomes. However, the molecular regulation and physiological importance of Atg9 in animal development remain largely unclear. Here, we generated Atg9 null mutant flies and found that loss of Atg9 led to shortened lifespan, locomotor defects, and increased susceptibility to stress. Atg9 loss also resulted in aberrant adult midgut morphology with dramatically enlarged enterocytes. Interestingly, inhibiting the TOR signaling pathway rescued the midgut defects of the Atg9 mutants. In addition, Atg9 interacted with PALS1-associated tight junction protein (Patj), which associates with TSC2 to regulate TOR activity. Depletion of Atg9 caused a marked decrease in TSC2 levels. Our findings revealed an antagonistic relationship between Atg9 and TOR signaling in the regulation of cell growth and tissue homeostasis.
Collapse
Affiliation(s)
- Jung-Kun Wen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ting Wang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Cheng-Wen Hsieh
- Graduate Institute of Physiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiao-Man Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chin-Chun Hung
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Guang-Chao Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan.,Genome and Systems Biology Program, College of Life Science, National Taiwan University, Taipei, Taiwan.,Institute of Biochemical Sciences, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
19
|
Membrane-binding and activation of LKB1 by phosphatidic acid is essential for development and tumour suppression. Nat Commun 2017. [PMID: 28649994 PMCID: PMC5490199 DOI: 10.1038/ncomms15747] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The serine/threonine kinase LKB1 regulates various cellular processes such as cell proliferation, energy homeostasis and cell polarity and is frequently downregulated in various tumours. Many downstream pathways controlled by LKB1 have been described but little is known about the upstream regulatory mechanisms. Here we show that targeting of the kinase to the membrane by a direct binding of LKB1 to phosphatidic acid is essential to fully activate its kinase activity. Consequently, LKB1 mutants that are deficient for membrane binding fail to activate the downstream target AMPK to control mTOR signalling. Furthermore, the in vivo function of LKB1 during development of Drosophila depends on its capacity to associate with membranes. Strikingly, we find LKB1 to be downregulated in malignant melanoma, which exhibit aberrant activation of Akt and overexpress phosphatidic acid generating Phospholipase D. These results provide evidence for a fundamental mechanism of LKB1 activation and its implication in vivo and during carcinogenesis. LKB1 regulates various cellular processes such as cell proliferation, energy homeostasis and cell polarity and is frequently downregulated in various tumours. Here the authors show that LKB1 activation requires direct binding to phospholipids and show this has an implication for carcinogenesis.
Collapse
|
20
|
Perez-Mockus G, Roca V, Mazouni K, Schweisguth F. Neuralized regulates Crumbs endocytosis and epithelium morphogenesis via specific Stardust isoforms. J Cell Biol 2017; 216:1405-1420. [PMID: 28400441 PMCID: PMC5412571 DOI: 10.1083/jcb.201611196] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 02/13/2017] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
The E3 ubiquitin ligase Neuralized is shown to interact with a subset of the Stardust isoforms to regulate the endocytosis of the apical protein Crumbs and thereby promote epithelial remodeling during Drosophila development. Crumbs (Crb) is a conserved determinant of apical membrane identity that regulates epithelial morphogenesis in many developmental contexts. In this study, we identify the Crb complex protein Stardust (Sdt) as a target of the E3 ubiquitin ligase Neuralized (Neur) in Drosophila melanogaster. Neur interacts with and down-regulates specific Sdt isoforms containing a Neur binding motif (NBM). Using a CRISPR (clustered regularly interspaced short palindromic repeats)-induced deletion of the NBM-encoding exon, we found that Sdt is a key Neur target and that Neur acts via Sdt to down-regulate Crb. We further show that Neur promotes the endocytosis of Crb via the NBM-containing isoforms of Sdt. Although the regulation of Crb by Neur is not strictly essential, it contributes to epithelium remodeling in the posterior midgut and thereby facilitates the trans-epithelial migration of the primordial germ cells in early embryos. Thus, our study uncovers a novel regulatory mechanism for the developmental control of Crb-mediated morphogenesis.
Collapse
Affiliation(s)
- Gantas Perez-Mockus
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France.,Cellule Pasteur, Université Pierre et Marie Curie, F-75015 Paris, France
| | - Vanessa Roca
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| | - Khalil Mazouni
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France.,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| | - François Schweisguth
- Department of Developmental and Stem Cell Biology, Institut Pasteur, F-75015 Paris, France .,Centre National de la Recherché Scientifique, UMR3738, F-75015 Paris, France
| |
Collapse
|
21
|
Duque J, Gorfinkiel N. Integration of actomyosin contractility with cell-cell adhesion during dorsal closure. Development 2016; 143:4676-4686. [PMID: 27836966 DOI: 10.1242/dev.136127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/27/2016] [Indexed: 02/01/2023]
Abstract
In this work, we combine genetic perturbation, time-lapse imaging and quantitative image analysis to investigate how pulsatile actomyosin contractility drives cell oscillations, apical cell contraction and tissue closure during morphogenesis of the amnioserosa, the main force-generating tissue during the dorsal closure in Drosophila We show that Myosin activity determines the oscillatory and contractile behaviour of amnioserosa cells. Reducing Myosin activity prevents cell shape oscillations and reduces cell contractility. By contrast, increasing Myosin activity increases the amplitude of cell shape oscillations and the time cells spend in the contracted phase relative to the expanded phase during an oscillatory cycle, promoting cell contractility and tissue closure. Furthermore, we show that in AS cells, Rok controls Myosin foci formation and Mbs regulates not only Myosin phosphorylation but also adhesion dynamics through control of Moesin phosphorylation, showing that Mbs coordinates actomyosin contractility with cell-cell adhesion during amnioserosa morphogenesis.
Collapse
Affiliation(s)
- Julia Duque
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| | - Nicole Gorfinkiel
- Centro de Biología Molecular 'Severo Ochoa', CSIC-UAM, Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
22
|
Koch L, Feicht S, Sun R, Sen A, Krahn MP. Domain-specific functions of Stardust in Drosophila embryonic development. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160776. [PMID: 28018665 PMCID: PMC5180163 DOI: 10.1098/rsos.160776] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
In Drosophila, the adaptor protein Stardust is essential for the stabilization of the polarity determinant Crumbs in various epithelial tissues, including the embryonic epidermis, the follicular epithelium and photoreceptor cells of the compound eye. In turn, Stardust recruits another adaptor protein, PATJ, to the subapical region to support adherens junction formation and morphogenetic events. Moreover, Stardust binds to Lin-7, which is dispensable in epithelial cells but functions in postsynaptic vesicle fusion. Finally, Stardust has been reported to bind directly to PAR-6, thereby linking the Crumbs-Stardust-PATJ complex to the PAR-6/aPKC complex. PAR-6 and aPKC are also capable of directly binding Bazooka (the Drosophila homologue of PAR-3) to form the PAR/aPKC complex, which is essential for apical-basal polarity and cell-cell contact formation in most epithelia. However, little is known about the physiological relevance of these interactions in the embryonic epidermis of Drosophila in vivo. Thus, we performed a structure-function analysis of the annotated domains with GFP-tagged Stardust and evaluated the localization and function of the mutant proteins in epithelial cells of the embryonic epidermis. The data presented here confirm a crucial role of the PDZ domain in binding Crumbs and recruiting the protein to the subapical region. However, the isolated PDZ domain is not capable of being recruited to the cortex, and the SH3 domain is essential to support the binding to Crumbs. Notably, the conserved N-terminal regions (ECR1 and ECR2) are not crucial for epithelial polarity. Finally, the GUK domain plays an important role for the protein's function, which is not directly linked to Crumbs stabilization, and the L27N domain is essential for epithelial polarization independently of recruiting PATJ.
Collapse
Affiliation(s)
| | | | | | | | - Michael P. Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
23
|
Flores-Benitez D, Knust E. Dynamics of epithelial cell polarity in Drosophila: how to regulate the regulators? Curr Opin Cell Biol 2016; 42:13-21. [DOI: 10.1016/j.ceb.2016.03.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 03/25/2016] [Indexed: 10/22/2022]
|
24
|
Cidlinsky N, Dogliotti G, Pukrop T, Jung R, Weber F, Krahn MP. Inactivation of the LKB1-AMPK signaling pathway does not contribute to salivary gland tumor development - a short report. Cell Oncol (Dordr) 2016; 39:389-96. [PMID: 27480082 DOI: 10.1007/s13402-016-0290-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/15/2016] [Indexed: 01/05/2023] Open
Abstract
PURPOSE Activation of AMPK by the tumor suppressor LKB1 represents an essential gatekeeping step for cells under energetic stress to prevent their growth and proliferation by inhibiting mTOR activation, until the energy supply normalizes. The LKB1/AMPK pathway is frequently downregulated in various types of cancer, thereby uncoupling tumor cell growth and proliferation from energy supply. As yet, little information is available on the role of the LKB1/AMPK pathway in tumors derived from salivary gland tissues. METHODS We performed LKB1 protein expression and AMPK and mTOR activation analyses in several salivary gland tumor types and their respective healthy control tissues using immunohistochemistry. RESULTS No significant downregulation of LKB1 expression or decreased activation of AMPK or mTOR were observed in any of the salivary gland tumors tested. In contrast, we found that the salivary gland tumors exhibited an increased rather than a decreased AMPK activation. Although the PI3K/Akt pathway was found to be activated in most of the analyzed tumor samples, the unchanged robust activity of LKB1/AMPK likely prevents (over)activation of mTOR. CONCLUSION In contrast to many other types of cancer, inactivation or downregulation of the LKB1/AMPK pathway does not substantially contribute to the pathogenesis of salivary gland tumors.
Collapse
Affiliation(s)
- Natascha Cidlinsky
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Giada Dogliotti
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany
| | - Tobias Pukrop
- Department of Internal Medicine III, Hematology and Medical Oncology, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Rudolf Jung
- Institute for Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Florian Weber
- Institute for Pathology, University of Regensburg, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| | - Michael P Krahn
- Molecular and Cellular Anatomy, University of Regensburg, Universitätsstr. 31, 93053, Regensburg, Germany.
| |
Collapse
|
25
|
Involvement of Tight Junction Plaque Proteins in Cancer. CURRENT PATHOBIOLOGY REPORTS 2016. [DOI: 10.1007/s40139-016-0108-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
26
|
Abstract
Tissue morphogenesis is orchestrated by cell shape changes. Forces required to power these changes are generated by non-muscle myosin II (MyoII) motor proteins pulling filamentous actin (F-actin). Actomyosin networks undergo cycles of assembly and disassembly (pulses) to cause cell deformations alternating with steps of stabilization to result in irreversible shape changes. Although this ratchet-like behaviour operates in a variety of contexts, the underlying mechanisms remain unclear. Here we investigate the role of MyoII regulation through the conserved Rho1-Rok pathway during Drosophila melanogaster germband extension. This morphogenetic process is powered by cell intercalation, which involves the shrinkage of junctions in the dorsal-ventral axis (vertical junctions) followed by junction extension in the anterior-posterior axis. While polarized flows of medial-apical MyoII pulses deform vertical junctions, MyoII enrichment on these junctions (planar polarity) stabilizes them. We identify two critical properties of MyoII dynamics that underlie stability and pulsatility: exchange kinetics governed by phosphorylation-dephosphorylation cycles of the MyoII regulatory light chain; and advection due to contraction of the motors on F-actin networks. Spatial control over MyoII exchange kinetics establishes two stable regimes of high and low dissociation rates, resulting in MyoII planar polarity. Pulsatility emerges at intermediate dissociation rates, enabling convergent advection of MyoII and its upstream regulators Rho1 GTP, Rok and MyoII phosphatase. Notably, pulsatility is not an outcome of an upstream Rho1 pacemaker. Rather, it is a self-organized system that involves positive and negative biomechanical feedback between MyoII advection and dissociation rates.
Collapse
|
27
|
Characterization of tailless functions during Drosophila optic lobe formation. Dev Biol 2015; 405:202-13. [PMID: 26111972 DOI: 10.1016/j.ydbio.2015.06.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 11/21/2022]
Abstract
Brain development goes through phases of proliferative growth and differentiation to ensure the formation of correct number and variety of neurons. How and when naïve neuroepithelial cells decide to enter a differentiation pathway remains poorly understood. In the Drosophila visual system, four optic ganglia emerge from neuroepithelia of the inner (IPC) and outer (OPC) proliferation centers. Here we demonstrate that the orphan nuclear receptor Tailless (Tll) is a key factor for the development of all optic ganglia. We describe tll expression during larval optic lobe development in unprecedented detail and find a spatiotemporally dynamic pattern. In the larval OPC, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing medulla neuroblast and into lamina precursor cells in a precisely regulated fashion. Using genetic manipulations we found that tll is required for proper neuroepithelium morphology and neuroepithelial cell survival. We show that tll regulates the precise timing of the transition from neuroepithelial cells to medulla neuroblasts. In particular, however, we demonstrate that tll has a crucial role for the specification of lamina precursor cells. We propose that the Tll/Tlx transcription factors have an evolutionary conserved role in regulating neural precursor cell states in the Drosophila optic lobe and in the mammalian retina.
Collapse
|
28
|
Sen A, Sun R, Krahn MP. Localization and Function of Pals1-associated Tight Junction Protein in Drosophila Is Regulated by Two Distinct Apical Complexes. J Biol Chem 2015; 290:13224-33. [PMID: 25847234 DOI: 10.1074/jbc.m114.629014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Indexed: 11/06/2022] Open
Abstract
The transmembrane protein Crumbs (Crb) and its intracellular adaptor protein Pals1 (Stardust, Sdt in Drosophila) play a crucial role in the establishment and maintenance of apical-basal polarity in epithelial cells in various organisms. In contrast, the multiple PDZ domain-containing protein Pals1-associated tight junction protein (PATJ), which has been described to form a complex with Crb/Sdt, is not essential for apical basal polarity or for the stability of the Crb/Sdt complex in the Drosophila epidermis. Here we show that, in the embryonic epidermis, Sdt is essential for the correct subcellular localization of PATJ in differentiated epithelial cells but not during cellularization. Consistently, the L27 domain of PATJ is crucial for the correct localization and function of the protein. Our data further indicate that the four PDZ domains of PATJ function, to a large extent, in redundancy, regulating the function of the protein. Interestingly, the PATJ-Sdt heterodimer is not only recruited to the apical cell-cell contacts by binding to Crb but depends on functional Bazooka (Baz). However, biochemical experiments show that PATJ associates with both complexes, the Baz-Sdt and the Crb-Sdt complex, in the mature epithelium of the embryonic epidermis, suggesting a role of these two complexes for the function of PATJ during the development of Drosophila.
Collapse
Affiliation(s)
- Arnab Sen
- From the Institute of Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Rui Sun
- From the Institute of Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| | - Michael P Krahn
- From the Institute of Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
29
|
Ngok SP, Lin WH, Anastasiadis PZ. Establishment of epithelial polarity--GEF who's minding the GAP? J Cell Sci 2014; 127:3205-15. [PMID: 24994932 DOI: 10.1242/jcs.153197] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cell polarization is a fundamental process that underlies epithelial morphogenesis, cell motility, cell division and organogenesis. Loss of polarity predisposes tissues to developmental disorders and contributes to cancer progression. The formation and establishment of epithelial cell polarity is mediated by the cooperation of polarity protein complexes, namely the Crumbs, partitioning defective (Par) and Scribble complexes, with Rho family GTPases, including RhoA, Rac1 and Cdc42. The activation of different GTPases triggers distinct downstream signaling pathways to modulate protein-protein interactions and cytoskeletal remodeling. The spatio-temporal activation and inactivation of these small GTPases is tightly controlled by a complex interconnected network of different regulatory proteins, including guanine-nucleotide-exchange factors (GEFs), GTPase-activating proteins (GAPs), and guanine-nucleotide-dissociation inhibitors (GDIs). In this Commentary, we focus on current understanding on how polarity complexes interact with GEFs and GAPs to control the precise location and activation of Rho GTPases (Crumbs for RhoA, Par for Rac1, and Scribble for Cdc42) to promote apical-basal polarization in mammalian epithelial cells. The mutual exclusion of GTPase activities, especially that of RhoA and Rac1, which is well established, provides a mechanism through which polarity complexes that act through distinct Rho GTPases function as cellular rheostats to fine-tune specific downstream pathways to differentiate and preserve the apical and basolateral domains. This article is part of a Minifocus on Establishing polarity.
Collapse
Affiliation(s)
- Siu P Ngok
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Wan-Hsin Lin
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| | - Panos Z Anastasiadis
- Department of Cancer Biology, Mayo Clinic Comprehensive Cancer Center, Griffin Cancer Research Building, Room 307, 4500 San Pablo Road, Jacksonville, FL 32224, USA
| |
Collapse
|
30
|
Wennmann DO, Schmitz J, Wehr MC, Krahn MP, Koschmal N, Gromnitza S, Schulze U, Weide T, Chekuri A, Skryabin BV, Gerke V, Pavenstädt H, Duning K, Kremerskothen J. Evolutionary and Molecular Facts Link the WWC Protein Family to Hippo Signaling. Mol Biol Evol 2014; 31:1710-23. [DOI: 10.1093/molbev/msu115] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
31
|
Bivic AL. Evolution and Cell Physiology. 4. Why invent yet another protein complex to build junctions in epithelial cells? Am J Physiol Cell Physiol 2013; 305:C1193-201. [DOI: 10.1152/ajpcell.00272.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The formation of the first epithelium was an essential step for animal evolution, since it has allowed coordination of the behavior of a cell layer and creation of a selective barrier between the internal medium and the outside world. The possibility of coupling the cells in a single layer has allowed morphogenetic events, such as tube formation, or gastrulation, to form more complex animal morphologies. The invention of sealed junctions between cells has allowed, on the other hand, creation of an asymmetry of nutrients or salts between the apical and the basal side of the epithelial layer. Creation of an internal medium has led to homeostasis, allowing the evolution of more complex physiological functions and the emergence of sophisticated animal shapes. During evolution, the origins of the first animals coincided with the invention of several protein complexes, including true cadherins and the polarity protein complexes. How these complexes regulate formation of the apicolateral border and the adherens junctions is still not fully understood. This review focuses on the role of these apical polarity complexes and, in particular, the Crumbs complex, which is essential for proper organization of epithelial layers from Drosophila to humans.
Collapse
Affiliation(s)
- André Le Bivic
- Aix-Marseille Université, Centre National de la Recherche Scientifique, UMR 7288, Developmental Biology Institute of Marseille, Marseille, France
| |
Collapse
|
32
|
David DJV, Wang Q, Feng JJ, Harris TJC. Bazooka inhibits aPKC to limit antagonism of actomyosin networks during amnioserosa apical constriction. Development 2013; 140:4719-29. [PMID: 24173807 DOI: 10.1242/dev.098491] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Cell shape changes drive tissue morphogenesis during animal development. An important example is the apical cell constriction that initiates tissue internalisation. Apical constriction can occur through a phase of cyclic assembly and disassembly of apicomedial actomyosin networks, followed by stabilisation of these networks. Delayed negative-feedback mechanisms typically underlie cyclic behaviour, but the mechanisms regulating cyclic actomyosin networks remain obscure, as do mechanisms that transform overall network behaviour. Here, we show that a known inhibitor of apicomedial actomyosin networks in Drosophila amnioserosa cells, the Par-6-aPKC complex, is recruited to the apicomedial domain by actomyosin networks during dorsal closure of the embryo. This finding establishes an actomyosin-aPKC negative-feedback loop in the system. Additionally, we find that aPKC recruits Bazooka to the apicomedial domain, and phosphorylates Bazooka for a dynamic interaction. Remarkably, stabilising aPKC-Bazooka interactions can inhibit the antagonism of actomyosin by aPKC, suggesting that Bazooka acts as an aPKC inhibitor, and providing a possible mechanism for delaying the actomyosin-aPKC negative-feedback loop. Our data also implicate an increasing degree of Par-6-aPKC-Bazooka interactions as dorsal closure progresses, potentially explaining a developmental transition in actomyosin behaviour from cyclic to persistent networks. This later impact of aPKC inhibition is supported by mathematical modelling of the system. Overall, this work illustrates how shifting chemical signals can tune actomyosin network behaviour during development.
Collapse
Affiliation(s)
- Daryl J V David
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | | | | | | |
Collapse
|