1
|
Huang W, Chen ZA, Li QY, Huang CF, Lin YX, Lan YM, Zhang ZP, Jiang YF, Qin QW, Sun HY. EXOC8 of Epinephelus coioides involved in SGIV infection via innate immunity and apoptosis. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 166:105368. [PMID: 40189122 DOI: 10.1016/j.dci.2025.105368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/30/2025] [Accepted: 03/31/2025] [Indexed: 04/14/2025]
Abstract
The exocyst complex (EXOC) plays a major role in the extracellular secretion of organisms. In this study, EXOC8, a member of the EXOC family, was characterized from Epinephelus coioides,an important economical important fish in southern China and Southeast Asia, and its role response to viral infection was explored. The full length of E. coioides EXOC8 is 3091 bp including a 2061 bp open reading frame (ORF) encoding 686 amino acids, with a molecular mass of 79037.42 Da. The mRNA of E. coioides EXOC8 can be detected in all of the tissues examined with different levels. E. coioides EXOC8 is distributed in the cytoplasm. The expression of E. coioides EXOC8 was up-regulated during Singapore grouper iridovirus (SGIV) infection, an important pathogen of E. coioides. Overexpressing E. coioides EXOC8 significantly promoted the formation of cytopathic effects (CPE) caused by SGIV infection and the expressions of SGIV key genes MCP, VP19, LITAF and ICP18; but significantly inhibited the activities of NF-κB/AP-1 promoter, apoptosis induced by SGIV, and the expressions of inflammatory factors (IL-6,IL-8, IL-1β and TNF-α) in E. coioides. The results demonstrated that E. coioides EXOC8 may be involved in SGIV infection, providing a theoretical basis for clearing the mechanisms of viral infection in fish.
Collapse
Affiliation(s)
- Wei Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Zi-An Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Qi-Yin Li
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Cui-Fen Huang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yun-Xiang Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yin-Mei Lan
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Ze-Peng Zhang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Yu-Feng Jiang
- Department of Laboratory, Jining No.1 People's Hospital, Shandong, 272111, PR China.
| | - Qi-Wei Qin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China
| | - Hong-Yan Sun
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, Guangdong Province, PR China.
| |
Collapse
|
2
|
Suárez Freire S, Perez-Pandolfo S, Fresco SM, Valinoti J, Sorianello E, Wappner P, Melani M. The exocyst complex controls multiple events in the pathway of regulated exocytosis. eLife 2024; 12:RP92404. [PMID: 39585321 PMCID: PMC11588341 DOI: 10.7554/elife.92404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024] Open
Abstract
Eukaryotic cells depend on exocytosis to direct intracellularly synthesized material toward the extracellular space or the plasma membrane, so exocytosis constitutes a basic function for cellular homeostasis and communication between cells. The secretory pathway includes biogenesis of secretory granules (SGs), their maturation and fusion with the plasma membrane (exocytosis), resulting in release of SG content to the extracellular space. The larval salivary gland of Drosophila melanogaster is an excellent model for studying exocytosis. This gland synthesizes mucins that are packaged in SGs that sprout from the trans-Golgi network and then undergo a maturation process that involves homotypic fusion, condensation, and acidification. Finally, mature SGs are directed to the apical domain of the plasma membrane with which they fuse, releasing their content into the gland lumen. The exocyst is a hetero-octameric complex that participates in tethering of vesicles to the plasma membrane during constitutive exocytosis. By precise temperature-dependent gradual activation of the Gal4-UAS expression system, we have induced different levels of silencing of exocyst complex subunits, and identified three temporarily distinctive steps of the regulated exocytic pathway where the exocyst is critically required: SG biogenesis, SG maturation, and SG exocytosis. Our results shed light on previously unidentified functions of the exocyst along the exocytic pathway. We propose that the exocyst acts as a general tethering factor in various steps of this cellular process.
Collapse
Affiliation(s)
- Sofía Suárez Freire
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
| | - Sebastián Perez-Pandolfo
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
| | | | | | - Eleonora Sorianello
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Laboratorio de Regulación Hipofisaria, Instituto de Biología y Medicina Experimental (IBYME-CONICET)Buenos AiresArgentina
| | - Pablo Wappner
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos AiresBuenos AiresArgentina
| | - Mariana Melani
- Fundación Instituto LeloirBuenos AiresArgentina
- Consejo Nacional De Investigaciones Científicas Y Técnicas (CONICET)Buenos AriesArgentina
- Departamento De Fisiología, Biología Molecular Y Celular, Facultad De Ciencias Exactas Y Naturales, Universidad De Buenos AiresBuenos AiresArgentina
| |
Collapse
|
3
|
Wang W, Rui M. Advances in understanding the roles of actin scaffolding and membrane trafficking in dendrite development. J Genet Genomics 2024; 51:1151-1161. [PMID: 38925347 DOI: 10.1016/j.jgg.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Dendritic morphology is typically highly branched, and the branching and synaptic abundance of dendrites can enhance the receptive range of neurons and the diversity of information received, thus providing the basis for information processing in the nervous system. Once dendritic development is aberrantly compromised or damaged, it may lead to abnormal connectivity of the neural network, affecting the function and stability of the nervous system and ultimately triggering a series of neurological disorders. Research on the regulation of dendritic developmental processes has flourished, and much progress is now being made in its regulatory mechanisms. Noteworthily, dendrites are characterized by an extremely complex dendritic arborization that cannot be attributed to individual protein functions alone, requiring a systematic analysis of the intrinsic and extrinsic signals and the coordinated roles among them. Actin cytoskeleton organization and membrane vesicle trafficking are required during dendrite development, with actin providing tracks for vesicles and vesicle trafficking in turn providing material for actin assembly. In this review, we focus on these two basic biological processes and discuss the molecular mechanisms and their synergistic effects underlying the morphogenesis of neuronal dendrites. We also offer insights and discuss strategies for the potential preventive and therapeutic treatment of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wanting Wang
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China
| | - Menglong Rui
- School of Life Science and Technology, The Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, Jiangsu 210031, China.
| |
Collapse
|
4
|
Zuriegat Q, Abubakar YS, Wang Z, Chen M, Zhang J. Emerging Roles of Exocyst Complex in Fungi: A Review. J Fungi (Basel) 2024; 10:614. [PMID: 39330374 PMCID: PMC11433146 DOI: 10.3390/jof10090614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
The exocyst complex, an evolutionarily conserved octameric protein assembly, plays a central role in the targeted binding and fusion of vesicles at the plasma membrane. In fungal cells, this transport system is essential for polarized growth, morphogenesis, cell wall maintenance and virulence. Recent advances have greatly improved our understanding of the role and regulation of the exocyst complex in fungi. This review synthesizes these developments and focuses on the intricate interplay between the exocyst complex, specific fungal cargos and regulatory proteins. Insights into thestructure of the exocyst and its functional dynamics have revealed new dimensions of its architecture and its interactions with the cellular environment. Furthermore, the regulation of exocyst activity involves complex signaling pathways and interactions with cytoskeletal elements that are crucial for its role in vesicle trafficking. By exploring these emerging themes, this review provides a comprehensive overview of the multifaceted functions of the exocyst complex in fungal biology. Understanding these mechanisms offers potential avenues for novel therapeutic strategies against fungal pathogens and insights into the general principles of vesicle trafficking in eukaryotic cells. The review therefore highlights the importance of the exocyst complex in maintaining cellular functions and its broader implications in fungal pathogenicity and cell biology.
Collapse
Affiliation(s)
- Qussai Zuriegat
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Yakubu Saddeeq Abubakar
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Meilian Chen
- Fujian Key Laboratory on Conservation and Sustainable Utilization of Marine Biodiversity, College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| | - Jun Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Q.Z.); (Y.S.A.); (Z.W.)
| |
Collapse
|
5
|
A novel nonsense variant in EXOC8 underlies a neurodevelopmental disorder. Neurogenetics 2022; 23:203-212. [DOI: 10.1007/s10048-022-00692-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022]
|
6
|
Guo Q, Meng N, Fan G, Sun D, Meng Y, Luo G, Liu Y. The role of the exocytic pathway in cell wall assembly in yeast. Yeast 2021; 38:566-578. [PMID: 34250641 DOI: 10.1002/yea.3659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 11/09/2022] Open
Abstract
The cell wall is a dynamic organelle which is tightly controlled for cell morphology, viability, and pathogenesis. It was previously shown that exocytosis is involved in the secretion of some components and enzymes of the cell wall. However, how the secretory pathway affects the cell wall integrity and assembly remains unclear. Here we show that the secretory pathway mutant (sec) cells were sensitive to cell wall antagonists in Saccharomyces cerevisiae, and they were lysed at restrictive conditions but can be rescued by osmotic stabilizers, indicating their cell walls were disrupted. Although glucans were reduced at the cell surface in sec mutants as speculated, the other two main cell wall components, chitins, and mannoproteins, were accumulated at the cell surface. We also found that both the protein level and the phosphorylation level of Slt2 increased in sec mutants. These results suggest that the exocytic pathway has a critical role in cell wall assembly. Our study will help to understand the mechanism of cell wall formation.
Collapse
Affiliation(s)
- Qingguo Guo
- Institute of Translational Medicine, China Medical University, Shenyang, China.,Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Na Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Guanzhi Fan
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, China
| |
Collapse
|
7
|
Saccomanno A, Potocký M, Pejchar P, Hála M, Shikata H, Schwechheimer C, Žárský V. Regulation of Exocyst Function in Pollen Tube Growth by Phosphorylation of Exocyst Subunit EXO70C2. FRONTIERS IN PLANT SCIENCE 2021; 11:609600. [PMID: 33519861 PMCID: PMC7840542 DOI: 10.3389/fpls.2020.609600] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
Exocyst is a heterooctameric protein complex crucial for the tethering of secretory vesicles to the plasma membrane during exocytosis. Compared to other eukaryotes, exocyst subunit EXO70 is represented by many isoforms in land plants whose cell biological and biological roles, as well as modes of regulation remain largely unknown. Here, we present data on the phospho-regulation of exocyst isoform EXO70C2, which we previously identified as a putative negative regulator of exocyst function in pollen tube growth. A comprehensive phosphoproteomic analysis revealed phosphorylation of EXO70C2 at multiple sites. We have now performed localization and functional studies of phospho-dead and phospho-mimetic variants of Arabidopsis EXO70C2 in transiently transformed tobacco pollen tubes and stably transformed Arabidopsis wild type and exo70C2 mutant plants. Our data reveal a dose-dependent effect of AtEXO70C2 overexpression on pollen tube growth rate and cellular architecture. We show that changes of the AtEXO70C2 phosphorylation status lead to distinct outcomes in wild type and exo70c2 mutant cells, suggesting a complex regulatory pattern. On the other side, phosphorylation does not affect the cytoplasmic localization of AtEXO70C2 or its interaction with putative secretion inhibitor ROH1 in the yeast two-hybrid system.
Collapse
Affiliation(s)
- Antonietta Saccomanno
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Martin Potocký
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Michal Hála
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Hiromasa Shikata
- Plant Systems Biology, Technische Universität München, Freising, Germany
| | | | - Viktor Žárský
- Laboratory of Cell Biology, Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
8
|
de la Torre A, Castanheira S, Pérez-Martín J. Incompatibility between proliferation and plant invasion is mediated by a regulator of appressorium formation in the corn smut fungus Ustilago maydis. Proc Natl Acad Sci U S A 2020; 117:30599-30609. [PMID: 33199618 PMCID: PMC7720189 DOI: 10.1073/pnas.2006909117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plant pathogenic fungi often developed specialized infection structures to breach the outer surface of a host plant. These structures, called appressoria, lead the invasion of the plant by the fungal hyphae. Studies in different phytopathogenic fungi showed that appressorium formation seems to be subordinated to the cell cycle. This subordination ensures the loading in the invading hypha of the correct genetic information to proceed with plant infection. However, how the cell cycle transmits its condition to the genetic program controlling appressorium formation and promoting the plant's invasion is unknown. Our results have uncovered how this process occurs for the appressorium of Ustilago maydis, the agent responsible for corn smut disease. Here, we described that the complex Clb2-cyclin-dependent kinase (Cdk)1, one of the master regulators of G2/M cell cycle progression in U. maydis, interacts and controls the subcellular localization of Biz1, a transcriptional factor required for the activation of the appressorium formation. Besides, Biz1 can arrest the cell cycle by down-regulation of the gene encoding a second b-cyclin Clb1 also required for the G2/M transition. These results revealed a negative feedback loop between appressorium formation and cell cycle progression in U. maydis, which serves as a "toggle switch" to control the fungal decision between infecting the plant or proliferating out of the plant.
Collapse
Affiliation(s)
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica (CSIC), 37007 Salamanca, Spain
| | - José Pérez-Martín
- Instituto de Biología Funcional y Genómica (CSIC), 37007 Salamanca, Spain
| |
Collapse
|
9
|
Guo Q, Duan Y, Meng N, Liu Y, Luo G. The N-terminus of Sec3 is required for cell wall integrity in yeast. Biochimie 2020; 177:30-39. [PMID: 32800898 DOI: 10.1016/j.biochi.2020.07.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 10/23/2022]
Abstract
The cell wall is essential for cell viability and pathogenesis of fungi. It was previously shown that the exocytosis landmark Sec3 is an effector of the cell wall integrity (CWI) master regulator Rho1 GTPase. However, disruption of the interaction between Sec3 and Rho1 did not inhibit exocytic secretion and cell growth. The physiological role of Sec3 in fungi is unclear. We have examined the growth, cell wall sensitivity, exocyst localization, and exocytic secretion of Sec3-binding deficient rho1 mutants and Rho1-binding deficient sec3 mutants. We found that the Sec3 N-terminal deletion mutant was defective in cell wall integrity. The cells harboring binding mutation between Rho1 and Sec3 N-terminus were sensitive to cell wall antagonists. We also found that the polarized localization of exocyst subunits was disrupted in these mutants. Our study demonstrates that the N-terminus of Sec3 mediates cell wall integrity in yeast. Pathogenic fungi may use similar regulatory mechanisms because components of the exocytic signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- Institute of Translational Medicine, China Medical University, Shenyang, 110122, China; Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Yuran Duan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Na Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China.
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
10
|
Hsu JW, Bai M, Li K, Yang JS, Chu N, Cole PA, Eck MJ, Li J, Hsu VW. The protein kinase Akt acts as a coat adaptor in endocytic recycling. Nat Cell Biol 2020; 22:927-933. [PMID: 32541877 PMCID: PMC7415567 DOI: 10.1038/s41556-020-0530-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 05/04/2020] [Indexed: 12/30/2022]
Abstract
Coat proteins play a central role in vesicular transport by binding to cargoes for their sorting into intracellular pathways. Cargo recognition is mediated by components of the coat complex known as adaptor proteins1–3. We previously showed that ACAP1 (ArfGAP with Coil-coil Ankyrin repeat Protein 1) functions as an adaptor for a clathrin coat complex acting in endocytic recycling4–6. Here, we find that the protein kinase Akt acts as a co-adaptor in this complex, needed in conjunction with ACAP1 to bind cargo proteins for their recycling. Besides advancing the understanding of endocytic recycling, our findings uncover a fundamentally different way that a kinase acts, being an effector rather than a regulator in a cellular event.
Collapse
Affiliation(s)
- Jia-Wei Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Ming Bai
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Kunhua Li
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jia-Shu Yang
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Nam Chu
- Division of Genetics, Brigham and Women's Hospital, and Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Philip A Cole
- Division of Genetics, Brigham and Women's Hospital, and Departments of Medicine and Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Michael J Eck
- Department of Cancer Biology, Dana-Farber Cancer Institute, and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Jian Li
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| | - Victor W Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
11
|
Ganesan SJ, Feyder MJ, Chemmama IE, Fang F, Rout MP, Chait BT, Shi Y, Munson M, Sali A. Integrative structure and function of the yeast exocyst complex. Protein Sci 2020; 29:1486-1501. [PMID: 32239688 DOI: 10.1002/pro.3863] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/25/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Abstract
Exocyst is an evolutionarily conserved hetero-octameric tethering complex that plays a variety of roles in membrane trafficking, including exocytosis, endocytosis, autophagy, cell polarization, cytokinesis, pathogen invasion, and metastasis. Exocyst serves as a platform for interactions between the Rab, Rho, and Ral small GTPases, SNARE proteins, and Sec1/Munc18 regulators that coordinate spatial and temporal fidelity of membrane fusion. However, its mechanism is poorly described at the molecular level. Here, we determine the molecular architecture of the yeast exocyst complex by an integrative approach, based on a 3D density map from negative-stain electron microscopy (EM) at ~16 Å resolution, 434 disuccinimidyl suberate and 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride cross-links from chemical-crosslinking mass spectrometry, and partial atomic models of the eight subunits. The integrative structure is validated by a previously determined cryo-EM structure, cross-links, and distances from in vivo fluorescence microscopy. Our subunit configuration is consistent with the cryo-EM structure, except for Sec5. While not observed in the cryo-EM map, the integrative model localizes the N-terminal half of Sec3 near the Sec6 subunit. Limited proteolysis experiments suggest that the conformation of Exo70 is dynamic, which may have functional implications for SNARE and membrane interactions. This study illustrates how integrative modeling based on varied low-resolution structural data can inform biologically relevant hypotheses, even in the absence of high-resolution data.
Collapse
Affiliation(s)
- Sai J Ganesan
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Michael J Feyder
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ilan E Chemmama
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Fei Fang
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael P Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, New York, USA
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, New York, USA
| | - Yi Shi
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Andrej Sali
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA.,Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
12
|
Guo Q, Zhang T, Meng N, Duan Y, Meng Y, Sun D, Liu Y, Luo G. Sphingolipids are required for exocyst polarity and exocytic secretion in Saccharomyces cerevisiae. Cell Biosci 2020; 10:53. [PMID: 32257111 PMCID: PMC7106735 DOI: 10.1186/s13578-020-00406-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/10/2020] [Indexed: 11/13/2022] Open
Abstract
Background Exocytosis is a process by which vesicles are transported to and fused with specific areas of the plasma membrane. Although several studies have shown that sphingolipids are the main components of exocytic compartments, whether they control exocytosis process is unclear. Results Here, we have investigated the role of sphingolipids in exocytosis by reducing the activity of the serine palmitoyl-transferase (SPT), which catalyzes the first step in sphingolipid synthesis in endoplasmic reticulum. We found that the exocyst polarity and exocytic secretion were impaired in lcb1-100 mutant cells and in wild type cells treated with myriocin, a chemical which can specifically inhibit SPT enzyme activity, suggesting that sphingolipids controls exocytic secretion. This speculation was further confirmed by immuno-fluorescence and electron microscopy results that small secretory vesicles were accumulated in lcb1-100 mutant cells. Conclusions Taken together, our results suggest that sphingolipids are required for exocytosis. Mammals may use similar regulatory mechanisms because components of the exocytic secretion apparatus and signaling pathways are conserved.
Collapse
Affiliation(s)
- Qingguo Guo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China.,2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Tianrui Zhang
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Na Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuran Duan
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Yuan Meng
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Dong Sun
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| | - Ying Liu
- 2Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122 China
| | - Guangzuo Luo
- 1Institute of Translational Medicine, China Medical University, Shenyang, 110122 China
| |
Collapse
|
13
|
Nishida‐Fukuda H. The Exocyst: Dynamic Machine or Static Tethering Complex? Bioessays 2019; 41:e1900056. [DOI: 10.1002/bies.201900056] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/14/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Hisayo Nishida‐Fukuda
- Department of Genome Editing, Institute of Biomedical ScienceKansai Medical University2‐5‐1 Shin‐machi, Hirakata Osaka 5731010 Japan
| |
Collapse
|
14
|
Duan Y, Guo Q, Zhang T, Meng Y, Sun D, Luo G, Liu Y. Cyclin-dependent kinase-mediated phosphorylation of the exocyst subunit Exo84 in late G 1 phase suppresses exocytic secretion and cell growth in yeast. J Biol Chem 2019; 294:11323-11332. [PMID: 31171719 DOI: 10.1074/jbc.ra119.008591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/10/2019] [Indexed: 12/22/2022] Open
Abstract
In eukaryotic cells, the growth rate is strictly regulated for proper progression of the cell cycle. In the budding yeast Saccharomyces cerevisiae, it was previously shown that cell growth dramatically slows down when the cells start budding at the G1/S transition. However, the molecular mechanism for this G1/S-associated growth arrest is unclear. In this study, using exocytic secretion, cyclin-dependent kinase (CDK) assay, immunoprecipitation, and microscopy, we demonstrate that the exocyst subunit Exo84, which is known to be phosphorylated in mitosis, can also be phosphorylated directly by Cdk1 in the late G1 phase. Of note, we found that the Cdk1-mediated Exo84 phosphorylation impairs exocytic secretion in the late G1 phase. Using conditional cdc mutants and phosphodeficient and phosphomimetic exo84 mutants, we further observed that Cdk1-phosphoryated Exo84 inhibits the exocyst complex assembly, exocytic secretion, and cell growth, which may be important for proper execution of the G1/S-phase transition before commitment to a complete cell cycle. Our results suggest that the direct Cdk1-mediated regulation of the exocyst complex critically contributes to the coordination of cell growth and cell cycle progression.
Collapse
Affiliation(s)
- Yuran Duan
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Qingguo Guo
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Tianrui Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Yuan Meng
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Dong Sun
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Translational Medicine, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| |
Collapse
|
15
|
Zhang T, Sun D, Luo G, Liu Y. Spatial and Translational Regulation of Exocyst Subunits by Cell Cycle in Budding Yeast. Med Sci Monit 2019; 25:4059-4067. [PMID: 31150370 PMCID: PMC6559343 DOI: 10.12659/msm.914194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Previous studies have shown that exocyst complex is located at polarized growth sites at different cell cycle stages in budding yeast. But how cell cycle and the cyclin-dependent kinase, Cdk1, regulate the distribution of exocyst complex on the plasma membrane and the protein level of each exocyst subunit is not clear. MATERIAL AND METHODS Using budding yeast as a research material, regulation of cell cycle and Cdk1 on exocyst localization on the plasma membrane and on level of each exocyst subunit were examined by methods of cell biology and molecular biology. RESULTS Exocyst complex is located at growth sites on the plasma membrane in both budding and non-budding stages. Cdk1 activity is required for polarized distribution of exocyst complex in late G1, S and M phases, but not in cytokinesis stage. Cdk1 is not required for the assembly and localization of exocyst complex on plasma membrane. The protein level of Sec3 but not other exocyst subunits is regulated by the cell cycle. CONCLUSIONS Cdk1 activity is required for exocyst polarization before cytokinesis during the cell cycle progression, but not for its assembly and localization on the plasma membrane. Dynamic localization and protein level of the complex subunits are regulated by the cell cycle.
Collapse
Affiliation(s)
- Tianrui Zhang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Dong Sun
- Institute of Translational Research, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Guangzuo Luo
- Institute of Translational Research, China Medical University, Shenyang, Liaoning, China (mainland)
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, Liaoning, China (mainland)
| |
Collapse
|
16
|
Lepore DM, Martínez-Núñez L, Munson M. Exposing the Elusive Exocyst Structure. Trends Biochem Sci 2018; 43:714-725. [PMID: 30055895 PMCID: PMC6108956 DOI: 10.1016/j.tibs.2018.06.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 06/18/2018] [Accepted: 06/29/2018] [Indexed: 11/18/2022]
Abstract
A major challenge for a molecular understanding of membrane trafficking has been the elucidation of high-resolution structures of large, multisubunit tethering complexes that spatially and temporally control intracellular membrane fusion. Exocyst is a large hetero-octameric protein complex proposed to tether secretory vesicles at the plasma membrane to provide quality control of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE)-mediated membrane fusion. Breakthroughs in methodologies, including sample preparation, biochemical characterization, fluorescence microscopy, and single-particle cryoelectron microscopy, are providing critical insights into the structure and function of the exocyst. These studies now pose more questions than answers for understanding fundamental functional mechanisms, and they open wide the door for future studies to elucidate interactions with protein and membrane partners, potential conformational changes, and molecular insights into tethering reactions.
Collapse
Affiliation(s)
- Dante M Lepore
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Mary Munson
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
17
|
Foltman M, Filali-Mouncef Y, Crespo D, Sanchez-Diaz A. Cell polarity protein Spa2 coordinates Chs2 incorporation at the division site in budding yeast. PLoS Genet 2018; 14:e1007299. [PMID: 29601579 PMCID: PMC5895073 DOI: 10.1371/journal.pgen.1007299] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 04/11/2018] [Accepted: 03/07/2018] [Indexed: 01/06/2023] Open
Abstract
Deposition of additional plasma membrane and cargoes during cytokinesis in eukaryotic cells must be coordinated with actomyosin ring contraction, plasma membrane ingression and extracellular matrix remodelling. The process by which the secretory pathway promotes specific incorporation of key factors into the cytokinetic machinery is poorly understood. Here, we show that cell polarity protein Spa2 interacts with actomyosin ring components during cytokinesis. Spa2 directly binds to cytokinetic factors Cyk3 and Hof1. The lethal effects of deleting the SPA2 gene in the absence of either Cyk3 or Hof1 can be suppressed by expression of the hypermorphic allele of the essential chitin synthase II (Chs2), a transmembrane protein transported on secretory vesicles that makes the primary septum during cytokinesis. Spa2 also interacts directly with the chitin synthase Chs2. Interestingly, artificial incorporation of Chs2 into the cytokinetic machinery allows the localisation of Spa2 at the site of division. In addition, increased Spa2 protein levels promote Chs2 incorporation at the site of division and primary septum formation. Our data indicate that Spa2 is recruited to the cleavage site to co-operate with the secretory vesicle system and particular actomyosin ring components to promote the incorporation of Chs2 into the so-called 'ingression progression complexes' during cytokinesis in budding yeast.
Collapse
Affiliation(s)
- Magdalena Foltman
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Yasmina Filali-Mouncef
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Damaso Crespo
- Departamento de Anatomía y Biología Celular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Alberto Sanchez-Diaz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria, CSIC, Santander, Spain
- Departamento de Biología Molecular, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
- * E-mail:
| |
Collapse
|
18
|
Mei K, Li Y, Wang S, Shao G, Wang J, Ding Y, Luo G, Yue P, Liu JJ, Wang X, Dong MQ, Wang HW, Guo W. Cryo-EM structure of the exocyst complex. Nat Struct Mol Biol 2018; 25:139-146. [PMID: 29335562 PMCID: PMC5971111 DOI: 10.1038/s41594-017-0016-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 12/07/2017] [Indexed: 12/22/2022]
Abstract
The exocyst is an evolutionarily conserved octameric protein complex that mediates the tethering of post-Golgi secretory vesicles to the plasma membrane during exocytosis and is implicated in many cellular processes such as cell polarization, cytokinesis, ciliogenesis and tumor invasion. Using cryo-EM and chemical cross-linking MS (CXMS), we solved the structure of the Saccharomyces cerevisiae exocyst complex at an average resolution of 4.4 Å. Our model revealed the architecture of the exocyst and led to the identification of the helical bundles that mediate the assembly of the complex at its core. Sequence analysis suggests that these regions are evolutionarily conserved across eukaryotic systems. Additional cell biological data suggest a mechanism for exocyst assembly that leads to vesicle tethering at the plasma membrane.
Collapse
Affiliation(s)
- Kunrong Mei
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Yan Li
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Shaoxiao Wang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing, China
| | - Jia Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China
| | - Yuehe Ding
- National Institute of Biological Sciences, Beijing, China
| | - Guangzuo Luo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Yue
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jun-Jie Liu
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Xinquan Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China.,School of Life Sciences, Tsinghua University, Beijing, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing, China
| | - Hong-Wei Wang
- Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China. .,Beijing Advanced Innovation Center for Structural Biology, Tsinghua University, Beijing, China. .,School of Life Sciences, Tsinghua University, Beijing, China. .,Tsinghua-Peking Joint Center for Life Sciences, Beijing, China.
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Abstract
Polarized exocytosis is generally considered as the multistep vesicular trafficking process in which membrane-bounded carriers are transported from the Golgi or endosomal compartments to specific sites of the plasma membrane. Polarized exocytosis in cells is achieved through the coordinated actions of membrane trafficking machinery and cytoskeleton orchestrated by signaling molecules such as the Rho family of small GTPases. Elucidating the molecular mechanisms of polarized exocytosis is essential to our understanding of a wide range of pathophysiological processes from neuronal development to tumor invasion.
Collapse
Affiliation(s)
- Jingwen Zeng
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Shanshan Feng
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, P.R. China
| | - Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6018
| |
Collapse
|
20
|
Lepore D, Spassibojko O, Pinto G, Collins RN. Cell cycle-dependent phosphorylation of Sec4p controls membrane deposition during cytokinesis. J Cell Biol 2017; 214:691-703. [PMID: 27621363 PMCID: PMC5021095 DOI: 10.1083/jcb.201602038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 08/04/2016] [Indexed: 11/22/2022] Open
Abstract
The GTPase Sec4p is a critical regulator of polarized membrane traffic. Lepore et al. show that the polo-like kinase Cdc5p phosphorylates Sec4p, which promotes coordinated membrane deposition during cytokinesis. Intracellular trafficking is an essential and conserved eukaryotic process. Rab GTPases are a family of proteins that regulate and provide specificity for discrete membrane trafficking steps by harnessing a nucleotide-bound cycle. Global proteomic screens have revealed many Rab GTPases as phosphoproteins, but the effects of this modification are not well understood. Using the Saccharomyces cerevisiae Rab GTPase Sec4p as a model, we have found that phosphorylation negatively regulates Sec4p function by disrupting the interaction with the exocyst complex via Sec15p. We demonstrate that phosphorylation of Sec4p is a cell cycle–dependent process associated with cytokinesis. Through a genomic kinase screen, we have also identified the polo-like kinase Cdc5p as a positive regulator of Sec4p phosphorylation. Sec4p spatially and temporally localizes with Cdc5p exclusively when Sec4p phosphorylation levels peak during the cell cycle, indicating Sec4p is a direct Cdc5p substrate. Our data suggest the physiological relevance of Sec4p phosphorylation is to facilitate the coordination of membrane-trafficking events during cytokinesis.
Collapse
Affiliation(s)
- Dante Lepore
- Field of Biochemistry, Molecular and Cellular Biology, Cornell University, Ithaca, NY 14853 Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| | - Olya Spassibojko
- Cornell Undergraduate Biology, Cornell University, Ithaca, NY 14853
| | - Gabrielle Pinto
- Cornell Undergraduate Biology, Cornell University, Ithaca, NY 14853
| | - Ruth N Collins
- Department of Molecular Medicine, Cornell University, Ithaca, NY 14853
| |
Collapse
|
21
|
The In Vivo Architecture of the Exocyst Provides Structural Basis for Exocytosis. Cell 2017; 168:400-412.e18. [PMID: 28129539 DOI: 10.1016/j.cell.2017.01.004] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 10/18/2016] [Accepted: 01/05/2017] [Indexed: 11/21/2022]
Abstract
The structural characterization of protein complexes in their native environment is challenging but crucial for understanding the mechanisms that mediate cellular processes. We developed an integrative approach to reconstruct the 3D architecture of protein complexes in vivo. We applied this approach to the exocyst, a hetero-octameric complex of unknown structure that is thought to tether secretory vesicles during exocytosis with a poorly understood mechanism. We engineered yeast cells to anchor the exocyst on defined landmarks and determined the position of its subunit termini at nanometer precision using fluorescence microscopy. We then integrated these positions with the structural properties of the subunits to reconstruct the exocyst together with a vesicle bound to it. The exocyst has an open hand conformation made of rod-shaped subunits that are interlaced in the core. The exocyst architecture explains how the complex can tether secretory vesicles, placing them in direct contact with the plasma membrane.
Collapse
|
22
|
Pérez-Martín J, Bardetti P, Castanheira S, de la Torre A, Tenorio-Gómez M. Virulence-specific cell cycle and morphogenesis connections in pathogenic fungi. Semin Cell Dev Biol 2016; 57:93-99. [PMID: 27032479 DOI: 10.1016/j.semcdb.2016.03.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 03/14/2016] [Accepted: 03/22/2016] [Indexed: 11/27/2022]
Abstract
To initiate pathogenic development, pathogenic fungi respond to a set of inductive cues. Some of them are of an extracellular nature (environmental signals), while others are intracellular (developmental signals). These signals must be integrated into a single response whose major outcome is changes in the morphogenesis of the fungus. The regulation of the cell cycle is pivotal during these cellular differentiation steps; therefore, cell cycle regulation would likely provide control points for infectious development by fungal pathogens. Here, we provide clues to understanding how the control of the cell cycle is integrated with the morphogenesis program in pathogenic fungi, and we review current examples that support these connections.
Collapse
Affiliation(s)
- José Pérez-Martín
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain.
| | - Paola Bardetti
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Sónia Castanheira
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - Antonio de la Torre
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| | - María Tenorio-Gómez
- Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Salamanca, Spain
| |
Collapse
|
23
|
Chen X, Ebbole DJ, Wang Z. The exocyst complex: delivery hub for morphogenesis and pathogenesis in filamentous fungi. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:48-54. [PMID: 26453967 DOI: 10.1016/j.pbi.2015.09.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/30/2015] [Accepted: 09/05/2015] [Indexed: 06/05/2023]
Abstract
Regulated by several small GTPases, the octameric exocyst complex directs the docking and tethering of exocytic vesicles to the destined plasma membrane sites, providing the precise spatiotemporal control of exocytosis. Although the exocyst components are well conserved among various fungal species, the mechanisms for the regulation of its assembly and activity are diverse. Exocytosis is crucial for the generation of cell polarity as well as the delivery of effector proteins in filamentous fungi, and thus plays an important role for fungal morphogenesis and pathogenicity on plant hosts. This review focuses on current findings about the roles of the exocyst complex in the morphogenesis and pathogenesis of filamentous fungi.
Collapse
Affiliation(s)
- Xiaofeng Chen
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Daniel J Ebbole
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Zonghua Wang
- Fujian-Taiwan Joint Center for Ecological Control of Crop Pests, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
24
|
Campa CC, Martini M, De Santis MC, Hirsch E. How PI3K-derived lipids control cell division. Front Cell Dev Biol 2015; 3:61. [PMID: 26484344 PMCID: PMC4588110 DOI: 10.3389/fcell.2015.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 09/14/2015] [Indexed: 01/18/2023] Open
Abstract
To succeed in cell division, intense cytoskeletal and membrane remodeling are required to allow accurate chromosome segregation and cytoplasm partitioning. Spatial restriction of the actin dynamics and vesicle trafficking define the cell symmetry and equivalent membrane scission events, respectively. Protein complexes coordinating mitosis are recruited to membrane microdomains characterized by the presence of the phosphatidylinositol lipid members (PtdIns), like PtdIns(3,4,5)P3,PtdIns(4,5)P2, and PtdIns(3)P. These PtdIns represent a minor component of cell membranes, defining membrane domain identity, ultimately controlling cytoskeleton and membrane dynamics during mitosis. The coordinated presence of PtdIns(3,4,5)P3 at the cell poles and PtdIns(4,5)P2 at the cleavage furrow controls the polarity of the actin cytoskeleton leading to symmetrical cell division. In the endosomal compartment, the trafficking of PtdIns(3)P positive vesicles allows the recruitment of the protein machinery required for the abscission.
Collapse
Affiliation(s)
- Carlo C Campa
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Miriam Martini
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Maria C De Santis
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, University of Turin Torino, Italy
| |
Collapse
|
25
|
Abstract
The exocyst is an octameric protein complex that is implicated in the tethering of secretory vesicles to the plasma membrane prior to SNARE-mediated fusion. Spatial and temporal control of exocytosis through the exocyst has a crucial role in a number of physiological processes, such as morphogenesis, cell cycle progression, primary ciliogenesis, cell migration and tumor invasion. In this Cell Science at a Glance poster article, we summarize recent works on the molecular organization, function and regulation of the exocyst complex, as they provide rationales to the involvement of this complex in such a diverse array of cellular processes.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
26
|
Luo G, Zhang J, Guo W. The role of Sec3p in secretory vesicle targeting and exocyst complex assembly. Mol Biol Cell 2014; 25:3813-22. [PMID: 25232005 PMCID: PMC4230786 DOI: 10.1091/mbc.e14-04-0907] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The exocyst has been speculated to mediate the tethering of secretory vesicles to the plasma membrane. However, there has been no direct experimental evidence for this notion. An ectopic targeting strategy is used to provide experimental support for this model and investigate the regulators of exocyst assembly and vesicle targeting. During membrane trafficking, vesicular carriers are transported and tethered to their cognate acceptor compartments before soluble N-ethylmaleimide–sensitive factor attachment protein (SNARE)-mediated membrane fusion. The exocyst complex was believed to target and tether post-Golgi secretory vesicles to the plasma membrane during exocytosis. However, no definitive experimental evidence is available to support this notion. We developed an ectopic targeting assay in yeast in which each of the eight exocyst subunits was expressed on the surface of mitochondria. We find that most of the exocyst subunits were able to recruit the other members of the complex there, and mistargeting of the exocyst led to secretion defects in cells. On the other hand, only the ectopically located Sec3p subunit is capable of recruiting secretory vesicles to mitochondria. Our assay also suggests that both cytosolic diffusion and cytoskeleton-based transport mediate the recruitment of exocyst subunits and secretory vesicles during exocytosis. In addition, the Rab GTPase Sec4p and its guanine nucleotide exchange factor Sec2p regulate the assembly of the exocyst complex. Our study helps to establish the role of the exocyst subunits in tethering and allows the investigation of the mechanisms that regulate vesicle tethering during exocytosis.
Collapse
Affiliation(s)
- Guangzuo Luo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Jian Zhang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| | - Wei Guo
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018
| |
Collapse
|
27
|
Plant cytokinesis is orchestrated by the sequential action of the TRAPPII and exocyst tethering complexes. Dev Cell 2014; 29:607-620. [PMID: 24882377 DOI: 10.1016/j.devcel.2014.04.029] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 02/13/2014] [Accepted: 04/25/2014] [Indexed: 01/19/2023]
Abstract
Plant cytokinesis is initiated in a transient membrane compartment, the cell plate, and completed by a process of maturation during which the cell plate becomes a cross wall. How the transition from juvenile to adult stages occurs is poorly understood. In this study, we monitor the Arabidopsis transport protein particle II (TRAPPII) and exocyst tethering complexes throughout cytokinesis. We show that their appearance is predominantly sequential, with brief overlap at the onset and end of cytokinesis. The TRAPPII complex is required for cell plate biogenesis, and the exocyst is required for cell plate maturation. The TRAPPII complex sorts plasma membrane proteins, including exocyst subunits, at the cell plate throughout cytokinesis. We show that the two tethering complexes physically interact and propose that their coordinated action may orchestrate not only plant but also animal cytokinesis.
Collapse
|
28
|
Caballero-Lima D, Sudbery PE. In Candida albicans, phosphorylation of Exo84 by Cdk1-Hgc1 is necessary for efficient hyphal extension. Mol Biol Cell 2014; 25:1097-110. [PMID: 24501427 PMCID: PMC3967973 DOI: 10.1091/mbc.e13-11-0688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Candida albicans hyphae continue to grow throughout mitosis, and phosphorylation of Exo84 by Cdk is necessary for efficient hyphal growth. In contrast, phosphorylation of Exo84 by Cdk halts cell growth in Saccharomyces cerevisiae. The location of Cdk1 target sites in Exo84 explains how phosphoregulation mediates these different patterns of growth. The exocyst, a conserved multiprotein complex, tethers secretory vesicles before fusion with the plasma membrane; thus it is essential for cell surface expansion. In both Saccharomyces cerevisiae and mammalian cells, cell surface expansion is halted during mitosis. In S. cerevisiae, phosphorylation of the exocyst component Exo84 by Cdk1-Clb2 during mitosis causes the exocyst to disassemble. Here we show that the hyphae of the human fungal pathogen Candida albicans continue to extend throughout the whole of mitosis. We show that CaExo84 is phosphorylated by Cdk1, which is necessary for efficient hyphal extension. This action of Cdk1 depends on the hyphal-specific cyclin Hgc1, the homologue of G1 cyclins in budding yeast. Phosphorylation of CaExo84 does not alter its localization but does alter its affinity for phosphatidylserine, allowing it to recycle at the plasma membrane. The different action of Cdk1 on CaExo84 and ScExo84 is consistent with the different locations of the Cdk1 target sites in the two proteins. Thus this conserved component of polarized growth has evolved so that its phosphoregulation mediates the dramatically different patterns of growth shown by these two organisms.
Collapse
Affiliation(s)
- David Caballero-Lima
- Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN, United Kingdom
| | | |
Collapse
|
29
|
|