1
|
Gotti C, Clementi F, Zoli M. Auxiliary protein and chaperone regulation of neuronal nicotinic receptor subtype expression and function. Pharmacol Res 2024; 200:107067. [PMID: 38218358 DOI: 10.1016/j.phrs.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of pentameric, ligand-gated ion channels that are located on the surface of neurons and non-neuronal cells and have multiple physiological and pathophysiological functions. In order to reach the cell surface, many nAChR subtypes require the help of chaperone and/or auxiliary/accessory proteins for their assembly, trafficking, pharmacological modulation, and normal functioning in vivo. The use of powerful genome-wide cDNA screening has led to the identification and characterisation of the molecules and mechanisms that participate in the assembly and trafficking of receptor subtypes, including chaperone and auxiliary or accessory proteins. The aim of this review is to describe the latest findings concerning nAChR chaperones and auxiliary proteins and pharmacological chaperones, and how some of them control receptor biogenesis or regulate channel activation and pharmacology. Some auxiliary proteins are subtype selective, some regulate various subtypes, and some not only modulate nAChRs but also target other receptors and signalling pathways. We also discuss how changes in auxiliary proteins may be involved in nAChR dysfunctions.
Collapse
Affiliation(s)
- Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy.
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
2
|
Zhang D, Zhao MM, Wu JM, Wang R, Xue G, Xue YB, Shao JQ, Zhang YY, Dong ED, Li ZY, Xiao H. Dual-omics reveals temporal differences in acute sympathetic stress-induced cardiac inflammation following α 1 and β-adrenergic receptors activation. Acta Pharmacol Sin 2023; 44:1350-1365. [PMID: 36737635 PMCID: PMC10310713 DOI: 10.1038/s41401-022-01048-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 12/28/2022] [Indexed: 02/05/2023]
Abstract
Sympathetic stress is prevalent in cardiovascular diseases. Sympathetic overactivation under strong acute stresses triggers acute cardiovascular events including myocardial infarction (MI), sudden cardiac death, and stress cardiomyopathy. α1-ARs and β-ARs, two dominant subtypes of adrenergic receptors in the heart, play a significant role in the physiological and pathologic regulation of these processes. However, little is known about the functional similarities and differences between α1- and β-ARs activated temporal responses in stress-induced cardiac pathology. In this work, we systematically compared the cardiac temporal genome-wide profiles of acute α1-AR and β-AR activation in the mice model by integrating transcriptome and proteome. We found that α1- and β-AR activations induced sustained and transient inflammatory gene expression, respectively. Particularly, the overactivation of α1-AR but not β-AR led to neutrophil infiltration at one day, which was closely associated with the up-regulation of chemokines, activation of NF-κB pathway, and sustained inflammatory response. Furthermore, there are more metabolic disorders under α1-AR overactivation compared with β-AR overactivation. These findings provide a new therapeutic strategy that, besides using β-blocker as soon as possible, blocking α1-AR within one day should also be considered in the treatment of acute stress-associated cardiovascular diseases.
Collapse
Affiliation(s)
- Di Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ming-Ming Zhao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Ji-Min Wu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Rui Wang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Gang Xue
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Yan-Bo Xue
- Department of Cardiovascular Medicine, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ji-Qi Shao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - You-Yi Zhang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China
| | - Er-Dan Dong
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| | - Zhi-Yuan Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Han Xiao
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital; NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education; Beijing Key Laboratory of Cardiovascular Receptors Research; Haihe Laboratory of Cell Ecosystem, Beijing, 100191, China.
| |
Collapse
|
3
|
Maldifassi MC, Rego Campello H, Gallagher T, Lester HA, Dougherty DA. Human α6 β4 Nicotinic Acetylcholine Receptor: Heterologous Expression and Agonist Behavior Provide Insights into the Immediate Binding Site. Mol Pharmacol 2023; 103:339-347. [PMID: 37001996 DOI: 10.1124/molpharm.123.000672] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 03/09/2023] [Accepted: 03/15/2023] [Indexed: 04/03/2023] Open
Abstract
Study of α6β4 nicotinic acetylcholine receptors (nAChRs) as a pharmacological target has recently gained interest because of their involvement in analgesia, control of catecholamine secretion, dopaminergic pathways, and aversive pathways. However, an extensive characterization of the human α6β4 nAChRs has been vitiated by technical difficulties resulting in poor receptor expression. In 2020, Knowland and collaborators identified BARP (β-anchoring and regulatory protein), a previously known voltage-gated calcium channel suppressor, as a novel human α6β4 chaperone. Here, we establish that co-expression of human BARP with human α6β4 in Xenopus oocytes, resulted in the functional expression of human α6β4 receptors with acetylcholine-elicited currents that allow an in-depth characterization of the receptor using two electrode voltage-clamp electrophysiology together with diverse agonists and receptor mutations. We report: 1) an extended pharmacological characterization of the receptor, and 2) key residues for agonist-activity located in or near the first shell of the binding pocket. SIGNIFICANCE STATEMENT: The human α6β4 nicotinic acetylcholine receptor has attained increased interest because of its involvement in diverse physiological processes and diseases. Although recognized as a pharmacological target, development of specific agonists has been hampered by limited knowledge of its structural characteristics and by challenges in expressing the receptor. By including the chaperone β-anchoring and regulatory protein for enhanced expression and employing different ligands, we have studied the pharmacology of α6β4, providing insight into receptor residues and structural requirements for ligands important to consider for agonist-induced activation.
Collapse
Affiliation(s)
- María Constanza Maldifassi
- Divisions of Chemistry and Chemical Engineering (M.C.M., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California; and School of Chemistry, University of Bristol, Bristol, United Kingdom (H.R.C., T.G.)
| | - Hugo Rego Campello
- Divisions of Chemistry and Chemical Engineering (M.C.M., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California; and School of Chemistry, University of Bristol, Bristol, United Kingdom (H.R.C., T.G.)
| | - Timothy Gallagher
- Divisions of Chemistry and Chemical Engineering (M.C.M., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California; and School of Chemistry, University of Bristol, Bristol, United Kingdom (H.R.C., T.G.)
| | - Henry A Lester
- Divisions of Chemistry and Chemical Engineering (M.C.M., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California; and School of Chemistry, University of Bristol, Bristol, United Kingdom (H.R.C., T.G.)
| | - Dennis A Dougherty
- Divisions of Chemistry and Chemical Engineering (M.C.M., D.A.D.) and Biology and Biological Engineering (H.A.L.), California Institute of Technology, Pasadena, California; and School of Chemistry, University of Bristol, Bristol, United Kingdom (H.R.C., T.G.)
| |
Collapse
|
4
|
Matta JA, Gu S, Davini WB, Bredt DS. Nicotinic acetylcholine receptor redux: Discovery of accessories opens therapeutic vistas. Science 2021; 373:373/6556/eabg6539. [PMID: 34385370 DOI: 10.1126/science.abg6539] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The neurotransmitter acetylcholine (ACh) acts in part through a family of nicotinic ACh receptors (nAChRs), which mediate diverse physiological processes including muscle contraction, neurotransmission, and sensory transduction. Pharmacologically, nAChRs are responsible for tobacco addiction and are targeted by medicines for hypertension and dementia. Nicotinic AChRs were the first ion channels to be isolated. Recent studies have identified molecules that control nAChR biogenesis, trafficking, and function. These nAChR accessories include protein and chemical chaperones as well as auxiliary subunits. Whereas some factors act on many nAChRs, others are receptor specific. Discovery of these regulatory mechanisms is transforming nAChR research in cells and tissues ranging from central neurons to spinal ganglia to cochlear hair cells. Nicotinic AChR-specific accessories also enable drug discovery on high-confidence targets for psychiatric, neurological, and auditory disorders.
Collapse
Affiliation(s)
| | | | - Weston B Davini
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, San Diego, CA 92121, USA.
| |
Collapse
|
5
|
Knowland D, Gu S, Eckert WA, Dawe GB, Matta JA, Limberis J, Wickenden AD, Bhattacharya A, Bredt DS. Functional α6β4 acetylcholine receptor expression enables pharmacological testing of nicotinic agonists with analgesic properties. J Clin Invest 2021; 130:6158-6170. [PMID: 33074244 DOI: 10.1172/jci140311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/06/2020] [Indexed: 01/25/2023] Open
Abstract
The α6β4 nicotinic acetylcholine receptor (nAChR) is enriched in dorsal root ganglia neurons and is an attractive non-opioid therapeutic target for pain. However, difficulty expressing human α6β4 receptors in recombinant systems has precluded drug discovery. Here, genome-wide screening identified accessory proteins that enable reconstitution of human α6β4 nAChRs. BARP, an auxiliary subunit of voltage-dependent calcium channels, promoted α6β4 surface expression while IRE1α, an unfolded protein response sensor, enhanced α6β4 receptor assembly. Effects on α6β4 involve BARP's N-terminal region and IRE1α's splicing of XBP1 mRNA. Furthermore, clinical efficacy of nicotinic agents in relieving neuropathic pain best correlated with their activity on α6β4. Finally, BARP-knockout, but not NACHO-knockout mice lacked nicotine-induced antiallodynia, highlighting the functional importance of α6β4 in pain. These results identify roles for IRE1α and BARP in neurotransmitter receptor assembly and unlock drug discovery for the previously elusive α6β4 receptor.
Collapse
|
6
|
Hagan R, Rex E, Woody D, Milewski M, Glaza T, Maher MP, Liu Y. Development of phenotypic assays for identifying novel blockers of L-type calcium channels in neurons. Sci Rep 2021; 11:456. [PMID: 33432098 PMCID: PMC7801380 DOI: 10.1038/s41598-020-80692-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 11/13/2022] Open
Abstract
L-type calcium channels (LTCCs) are highly expressed in the heart and brain and are critical for cardiac and neuronal functions. LTCC-blocking drugs have a long and successful record in the clinic for treating cardiovascular disorders. In contrast, establishment of their efficacy for indications of the central nervous system remains challenging given the tendency of existing LTCC drugs being functionally and mechanistically more selective for peripheral tissues. LTCCs in vivo are large macromolecular complexes consisting of a pore-forming subunit and other modulatory proteins, some of which may be neuro-specific and potentially harbor mechanisms for neuronal selectivity. To exploit the possibility of identifying mechanistically novel and/or neuro-selective blockers, we developed two phenotypic assays—a calcium flux-based primary screening assay and a patch clamp secondary assay, using rat primary cortical cultures. We screened a library comprised of 1278 known bioactive agents and successfully identified a majority of the potent LTCC-blocking drugs in the library. Significantly, we identified a previously unrecognized LTCC blocker with a novel mechanism, which was corroborated by patch clamp and binding studies. As such, these phenotypic assays are robust and represent an important step towards identifying mechanistically novel and neuro-selective LTCC blockers.
Collapse
Affiliation(s)
- Rebecca Hagan
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Elizabeth Rex
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - David Woody
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Monika Milewski
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Thomas Glaza
- Discovery Sciences, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Michael P Maher
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Yi Liu
- Neuroscience Discovery, Janssen Research & Development, L.L.C, 3210 Merryfield Row, San Diego, CA, 92121, USA.
| |
Collapse
|
7
|
Dolphin AC, Lee A. Presynaptic calcium channels: specialized control of synaptic neurotransmitter release. Nat Rev Neurosci 2020; 21:213-229. [PMID: 32161339 PMCID: PMC7873717 DOI: 10.1038/s41583-020-0278-2] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 11/09/2022]
Abstract
Chemical synapses are heterogeneous junctions formed between neurons that are specialized for the conversion of electrical impulses into the exocytotic release of neurotransmitters. Voltage-gated Ca2+ channels play a pivotal role in this process as they are the major conduits for the Ca2+ ions that trigger the fusion of neurotransmitter-containing vesicles with the presynaptic membrane. Alterations in the intrinsic function of these channels and their positioning within the active zone can profoundly alter the timing and strength of synaptic output. Advances in optical and electron microscopic imaging, structural biology and molecular techniques have facilitated recent breakthroughs in our understanding of the properties of voltage-gated Ca2+ channels that support their presynaptic functions. Here we examine the nature of these channels, how they are trafficked to and anchored within presynaptic boutons, and the mechanisms that allow them to function optimally in shaping the flow of information through neural circuits.
Collapse
Affiliation(s)
- Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Amy Lee
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
8
|
Autism-associated mutations in the CaVβ2 calcium-channel subunit increase Ba2+-currents and lead to differential modulation by the RGK-protein Gem. Neurobiol Dis 2020; 136:104721. [DOI: 10.1016/j.nbd.2019.104721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/06/2019] [Accepted: 12/26/2019] [Indexed: 12/26/2022] Open
|
9
|
Gu S, Matta JA, Davini WB, Dawe GB, Lord B, Bredt DS. α6-Containing Nicotinic Acetylcholine Receptor Reconstitution Involves Mechanistically Distinct Accessory Components. Cell Rep 2019; 26:866-874.e3. [PMID: 30673609 DOI: 10.1016/j.celrep.2018.12.103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/26/2018] [Accepted: 12/21/2018] [Indexed: 01/29/2023] Open
Abstract
Acetylcholine gates a large family of nicotinic receptor cation channels that control neuronal excitation and neurotransmitter release. These receptors are key targets for neuropsychiatric disorders; however, difficulties in expressing nicotinic acetylcholine (nACh) receptors hamper elaboration of their pharmacology and obscure elucidation of their biological functions. Particularly intriguing are α6-containing nACh receptors, which mediate nicotine-induced dopamine release in striatum-nucleus accumbens. Using genome-wide cDNA screening, we identify three accessory proteins, β-anchoring and -regulatory protein (BARP), lysosomal-associated membrane protein 5 (LAMP5), and SULT2B1, that complement the nACh receptor chaperone NACHO to reconstitute α6β2β3 channel function. Whereas NACHO mediates α6β2β3 assembly, BARP primarily enhances channel gating and LAMP5 and SULT2B1 promote receptor surface trafficking. BARP knockout mice show perturbations in presynaptic striatal nACh receptors that are consistent with BARP modulation of receptor desensitization. These studies unravel the molecular complexity of α6β2β3 biogenesis and enable physiological studies of this crucial neuropharmacological target.
Collapse
Affiliation(s)
- Shenyan Gu
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Jose A Matta
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Weston B Davini
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - G Brent Dawe
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - Brian Lord
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA
| | - David S Bredt
- Neuroscience Discovery, Janssen Pharmaceutical Companies of Johnson & Johnson, 3210 Merryfield Row, San Diego, CA 92121, USA.
| |
Collapse
|
10
|
Belkacemi A, Hui X, Wardas B, Laschke MW, Wissenbach U, Menger MD, Lipp P, Beck A, Flockerzi V. IP3 Receptor-Dependent Cytoplasmic Ca2+ Signals Are Tightly Controlled by Cavβ3. Cell Rep 2018; 22:1339-1349. [DOI: 10.1016/j.celrep.2018.01.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/10/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022] Open
|
11
|
Protein partners of the calcium channel β subunit highlight new cellular functions. Biochem J 2016; 473:1831-44. [DOI: 10.1042/bcj20160125] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 03/15/2016] [Indexed: 12/21/2022]
Abstract
Calcium plays a key role in cell signalling by its intervention in a wide range of physiological processes. Its entry into cells occurs mainly via voltage-gated calcium channels (VGCC), which are found not only in the plasma membrane of excitable cells but also in cells insensitive to electrical signals. VGCC are composed of different subunits, α1, β, α2δ and γ, among which the cytosolic β subunit (Cavβ) controls the trafficking of the channel to the plasma membrane, its regulation and its gating properties. For many years, these were the main functions associated with Cavβ. However, a growing number of proteins have been found to interact with Cavβ, emphasizing the multifunctional role of this versatile protein. Interestingly, some of the newly assigned functions of Cavβ are independent of its role in the regulation of VGCC, and thus further increase its functional roles. Based on the identity of Cavβ protein partners, this review emphasizes the diverse cellular functions of Cavβ and summarizes both past findings as well as recent progress in the understanding of VGCC.
Collapse
|
12
|
Campiglio M, Flucher BE. The role of auxiliary subunits for the functional diversity of voltage-gated calcium channels. J Cell Physiol 2015; 230:2019-31. [PMID: 25820299 PMCID: PMC4672716 DOI: 10.1002/jcp.24998] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 11/18/2022]
Abstract
Voltage-gated calcium channels (VGCCs) represent the sole mechanism to convert membrane depolarization into cellular functions like secretion, contraction, or gene regulation. VGCCs consist of a pore-forming α(1) subunit and several auxiliary channel subunits. These subunits come in multiple isoforms and splice-variants giving rise to a stunning molecular diversity of possible subunit combinations. It is generally believed that specific auxiliary subunits differentially regulate the channels and thereby contribute to the great functional diversity of VGCCs. If auxiliary subunits can associate and dissociate from pre-existing channel complexes, this would allow dynamic regulation of channel properties. However, most auxiliary subunits modulate current properties very similarly, and proof that any cellular calcium channel function is indeed modulated by the physiological exchange of auxiliary subunits is still lacking. In this review we summarize available information supporting a differential modulation of calcium channel functions by exchange of auxiliary subunits, as well as experimental evidence in support of alternative functions of the auxiliary subunits. At the heart of the discussion is the concept that, in their native environment, VGCCs function in the context of macromolecular signaling complexes and that the auxiliary subunits help to orchestrate the diverse protein-protein interactions found in these calcium channel signalosomes. Thus, in addition to a putative differential modulation of current properties, differential subcellular targeting properties and differential protein-protein interactions of the auxiliary subunits may explain the need for their vast molecular diversity.
Collapse
Affiliation(s)
- Marta Campiglio
- Division of Physiology, Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruck, Austria
| | - Bernhard E Flucher
- Division of Physiology, Department of Physiology and Medical Physics, Medical University InnsbruckInnsbruck, Austria
| |
Collapse
|
13
|
Nakao A, Miki T, Shoji H, Nishi M, Takeshima H, Miyakawa T, Mori Y. Comprehensive behavioral analysis of voltage-gated calcium channel beta-anchoring and -regulatory protein knockout mice. Front Behav Neurosci 2015; 9:141. [PMID: 26136667 PMCID: PMC4468383 DOI: 10.3389/fnbeh.2015.00141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 05/13/2015] [Indexed: 01/20/2023] Open
Abstract
Calcium (Ca2+) influx through voltage-gated Ca2+ channels (VGCCs) induces numerous intracellular events such as neuronal excitability, neurotransmitter release, synaptic plasticity, and gene regulation. It has been shown that genes related to Ca2+ signaling, such as the CACNA1C, CACNB2, and CACNA1I genes that encode VGCC subunits, are associated with schizophrenia and other psychiatric disorders. Recently, VGCC beta-anchoring and -regulatory protein (BARP) was identified as a novel regulator of VGCC activity via the interaction of VGCC β subunits. To examine the role of the BARP in higher brain functions, we generated BARP knockout (KO) mice and conducted a comprehensive battery of behavioral tests. BARP KO mice exhibited greatly reduced locomotor activity, as evidenced by decreased vertical activity, stereotypic counts in the open field test, and activity level in the home cage, and longer latency to complete a session in spontaneous T-maze alteration test, which reached “study-wide significance.” Acoustic startle response was also reduced in the mutants. Interestingly, they showed multiple behavioral phenotypes that are seemingly opposite to those seen in the mouse models of schizophrenia and its related disorders, including increased working memory, flexibility, prepulse inhibition, and social interaction, and decreased locomotor activity, though many of these phenotypes are statistically weak and require further replications. These results demonstrate that BARP is involved in the regulation of locomotor activity and, possibly, emotionality. The possibility was also suggested that BARP KO mice may serve as a unique tool for investigating the pathogenesis/pathophysiology of schizophrenia and related disorders. Further evaluation of the molecular and physiological phenotypes of the mutant mice would provide new insights into the role of BARP in higher brain functions.
Collapse
Affiliation(s)
- Akito Nakao
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan
| | - Takafumi Miki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| | - Hirotaka Shoji
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Kawaguchi, Japan
| | - Miyuki Nishi
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto, Japan
| | - Hiroshi Takeshima
- Department of Biological Chemistry, Graduate School of Pharmaceutical Sciences, Kyoto University Kyoto, Japan
| | - Tsuyoshi Miyakawa
- Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University Toyoake, Japan ; Japan Science and Technology Agency, Core Research for Evolutional Science and Technology Kawaguchi, Japan ; Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences Okazaki, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyoto, Japan
| |
Collapse
|
14
|
Béguin P, Nagashima K, Mahalakshmi RN, Vigot R, Matsunaga A, Miki T, Ng MY, Ng YJA, Lim CH, Tay HS, Hwang LA, Firsov D, Tang BL, Inagaki N, Mori Y, Seino S, Launey T, Hunziker W. BARP supresses voltage-gated calcium channel activity and Ca 2+-evoked exocytosis. J Gen Physiol 2014. [DOI: 10.1085/jgp.1435oia17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Leslie M. Closing the calcium floodgates. J Biophys Biochem Cytol 2014. [PMCID: PMC4003249 DOI: 10.1083/jcb.2052iti2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|