1
|
Revenu C, Lebreton C, Cannata Serio M, Rosello M, Duclaux-Loras R, Duroure K, Nicolle O, Eggeler F, Prospéri MT, Stoufflet J, Vougny J, Lépine P, Michaux G, Cerf-Bensussan N, Coudrier E, Perez F, Parlato M, Del Bene F. Myosin 1b regulates intestinal epithelial morphogenesis via interaction with UNC45A. Cell Rep 2024; 43:114941. [PMID: 39636728 DOI: 10.1016/j.celrep.2024.114941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/02/2023] [Accepted: 10/17/2024] [Indexed: 12/07/2024] Open
Abstract
Vesicle trafficking and the establishment of apicobasal polarity are essential processes in epithelial morphogenesis. UNC45A deficiency has been reported in a multi-organ syndrome presenting with severe diarrhea associated with enterocyte polarity defects. Myosin 1b, an actin motor able to bind membranes, regulates membrane shaping and vesicle trafficking. Here, we show that MYO1B is part of the UNC45A interactome. In the absence of UNC45A, myosin 1b is degraded and forms aggregates when proteasome activity is inhibited. In 3D Caco-2 cells, lumen formation is impaired in the absence of myosin 1b, associated with spindle orientation defects, Golgi apparatus fragmentation, and trafficking impairment. In zebrafish larvae, loss of myo1b results in intestinal bulb epithelium folding defects associated with terminal web disorganization and vesicle accumulation, reminiscent of villous atrophy. In conclusion, we show that myosin 1b plays an unexpected role in the development of the intestinal epithelium downstream of UNC45A, establishing its contribution in the gut defects reported in UNC45A patients.
Collapse
Affiliation(s)
- Céline Revenu
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Corinne Lebreton
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Magda Cannata Serio
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marion Rosello
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Rémi Duclaux-Loras
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Karine Duroure
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Ophélie Nicolle
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Fanny Eggeler
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France
| | - Marie-Thérèse Prospéri
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Julie Stoufflet
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Juliette Vougny
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France
| | - Priscilla Lépine
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Grégoire Michaux
- Université de Rennes, CNRS, IGDR (Institut de Génétique et de Développement de Rennes), UMR 6290, 35000 Rennes, France
| | - Nadine Cerf-Bensussan
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Franck Perez
- Institut Curie, PSL Research University, Sorbonne Université, CNRS, UMR 144, Paris, France
| | - Marianna Parlato
- INSERM, UMR1163, Laboratory of Intestinal Immunity and Institut Imagine, 75015 Paris, France.
| | - Filippo Del Bene
- Institut Curie, PSL Research University, INSERM U934, CNRS UMR3215, 75248 Paris Cedex, France; Sorbonne Université, INSERM, CNRS, Institut de la Vision, 75012 Paris, France.
| |
Collapse
|
2
|
Gallo G. The Axonal Actin Filament Cytoskeleton: Structure, Function, and Relevance to Injury and Degeneration. Mol Neurobiol 2024; 61:5646-5664. [PMID: 38216856 DOI: 10.1007/s12035-023-03879-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/13/2023] [Indexed: 01/14/2024]
Abstract
Early investigations of the neuronal actin filament cytoskeleton gave rise to the notion that, although growth cones exhibit high levels of actin filaments, the axon shaft exhibits low levels of actin filaments. With the development of new tools and imaging techniques, the axonal actin filament cytoskeleton has undergone a renaissance and is now an active field of research. This article reviews the current state of knowledge about the actin cytoskeleton of the axon shaft. The best understood forms of actin filament organization along axons are axonal actin patches and a submembranous system of rings that endow the axon with protrusive competency and structural integrity, respectively. Additional forms of actin filament organization along the axon have also been described and their roles are being elucidated. Extracellular signals regulate the axonal actin filament cytoskeleton and our understanding of the signaling mechanisms involved is being elaborated. Finally, recent years have seen advances in our perspective on how the axonal actin cytoskeleton is impacted by, and contributes to, axon injury and degeneration. The work to date has opened new venues and future research will undoubtedly continue to provide a richer understanding of the axonal actin filament cytoskeleton.
Collapse
Affiliation(s)
- Gianluca Gallo
- Department of Neural Sciences, Shriners Pediatric Research Center, Lewis Katz School of Medicine at Temple University, 3500 North Broad St, Philadelphia, PA, 19140, USA.
| |
Collapse
|
3
|
Tsai FC, Guérin G, Pernier J, Bassereau P. Actin-membrane linkers: Insights from synthetic reconstituted systems. Eur J Cell Biol 2024; 103:151402. [PMID: 38461706 DOI: 10.1016/j.ejcb.2024.151402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/10/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024] Open
Abstract
At the cell surface, the actin cytoskeleton and the plasma membrane interact reciprocally in a variety of processes related to the remodeling of the cell surface. The actin cytoskeleton has been known to modulate membrane organization and reshape the membrane. To this end, actin-membrane linking molecules play a major role in regulating actin assembly and spatially direct the interaction between the actin cytoskeleton and the membrane. While studies in cells have provided a wealth of knowledge on the molecular composition and interactions of the actin-membrane interface, the complex molecular interactions make it challenging to elucidate the precise actions of the actin-membrane linkers at the interface. Synthetic reconstituted systems, consisting of model membranes and purified proteins, have been a powerful approach to elucidate how actin-membrane linkers direct actin assembly to drive membrane shape changes. In this review, we will focus only on several actin-membrane linkers that have been studied by using reconstitution systems. We will discuss the design principles of these reconstitution systems and how they have contributed to the understanding of the cellular functions of actin-membrane linkers. Finally, we will provide a perspective on future research directions in understanding the intricate actin-membrane interaction.
Collapse
Affiliation(s)
- Feng-Ching Tsai
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| | - Gwendal Guérin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France
| | - Julien Pernier
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif 94800, France
| | - Patricia Bassereau
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Physics of Cells and Cancer, Paris 75005, France.
| |
Collapse
|
4
|
Zhang HF, Delaidelli A, Javed S, Turgu B, Morrison T, Hughes CS, Yang X, Pachva M, Lizardo MM, Singh G, Hoffmann J, Huang YZ, Patel K, Shraim R, Kung SH, Morin GB, Aparicio S, Martinez D, Maris JM, Bosse KR, Williams KC, Sorensen PH. A MYCN-independent mechanism mediating secretome reprogramming and metastasis in MYCN-amplified neuroblastoma. SCIENCE ADVANCES 2023; 9:eadg6693. [PMID: 37611092 PMCID: PMC10446492 DOI: 10.1126/sciadv.adg6693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
MYCN amplification (MNA) is a defining feature of high-risk neuroblastoma (NB) and predicts poor prognosis. However, whether genes within or in close proximity to the MYCN amplicon also contribute to MNA+ NB remains poorly understood. Here, we identify that GREB1, a transcription factor encoding gene neighboring the MYCN locus, is frequently coexpressed with MYCN and promotes cell survival in MNA+ NB. GREB1 controls gene expression independently of MYCN, among which we uncover myosin 1B (MYO1B) as being highly expressed in MNA+ NB and, using a chick chorioallantoic membrane (CAM) model, as a crucial regulator of invasion and metastasis. Global secretome and proteome profiling further delineates MYO1B in regulating secretome reprogramming in MNA+ NB cells, and the cytokine MIF as an important pro-invasive and pro-metastatic mediator of MYO1B activity. Together, we have identified a putative GREB1-MYO1B-MIF axis as an unconventional mechanism promoting aggressive behavior in MNA+ NB and independently of MYCN.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Alberto Delaidelli
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Sumreen Javed
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Busra Turgu
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Taylor Morrison
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Christopher S. Hughes
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Xiaqiu Yang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Manideep Pachva
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Michael M. Lizardo
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Gurdeep Singh
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Jennifer Hoffmann
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yue Zhou Huang
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Khushbu Patel
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rawan Shraim
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Biomedical and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | | | - Gregg B. Morin
- Canada’s Michael Smith Genome Sciences Centre, Vancouver, BC V5Z4S6, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Samuel Aparicio
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| | - Daniel Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kristopher R. Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Karla C. Williams
- Faculty of Pharmaceutical Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Poul H. Sorensen
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Agency, Vancouver, BC V5Z1L3, Canada
| |
Collapse
|
5
|
Cakir Z, Lord SJ, Zhou Y, Jang GM, Polacco BJ, Eckhardt M, Jimenez-Morales D, Newton BW, Orr AL, Johnson JR, da Cruz A, Mullins RD, Krogan NJ, Mahley RW, Swaney DL. Quantitative Proteomic Analysis Reveals apoE4-Dependent Phosphorylation of the Actin-Regulating Protein VASP. Mol Cell Proteomics 2023; 22:100541. [PMID: 37019383 PMCID: PMC10196575 DOI: 10.1016/j.mcpro.2023.100541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 02/03/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Apolipoprotein (apo) E4 is the major genetic risk factor for Alzheimer's disease. While neurons generally produce a minority of the apoE in the central nervous system, neuronal expression of apoE increases dramatically in response to stress and is sufficient to drive pathology. Currently, the molecular mechanisms of how apoE4 expression may regulate pathology are not fully understood. Here, we expand upon our previous studies measuring the impact of apoE4 on protein abundance to include the analysis of protein phosphorylation and ubiquitylation signaling in isogenic Neuro-2a cells expressing apoE3 or apoE4. ApoE4 expression resulted in a dramatic increase in vasodilator-stimulated phosphoprotein (VASP) S235 phosphorylation in a protein kinase A (PKA)-dependent manner. This phosphorylation disrupted VASP interactions with numerous actin cytoskeletal and microtubular proteins. Reduction of VASP S235 phosphorylation via PKA inhibition resulted in a significant increase in filopodia formation and neurite outgrowth in apoE4-expressing cells, exceeding levels observed in apoE3-expressing cells. Our results highlight the pronounced and diverse impact of apoE4 on multiple modes of protein regulation and identify protein targets to restore apoE4-related cytoskeletal defects.
Collapse
Affiliation(s)
- Zeynep Cakir
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Samuel J Lord
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Howard Hughes Medical Institute, San Francisco, California, USA
| | - Yuan Zhou
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Gwendolyn M Jang
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Benjamin J Polacco
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Manon Eckhardt
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - David Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Billy W Newton
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Adam L Orr
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, USA
| | - Jeffrey R Johnson
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | | | - R Dyche Mullins
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Howard Hughes Medical Institute, San Francisco, California, USA
| | - Nevan J Krogan
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA
| | - Robert W Mahley
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, California, USA; Departments of Pathology and Medicine, University of California San Francisco, San Francisco, California, USA
| | - Danielle L Swaney
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, California, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
6
|
Schneider F, Metz I, Rust MB. Regulation of actin filament assembly and disassembly in growth cone motility and axon guidance. Brain Res Bull 2023; 192:21-35. [PMID: 36336143 DOI: 10.1016/j.brainresbull.2022.10.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
Directed outgrowth of axons is fundamental for the establishment of neuronal networks. Axon outgrowth is guided by growth cones, highly motile structures enriched in filamentous actin (F-actin) located at the axons' distal tips. Growth cones exploit F-actin-based protrusions to scan the environment for guidance cues, and they contain the sensory apparatus to translate guidance cue information into intracellular signaling cascades. These cascades act upstream of actin-binding proteins (ABP) and thereby control assembly and disassembly of F-actin. Spatiotemporally controlled F-actin dis-/assembly in growth cones steers the axon towards attractants and away from repellents, and it thereby navigates the axon through the developing nervous system. Hence, ABP that control F-actin dynamics emerged as critical regulators of neuronal network formation. In the present review article, we will summarize and discuss current knowledge of the mechanisms that control remodeling of the actin cytoskeleton in growth cones, focusing on recent progress in the field. Further, we will introduce tools and techniques that allow to study actin regulatory mechanism in growth cones.
Collapse
Affiliation(s)
- Felix Schneider
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Molecular Urooncology, Department of Urology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Isabell Metz
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany
| | - Marco B Rust
- Molecular Neurobiology Group, Institute of Physiological Chemistry, Philipps-University of Marburg, 35032 Marburg, Germany; DFG Research Training Group 'Membrane Plasticity in Tissue Development and Remodeling', GRK 2213, Philipps-University of Marburg, 35032 Marburg, Germany; Center for Mind, Brain and Behavior (CMBB), University of Marburg and Justus-Liebig-University Giessen, 35032 Marburg, Germany.
| |
Collapse
|
7
|
Burute M, Jansen KI, Mihajlovic M, Vermonden T, Kapitein LC. Local changes in microtubule network mobility instruct neuronal polarization and axon specification. SCIENCE ADVANCES 2022; 8:eabo2343. [PMID: 36332030 PMCID: PMC9635826 DOI: 10.1126/sciadv.abo2343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
The polarization of neurons into axons and dendrites depends on extracellular cues, intracellular signaling, cytoskeletal rearrangements, and polarized transport, but the interplay between these processes during polarization remains unresolved. Here, we show that axon specification is determined by differences in microtubule network mobility between neurites, regulated by Rho guanosine triphosphatases (GTPases) and extracellular cues. In developing neurons, retrograde microtubule flow prevents the entry of the axon-selective motor protein Kinesin-1 into most neurites. Using inducible assays to control microtubule network flow, we demonstrate that local inhibition of microtubule mobility is sufficient to guide Kinesin-1 into a specific neurite, whereas long-term global inhibition induces the formation of multiple axons. We furthermore show that extracellular mechanical cues and intracellular Rho GTPase signaling control the local differences in microtubule network flow. These results reveal a novel cytoskeletal mechanism for neuronal polarization.
Collapse
Affiliation(s)
- Mithila Burute
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Klara I. Jansen
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| | - Marko Mihajlovic
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, Universiteitsweg 99, 3508 TB Utrecht, Netherlands
| | - Lukas C. Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, Netherlands
| |
Collapse
|
8
|
Pernier J, Schauer K. Does the Actin Network Architecture Leverage Myosin-I Functions? BIOLOGY 2022; 11:biology11070989. [PMID: 36101369 PMCID: PMC9311500 DOI: 10.3390/biology11070989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/16/2022]
Abstract
The actin cytoskeleton plays crucial roles in cell morphogenesis and functions. The main partners of cortical actin are molecular motors of the myosin superfamily. Although our understanding of myosin functions is heavily based on myosin-II and its ability to dimerize, the largest and most ancient class is represented by myosin-I. Class 1 myosins are monomeric, actin-based motors that regulate a wide spectrum of functions, and whose dysregulation mediates multiple human diseases. We highlight the current challenges in identifying the “pantograph” for myosin-I motors: we need to reveal how conformational changes of myosin-I motors lead to diverse cellular as well as multicellular phenotypes. We review several mechanisms for scaling, and focus on the (re-) emerging function of class 1 myosins to remodel the actin network architecture, a higher-order dynamic scaffold that has potential to leverage molecular myosin-I functions. Undoubtfully, understanding the molecular functions of myosin-I motors will reveal unexpected stories about its big partner, the dynamic actin cytoskeleton.
Collapse
Affiliation(s)
- Julien Pernier
- Institute for Integrative Biology of the Cell (I2BC), Centre National de la Recherche Scientifique (CNRS), Commissariat à L’Énergie Atomique et aux Énergies Alternatives (CEA), Université Paris-Saclay, 91198 Gif-sur-Yvette, France;
| | - Kristine Schauer
- Tumor Cell Dynamics Unit, Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
- Correspondence:
| |
Collapse
|
9
|
Selçuk E, Kırımtay K, Temizci B, Akarsu Ş, Everest E, Baslo MB, Demirkıran M, Yapıcı Z, Karabay A. MYO1H is a novel candidate gene for autosomal dominant pure hereditary spastic paraplegia. Mol Genet Genomics 2022; 297:1141-1150. [PMID: 35704118 DOI: 10.1007/s00438-022-01910-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
In this study, we aimed to determine the genetic basis of a Turkish family related to hereditary spastic paraplegia (HSP) by exome sequencing. HSP is a progressive neurodegenerative disorder and displays genetic and clinical heterogeneity. The major symptoms are muscle weakness and spasticity, especially in the lower extremities. We studied seven affected and seven unaffected family members, as well as a clinically undetermined member, to identify the disease-causing gene. Exome sequencing was performed for four affected and two unaffected individuals. The variants were firstly filtered for HSP-associated genes, and we found a common variant in the ZFYVE27 gene, which has been previously implied for association with HSP. Due to the incompletely penetrant segregation pattern of the ZFYVE27 variant, revealed by Sanger sequencing, with the disease in this family, filtering was re-performed according to the mode of inheritance and allelic frequencies. The resulting 14 rare variants were further evaluated in terms of their cellular functions, and three candidate variants in ATAD3C, VPS16, and MYO1H genes were selected as possible causative variants, which were analyzed for their familial segregation. ATAD3C and VPS16 variants were eliminated due to incomplete penetrance. Eventually, the MYO1H variant NM_001101421.3:c.2972_2974del (p.Glu992del, rs372231088) was found as the possible disease-causing deletion for HSP in this family. This is the first study reporting the possible role of a MYO1H variant in HSP pathogenesis. Further studies on the cellular roles of Myo1h protein are needed to validate the causality of MYO1H gene at the onset of HSP.
Collapse
Affiliation(s)
- Ece Selçuk
- Molecular Biology, Genetics-Biotechnology, Graduate School of Science, Engineering and Technology, Istanbul Technical University, 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Medeniyet University, Istanbul, 34700, Turkey
| | - Koray Kırımtay
- Molecular Biology, Genetics-Biotechnology, Graduate School of Science, Engineering and Technology, Istanbul Technical University, 34469, Istanbul, Turkey
| | - Benan Temizci
- Molecular Biology, Genetics-Biotechnology, Graduate School of Science, Engineering and Technology, Istanbul Technical University, 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Şeyma Akarsu
- Molecular Biology, Genetics-Biotechnology, Graduate School of Science, Engineering and Technology, Istanbul Technical University, 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Elif Everest
- Molecular Biology, Genetics-Biotechnology, Graduate School of Science, Engineering and Technology, Istanbul Technical University, 34469, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, 34469, Turkey
| | - Mehmet Barış Baslo
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Meltem Demirkıran
- Department of Neurology, Faculty of Medicine, Çukurova University, 01330, Adana, Turkey
| | - Zuhal Yapıcı
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, 34093, Istanbul, Turkey
| | - Arzu Karabay
- Molecular Biology, Genetics-Biotechnology, Graduate School of Science, Engineering and Technology, Istanbul Technical University, 34469, Istanbul, Turkey.
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, 34469, Turkey.
| |
Collapse
|
10
|
Prospéri MT, Pernier J, Lachuer H, Coudrier E. Plekhh1, a partner of myosin 1 and an effector of EphB2 controls the cortical actin network for cell repulsion. J Cell Sci 2021; 134:272686. [PMID: 34723325 DOI: 10.1242/jcs.258802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022] Open
Abstract
EphB2/ephrinB signalling that plays a major role in cell segregation during embryonic development and tissue homeostasis, induces an important reorganization of the cortical actin network. We have previously reported that myosin 1b contributes to the reorganisation of the cortical actin network upon EphB2 signalling. In this report we have identified Plekhh1, as a new partner of members of the myosin 1 family and EphB2 receptors. Plekhh1 interacts with myosin 1b via its N-terminus domain and with EphB2 via its C-terminus domain. Furthermore, Plekhh1 is tyrosine-phosphorylated, and this depends on EphB2 kinase activity. Such as the manipulation of the expression level of myosin 1b and myosin 1c, manipulation of Plekhh1 expression levels reveals that Plekhh1 controls the formation of filopodia, the length of focal adhesions and the formation of blebs. Furthermore, binding of Plekhh1 interacting domain to myosin 1b increases the motor activity of myosin 1b in vitro. Together our data show that Plekhh1 is an effector of EphB2 and suggest that Plekhh1 regulates the cortical actin network via the interaction of its N-terminus domain with myosin 1 upon EphB2/ephrinB signalling.
Collapse
Affiliation(s)
- Marie-Thérèse Prospéri
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Julien Pernier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Hugo Lachuer
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| | - Evelyne Coudrier
- Institut Curie, PSL Research University and C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France.,Sorbonne Université, 75005 Paris, France
| |
Collapse
|
11
|
Florentinus-Mefailoski A, Bowden P, Scheltens P, Killestein J, Teunissen C, Marshall JG. The plasma peptides of Alzheimer's disease. Clin Proteomics 2021; 18:17. [PMID: 34182925 PMCID: PMC8240224 DOI: 10.1186/s12014-021-09320-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023] Open
Abstract
Background A practical strategy to discover proteins specific to Alzheimer’s dementia (AD) may be to compare the plasma peptides and proteins from patients with dementia to normal controls and patients with neurological conditions like multiple sclerosis or other diseases. The aim was a proof of principle for a method to discover proteins and/or peptides of plasma that show greater observation frequency and/or precursor intensity in AD. The endogenous tryptic peptides of Alzheimer’s were compared to normals, multiple sclerosis, ovarian cancer, breast cancer, female normal, sepsis, ICU Control, heart attack, along with their institution-matched controls, and normal samples collected directly onto ice. Methods Endogenous tryptic peptides were extracted from blinded, individual AD and control EDTA plasma samples in a step gradient of acetonitrile for random and independent sampling by LC–ESI–MS/MS with a set of robust and sensitive linear quadrupole ion traps. The MS/MS spectra were fit to fully tryptic peptides within proteins identified using the X!TANDEM algorithm. Observation frequency of the identified proteins was counted using SEQUEST algorithm. The proteins with apparently increased observation frequency in AD versus AD Control were revealed graphically and subsequently tested by Chi Square analysis. The proteins specific to AD plasma by Chi Square with FDR correction were analyzed by the STRING algorithm. The average protein or peptide log10 precursor intensity was compared across disease and control treatments by ANOVA in the R statistical system. Results Peptides and/or phosphopeptides of common plasma proteins such as complement C2, C7, and C1QBP among others showed increased observation frequency by Chi Square and/or precursor intensity in AD. Cellular gene symbols with large Chi Square values (χ2 ≥ 25, p ≤ 0.001) from tryptic peptides included KIF12, DISC1, OR8B12, ZC3H12A, TNF, TBC1D8B, GALNT3, EME2, CD1B, BAG1, CPSF2, MMP15, DNAJC2, PHACTR4, OR8B3, GCK, EXOSC7, HMGA1 and NT5C3A among others. Similarly, increased frequency of tryptic phosphopeptides were observed from MOK, SMIM19, NXNL1, SLC24A2, Nbla10317, AHRR, C10orf90, MAEA, SRSF8, TBATA, TNIK, UBE2G1, PDE4C, PCGF2, KIR3DP1, TJP2, CPNE8, and NGF amongst others. STRING analysis showed an increase in cytoplasmic proteins and proteins associated with alternate splicing, exocytosis of luminal proteins, and proteins involved in the regulation of the cell cycle, mitochondrial functions or metabolism and apoptosis. Increases in mean precursor intensity of peptides from common plasma proteins such as DISC1, EXOSC5, UBE2G1, SMIM19, NXNL1, PANO, EIF4G1, KIR3DP1, MED25, MGRN1, OR8B3, MGC24039, POLR1A, SYTL4, RNF111, IREB2, ANKMY2, SGKL, SLC25A5, CHMP3 among others were associated with AD. Tryptic peptides from the highly conserved C-terminus of DISC1 within the sequence MPGGGPQGAPAAAGGGGVSHRAGSRDCLPPAACFR and ARQCGLDSR showed a higher frequency and highest intensity in AD compared to all other disease and controls. Conclusion Proteins apparently expressed in the brain that were directly related to Alzheimer’s including Nerve Growth Factor (NFG), Sphingomyelin Phosphodiesterase, Disrupted in Schizophrenia 1 (DISC1), the cell death regulator retinitis pigmentosa (NXNl1) that governs the loss of nerve cells in the retina and the cell death regulator ZC3H12A showed much higher observation frequency in AD plasma vs the matched control. There was a striking agreement between the proteins known to be mutated or dis-regulated in the brains of AD patients with the proteins observed in the plasma of AD patients from endogenous peptides including NBN, BAG1, NOX1, PDCD5, SGK3, UBE2G1, SMPD3 neuronal proteins associated with synapse function such as KSYTL4, VTI1B and brain specific proteins such as TBATA. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09320-2.
Collapse
Affiliation(s)
- Angelique Florentinus-Mefailoski
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Peter Bowden
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada
| | - Philip Scheltens
- Alzheimer Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Joep Killestein
- MS Center, Dept of Neurology, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Charlotte Teunissen
- Neurochemistry Lab and Biobank, Dept of Clinical Chemistry, Amsterdam University Medical Centers, Vrije Universiteit, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - John G Marshall
- Ryerson Analytical Biochemistry Laboratory (RABL), Department of Chemistry and Biology, Faculty of Science, Ryerson University, 350 Victoria St., Toronto, ON, Canada. .,International Biobank of Luxembourg (IBBL), Luxembourg Institute of Health (Formerly CRP Sante Luxembourg), Strassen, Luxembourg.
| |
Collapse
|
12
|
Tokuo H, Komaba S, Coluccio LM. In pancreatic β-cells myosin 1b regulates glucose-stimulated insulin secretion by modulating an early step in insulin granule trafficking from the Golgi. Mol Biol Cell 2021; 32:1210-1220. [PMID: 33826361 PMCID: PMC8351557 DOI: 10.1091/mbc.e21-03-0094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pancreatic β-cells secrete insulin, which controls blood glucose levels, and defects in insulin secretion are responsible for diabetes mellitus. The actin cytoskeleton and some myosins support insulin granule trafficking and release, although a role for the class I myosin Myo1b, an actin- and membrane-associated load-sensitive motor, in insulin biology is unknown. We found by immunohistochemistry that Myo1b is expressed in islet cells of the rat pancreas. In cultured rat insulinoma 832/13 cells, Myo1b localized near actin patches, the trans-Golgi network (TGN) marker TGN38, and insulin granules in the perinuclear region. Myo1b depletion by small interfering RNA in 832/13 cells reduced intracellular proinsulin and insulin content and glucose-stimulated insulin secretion (GSIS) and led to the accumulation of (pro)insulin secretory granules (SGs) at the TGN. Using an in situ fluorescent pulse-chase strategy to track nascent proinsulin, Myo1b depletion in insulinoma cells reduced the number of (pro)insulin-containing SGs budding from the TGN. The studies indicate for the first time that in pancreatic β-cells Myo1b controls GSIS at least in part by mediating an early stage in insulin granule trafficking from the TGN.
Collapse
Affiliation(s)
- Hiroshi Tokuo
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118-2518
| | - Shigeru Komaba
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118-2518
| | - Lynne M Coluccio
- Department of Physiology & Biophysics, Boston University School of Medicine, Boston, MA 02118-2518
| |
Collapse
|
13
|
Richter S, Martin R, Gutzeit HO, Knölker HJ. In vitro and in vivo effects of inhibitors on actin and myosin. Bioorg Med Chem 2021; 30:115928. [PMID: 33341499 DOI: 10.1016/j.bmc.2020.115928] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 11/18/2022]
Abstract
The interaction of actin and myosin is essential for cell migration. We have identified kaempferol and pentahalogenated pseudilins as efficient inhibitors of migration of MDA-MB-231 breast adenocarcinoma cells. The compounds were studied with respect to possible effects on myosin-2-ATPase activity. The pentahalogenated pseudilins inhibited the enzyme activity in vitro. Flavonoids showed no effect on enzyme activity. The polymerization dynamics of actin was measured to test whether the integrity of F-actin is essential for the migration of MDA-MB-231 cells. Quercetin and kaempferol depolymerized F-actin with similar efficiencies as found for the pentahalogenated pseudilins, whereas epigallocatechin showed the weakest effect. As the inhibitory effect on cell migration may be caused by a toxic effect, we have performed a cytotoxicity test and, furthermore, investigated the influence of the test compounds on cardiac function in eleutheroembryos of medaka (Oryzias latipes). Compared with the pentahalogenated pseudilins, the cytotoxic and cardiotoxic effects of flavonoids on medaka embryos were found to be moderate.
Collapse
Affiliation(s)
- Sabine Richter
- Faculty of Biology, TU Dresden, Zellescher Weg 20b, 01217 Dresden, Germany
| | - René Martin
- Faculty of Chemistry, TU Dresden, Bergstrasse 66, 01069 Dresden, Germany
| | - Herwig O Gutzeit
- Faculty of Biology, TU Dresden, Zellescher Weg 20b, 01217 Dresden, Germany.
| | | |
Collapse
|
14
|
Pernier J, Morchain A, Caorsi V, Bertin A, Bousquet H, Bassereau P, Coudrier E. Myosin 1b flattens and prunes branched actin filaments. J Cell Sci 2020; 133:jcs247403. [PMID: 32895245 PMCID: PMC7522023 DOI: 10.1242/jcs.247403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/18/2020] [Indexed: 01/29/2023] Open
Abstract
Motile and morphological cellular processes require a spatially and temporally coordinated branched actin network that is controlled by the activity of various regulatory proteins, including the Arp2/3 complex, profilin, cofilin and tropomyosin. We have previously reported that myosin 1b regulates the density of the actin network in the growth cone. Here, by performing in vitro F-actin gliding assays and total internal reflection fluorescence (TIRF) microscopy, we show that this molecular motor flattens (reduces the branch angle) in the Arp2/3-dependent actin branches, resulting in them breaking, and reduces the probability of new branches forming. This experiment reveals that myosin 1b can produce force sufficient enough to break up the Arp2/3-mediated actin junction. Together with the former in vivo studies, this work emphasizes the essential role played by myosins in the architecture and dynamics of actin networks in different cellular regions.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Julien Pernier
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
- Laboratory Cell Biology and Cancer, Institut Curie, PSL Research University, C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France
| | - Antoine Morchain
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | | | - Aurélie Bertin
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Hugo Bousquet
- Sorbonne Université, 75005 Paris, France
- Laboratory Cell Biology and Cancer, Institut Curie, PSL Research University, C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France
| | - Patricia Bassereau
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 75005 Paris, France
- Sorbonne Université, 75005 Paris, France
| | - Evelyne Coudrier
- Sorbonne Université, 75005 Paris, France
- Laboratory Cell Biology and Cancer, Institut Curie, PSL Research University, C.N.R.S. UMR 144, 26 rue d'Ulm, Paris, France
| |
Collapse
|
15
|
Hinton SD. Pseudophosphatase MK-STYX: the atypical member of the MAP kinase phosphatases. FEBS J 2020; 287:4221-4231. [PMID: 32472731 DOI: 10.1111/febs.15426] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/25/2020] [Accepted: 05/26/2020] [Indexed: 01/03/2023]
Abstract
The regulation of the phosphorylation of mitogen-activated protein kinases (MAPKs) is essential for cellular processes such as proliferation, differentiation, survival, and death. Mutations within the MAPK signaling cascades are implicated in diseases such as cancer, neurodegenerative disorders, arthritis, obesity, and diabetes. MAPK phosphorylation is controlled by an intricate balance between MAPK kinases (enzymes that add phosphate groups) and MAPK phosphatases (MKPs) (enzymes that remove phosphate groups). MKPs are complex negative regulators of the MAPK pathway that control the amplitude and spatiotemporal regulation of MAPKs. MK-STYX (MAPK phosphoserine/threonine/tyrosine-binding protein) is a member of the MKP subfamily, which lacks the critical histidine and nucleophilic cysteine residues in the active site required for catalysis. MK-STYX does not influence the phosphorylation status of MAPK, but even so it adds to the complexity of signal transduction cascades as a signaling regulator. This review highlights the function of MK-STYX, providing insight into MK-STYX as a signal regulating molecule in the stress response, HDAC 6 dynamics, apoptosis, and neurite differentiation.
Collapse
Affiliation(s)
- Shantá D Hinton
- Department of Biology, Integrated Science Center, William & Mary, Williamsburg, VA, USA
| |
Collapse
|
16
|
McCormick LE, Gupton SL. Mechanistic advances in axon pathfinding. Curr Opin Cell Biol 2020; 63:11-19. [PMID: 31927278 DOI: 10.1016/j.ceb.2019.12.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/02/2019] [Accepted: 12/02/2019] [Indexed: 02/08/2023]
Abstract
The development of a functional nervous system entails establishing connectivity between appropriate synaptic partners. During axonal pathfinding, the developing axon navigates through the extracellular environment, extending toward postsynaptic targets. In the early 1900s, Ramon y Cajal suggested that the growth cone, a specialized, dynamic, and cytoskeletal-rich structure at the tip of the extending axon, is guided by chemical cues in the extracellular environment. A century of work supports this hypothesis and introduced myriad guidance cues and receptors that promote a variety of growth cone behaviors including extension, pause, collapse, retraction, turning, and branching. Here, we highlight research from the last two years regarding pathways implicated in axon pathfinding.
Collapse
Affiliation(s)
- Laura E McCormick
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Stephanie L Gupton
- UNC Department of Cell Biology and Physiology, 111 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Neuroscience Center, 115 Mason Farm Road, Chapel Hill, NC, 27599, USA; UNC Lineberger Comprehensive Cancer Center, 101 Manning Dr, Chapel Hill, NC, 27514, USA.
| |
Collapse
|
17
|
Abstract
The regulation of actin dynamics is essential for various cellular processes. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here we investigate the contribution of myosin 1b to actin dynamics using sliding motility assays. We observe that sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end, while sliding on myosin II, although 5 times faster, has no effect. This work reveals a non-conventional myosin motor as another type of depolymerase and points to its singular interactions with the actin barbed end. Former evidence suggests a correlation between the function of non-conventional myosin motors and actin dynamics. Here authors use in vitro assays in which they observe that actin sliding on myosin 1b immobilized or bound to a fluid bilayer enhances actin depolymerization at the barbed end.
Collapse
|
18
|
Paul CD, Bishop K, Devine A, Paine EL, Staunton JR, Thomas SM, Thomas JR, Doyle AD, Miller Jenkins LM, Morgan NY, Sood R, Tanner K. Tissue Architectural Cues Drive Organ Targeting of Tumor Cells in Zebrafish. Cell Syst 2019; 9:187-206.e16. [PMID: 31445892 DOI: 10.1016/j.cels.2019.07.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/28/2019] [Accepted: 06/27/2019] [Indexed: 01/03/2023]
Abstract
Tumor cells encounter a myriad of physical cues upon arrest and extravasation in capillary beds. Here, we examined the role of physical factors in non-random organ colonization using a zebrafish xenograft model. We observed a two-step process by which mammalian mammary tumor cells showed non-random organ colonization. Initial homing was driven by vessel architecture, where greater numbers of cells became arrested in the topographically disordered blood vessels of the caudal vascular plexus (CVP) than in the linear vessels in the brain. Following arrest, bone-marrow- and brain-tropic clones exhibited organ-specific patterns of extravasation. Extravasation was mediated by β1 integrin, where knockdown of β1 integrin reduced extravasation in the CVP but did not affect extravasation of a brain-tropic clone in the brain. In contrast, silencing myosin 1B redirected early colonization from the brain to the CVP. Our results suggest that organ selectivity is driven by both vessel topography and cell-type-dependent extravasation.
Collapse
Affiliation(s)
- Colin D Paul
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Bishop
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alexus Devine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elliott L Paine
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jack R Staunton
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah M Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joanna R Thomas
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Andrew D Doyle
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lisa M Miller Jenkins
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Y Morgan
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20814, USA
| | - Raman Sood
- Zebrafish Core, Translational and Functional Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kandice Tanner
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
19
|
Jiménez-González V, Ogalla-García E, García-Quintanilla M, García-Quintanilla A. Deciphering GRINA/Lifeguard1: Nuclear Location, Ca 2+ Homeostasis and Vesicle Transport. Int J Mol Sci 2019; 20:ijms20164005. [PMID: 31426446 PMCID: PMC6719933 DOI: 10.3390/ijms20164005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/31/2019] [Accepted: 08/12/2019] [Indexed: 01/31/2023] Open
Abstract
The Glutamate Receptor Ionotropic NMDA-Associated Protein 1 (GRINA) belongs to the Lifeguard family and is involved in calcium homeostasis, which governs key processes, such as cell survival or the release of neurotransmitters. GRINA is mainly associated with membranes of the endoplasmic reticulum, Golgi, endosome, and the cell surface, but its presence in the nucleus has not been explained yet. Here we dissect, with the help of different software tools, the potential roles of GRINA in the cell and how they may be altered in diseases, such as schizophrenia or celiac disease. We describe for the first time that the cytoplasmic N-terminal half of GRINA (which spans a Proline-rich domain) contains a potential DNA-binding sequence, in addition to cleavage target sites and probable PY-nuclear localization sequences, that may enable it to be released from the rest of the protein and enter the nucleus under suitable conditions, where it could participate in the transcription, alternative splicing, and mRNA export of a subset of genes likely involved in lipid and sterol synthesis, ribosome biogenesis, or cell cycle progression. To support these findings, we include additional evidence based on an exhaustive review of the literature and our preliminary data of the protein–protein interaction network of GRINA.
Collapse
Affiliation(s)
| | - Elena Ogalla-García
- Department of Pharmacology, School of Pharmacy, University of Seville, 41012 Seville, Spain
| | - Meritxell García-Quintanilla
- Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain
| | - Albert García-Quintanilla
- Department of Biochemistry and Molecular Biology, School of Pharmacy, University of Seville, 41012 Seville, Spain.
| |
Collapse
|
20
|
Coudrier E, Iuliano O. [An unconventional myosin controls the axon formation]. Med Sci (Paris) 2019; 35:16-18. [PMID: 30672453 DOI: 10.1051/medsci/2018315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Evelyne Coudrier
- Institut Curie, PSL Research University, CNRS, UMR 144, 26 rue d'Ulm, 75005 Paris, France
| | - Olga Iuliano
- Université Paul Sabatier UMR5169 (MINDING), Toulouse, France
| |
Collapse
|
21
|
IGARASHI M. Molecular basis of the functions of the mammalian neuronal growth cone revealed using new methods. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2019; 95:358-377. [PMID: 31406059 PMCID: PMC6766448 DOI: 10.2183/pjab.95.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/26/2019] [Indexed: 05/25/2023]
Abstract
The neuronal growth cone is a highly motile, specialized structure for extending neuronal processes. This structure is essential for nerve growth, axon pathfinding, and accurate synaptogenesis. Growth cones are important not only during development but also for plasticity-dependent synaptogenesis and neuronal circuit rearrangement following neural injury in the mature brain. However, the molecular details of mammalian growth cone function are poorly understood. This review examines molecular findings on the function of the growth cone as a result of the introduction of novel methods such superresolution microscopy and (phospho)proteomics. These results increase the scope of our understating of the molecular mechanisms of growth cone behavior in the mammalian brain.
Collapse
Affiliation(s)
- Michihiro IGARASHI
- Department of Neurochemistry and Molecular Cell Biology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| |
Collapse
|
22
|
Sackmann E. Viscoelasticity of single cells-from subcellular to cellular level. Semin Cell Dev Biol 2018; 93:2-15. [PMID: 30267805 DOI: 10.1016/j.semcdb.2018.09.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/27/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
This review deals with insights into complex cellular structures and processes obtained by measuring viscoelastic impedances of the cell envelope and the cytoplasm by colloidal bead microrheometry. I first introduce a mechanical cell model that allows us to understand their unique ability of mechanical self-stabilization by actin microtubule crosstalk. In the second part, I show how cell movements can be driven by pulsatile or propagating solitary actin gelatin waves (SAGW) that are generated on nascent adhesion domains by logistically controlled membrane recruitment of functional proteins by electrostatic-hydrophobic forces. The global polarization of cell migration is guided by actin-microtubule crosstalk that is mediated by the Ca++ and strain-sensitive supramolecular scaffolding protein IQGAP. In the third part, I introduce the traction force microscopy as a tool to measure the forces between somatic cells and the tissue ´Here I show, how absolute values of viscoelastic impedances of the composite cell envelope can be obtained by deformation field mapping techniques. In the fourth part, it is shown how the dynamic mechanical properties of the active viscoplastic cytoplasmic space can be evaluated using colloidal beads as phantom endosomes. Separate measurements of velocity distributions of directed and random motions of phantom endosomes, yield local values of transport forces, viscosities and life times of directed motion along microtubules. The last part deals with biomimetic experiments allowing us to quantitatively evaluate the mechanical properties of passive and active actin networks on the basis of the percolation theory of gelation.
Collapse
Affiliation(s)
- Erich Sackmann
- Physics Department E22, Technical University Munich, James Franck Str. 1, D85747, Garching, Germany.
| |
Collapse
|
23
|
Papandréou MJ, Leterrier C. The functional architecture of axonal actin. Mol Cell Neurosci 2018; 91:151-159. [PMID: 29758267 DOI: 10.1016/j.mcn.2018.05.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton builds and supports the complex architecture of neurons. It orchestrates the specification, growth, and compartmentation of the axon: axon initial segment, axonal shaft, presynapses. The cytoskeleton must then maintain this intricate architecture for the whole life of its host, but also drive its adaptation to new network demands and changing physiological conditions. Microtubules are readily visible inside axon shafts by electron microscopy, whereas axonal actin study has long been focused on dynamic structures of the axon such as growth cones. Super-resolution microscopy and live-cell imaging have recently revealed new actin-based structures in mature axons: rings, hotspots and trails. This has caused renewed interest for axonal actin, with efforts underway to understand the precise organization and cellular functions of these assemblies. Actin is also present in presynapses, where its arrangement is still poorly defined, and its functions vigorously debated. Here we review the organization of axonal actin, focusing on recent advances and current questions in this rejuvenated field.
Collapse
|