1
|
Casuso A, Benavente BP, Leal Y, Carrera-Naipil C, Valenzuela-Muñoz V, Gallardo-Escárate C. Sex-Biased Transcription Expression of Vitellogenins Reveals Fusion Gene and MicroRNA Regulation in the Sea Louse Caligus rogercresseyi. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:243-260. [PMID: 38294574 DOI: 10.1007/s10126-024-10291-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
The caligid ectoparasite, Caligus rogercresseyi, is one of the main concerns in the Chilean salmon industry. The molecular mechanisms displayed by the parasite during the reproductive process represent an opportunity for developing novel control strategies. Vitellogenin is a multifunctional protein recognized as a critical player in several crustaceans' biological processes, including reproduction, embryonic development, and immune response. This study aimed to characterize the C. rogercresseyi vitellogenins, including discovering novel transcripts and regulatory mechanisms associated with microRNAs. Herein, vitellogenin genes were identified by homology analysis using the reference sea louse genome, transcriptome database, and arthropods vitellogenin-protein database. The validation of expression transcripts was conducted by RNA nanopore sequencing technology. Moreover, fusion gene profiling, miRNA target analysis, and functional validation were performed using luciferase assay. Six putative vitellogenin genes were identified in the C. rogercresseyi genome with high homology with other copepods vitellogenins. Furthermore, miR-996 showed a putative role in regulating the Cr_Vitellogenin1 gene, which is highly expressed in females. Moreover, vitellogenin-fusion genes were identified in adult stages and highly regulated in males, demonstrating sex-related expression patterns. In females, the identified fusion genes merged with several non-vitellogenin genes involved in biological processes of ribosome assembly, BMP signaling pathway, and biosynthetic processes. This study reports the genome array of vitellogenins in C. rogercresseyi for the first time, revealing the putative role of fusion genes and miRNA regulation in sea lice biology.
Collapse
Affiliation(s)
- Antonio Casuso
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Bárbara P Benavente
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Yeny Leal
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Crisleri Carrera-Naipil
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
| | - Valentina Valenzuela-Muñoz
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile
| | - Cristian Gallardo-Escárate
- Interdisciplinary Center for Aquaculture Research (INCAR), Universidad de Concepción, Concepción, Chile.
- Laboratory of Biotechnology and Aquatic Genomics, Department of Oceanography, Universidad de Concepción, Concepción, Chile.
| |
Collapse
|
2
|
Zhang B, Duan H, Kavaler J, Wei L, Eberl DF, Lai EC. A nonneural miRNA cluster mediates hearing via repression of two neural targets. Genes Dev 2023; 37:1041-1051. [PMID: 38110249 PMCID: PMC10760640 DOI: 10.1101/gad.351052.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/29/2023] [Indexed: 12/20/2023]
Abstract
We show here that mir-279/996 are absolutely essential for development and function of Johnston's organ (JO), the primary proprioceptive and auditory organ in Drosophila Their deletion results in highly aberrant cell fate determination, including loss of scolopale cells and ectopic neurons, and mutants are electrophysiologically deaf. In vivo activity sensors and mosaic analyses indicate that these seed-related miRNAs function autonomously to suppress neural fate in nonneuronal cells. Finally, genetic interactions pinpoint two neural targets (elav and insensible) that underlie miRNA mutant JO phenotypes. This work uncovers how critical post-transcriptional regulation of specific miRNA targets governs cell specification and function of the auditory system.
Collapse
Affiliation(s)
- Binglong Zhang
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Hong Duan
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Joshua Kavaler
- Department of Biology, Colby College, Waterville, Maine 04901, USA
| | - Lu Wei
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, Iowa 52242, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, New York, New York 10065, USA;
| |
Collapse
|
3
|
Mukherjee S, Calvi BR, Hundley HA, Sokol NS. MicroRNA mediated regulation of the onset of enteroblast differentiation in the Drosophila adult intestine. Cell Rep 2022; 41:111495. [DOI: 10.1016/j.celrep.2022.111495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/17/2022] [Accepted: 09/21/2022] [Indexed: 11/03/2022] Open
|
4
|
Bejarano F, Chang CH, Sun K, Hagen JW, Deng WM, Lai EC. A comprehensive in vivo screen for anti-apoptotic miRNAs indicates broad capacities for oncogenic synergy. Dev Biol 2021; 475:10-20. [PMID: 33662357 PMCID: PMC8107139 DOI: 10.1016/j.ydbio.2021.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022]
Abstract
microRNAs (miRNAs) are ~21-22 nucleotide (nt) RNAs that mediate broad post-transcriptional regulatory networks. However, genetic analyses have shown that the phenotypic consequences of deleting individual miRNAs are generally far less overt compared to their misexpression. This suggests that miRNA deregulation may have broader phenotypic impacts during disease situations. We explored this concept in the Drosophila eye, by screening for miRNAs whose misexpression could modify the activity of pro-apoptotic factors. Via unbiased and comprehensive in vivo phenotypic assays, we identify an unexpectedly large set of miRNA hits that can suppress the action of pro-apoptotic genes hid and grim. We utilize secondary assays to validate that a subset of these miRNAs can inhibit irradiation-induced cell death. Since cancer cells might seek to evade apoptosis pathways, we modeled this situation by asking whether activation of anti-apoptotic miRNAs could serve as "second hits". Indeed, while clones of the lethal giant larvae (lgl) tumor suppressor are normally eliminated during larval development, we find that diverse anti-apoptotic miRNAs mediate the survival of lgl mutant clones in third instar larvae. Notably, while certain anti-apoptotic miRNAs can target apoptotic factors, most of our screen hits lack obvious targets in the core apoptosis machinery. These data highlight how a genetic approach can reveal distinct and powerful activities of miRNAs in vivo, including unexpected functional synergies during disease or cancer-relevant settings.
Collapse
Affiliation(s)
- Fernando Bejarano
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA
| | - Chih-Hsuan Chang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kailiang Sun
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA; Weill Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Joshua W Hagen
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA; Tri-Institutional M.D.-Ph.D. Program, New York, NY, 10065, USA
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Eric C Lai
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Ave, Box 252, New York, NY, 10065, USA.
| |
Collapse
|
5
|
Duan H, de Navas LF, Hu F, Sun K, Mavromatakis YE, Viets K, Zhou C, Kavaler J, Johnston RJ, Tomlinson A, Lai EC. The mir-279/996 cluster represses receptor tyrosine kinase signaling to determine cell fates in the Drosophila eye. Development 2018; 145:dev159053. [PMID: 29540498 PMCID: PMC5963866 DOI: 10.1242/dev.159053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 02/28/2018] [Indexed: 12/14/2022]
Abstract
Photoreceptors in the crystalline Drosophila eye are recruited by receptor tyrosine kinase (RTK)/Ras signaling mediated by Epidermal growth factor receptor (EGFR) and the Sevenless (Sev) receptor. Analyses of an allelic deletion series of the mir-279/996 locus, along with a panel of modified genomic rescue transgenes, show that Drosophila eye patterning depends on both miRNAs. Transcriptional reporter and activity sensor transgenes reveal expression and function of miR-279/996 in non-neural cells of the developing eye. Moreover, mir-279/996 mutants exhibit substantial numbers of ectopic photoreceptors, particularly of R7, and cone cell loss. These miRNAs restrict RTK signaling in the eye, since mir-279/996 nulls are dominantly suppressed by positive components of the EGFR pathway and enhanced by heterozygosity for an EGFR repressor. miR-279/996 limit photoreceptor recruitment by targeting multiple positive RTK/Ras signaling components that promote photoreceptor/R7 specification. Strikingly, deletion of mir-279/996 sufficiently derepresses RTK/Ras signaling so as to rescue a population of R7 cells in R7-specific RTK null mutants boss and sev, which otherwise completely lack this cell fate. Altogether, we reveal a rare setting of developmental cell specification that involves substantial miRNA control.
Collapse
Affiliation(s)
- Hong Duan
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Luis F de Navas
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Fuqu Hu
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| | - Kailiang Sun
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
- Program in Neuroscience, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yannis E Mavromatakis
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Kayla Viets
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Cyrus Zhou
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Joshua Kavaler
- Department of Biology, Colby College, Waterville, ME 04901, USA
| | - Robert J Johnston
- Department of Biology, Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Andrew Tomlinson
- Department of Genetics and Development, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | - Eric C Lai
- Department of Developmental Biology, Sloan-Kettering Institute, 1275 York Ave, Box 252, New York, NY 10065, USA
| |
Collapse
|