1
|
Chen R, Grill S, Lin B, Saiduddin M, Lehmann R. Origin and establishment of the germline in Drosophila melanogaster. Genetics 2025; 229:iyae217. [PMID: 40180587 PMCID: PMC12005264 DOI: 10.1093/genetics/iyae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 12/09/2024] [Indexed: 04/05/2025] Open
Abstract
The continuity of a species depends on germ cells. Germ cells are different from all the other cell types of the body (somatic cells) as they are solely destined to develop into gametes (sperm or egg) to create the next generation. In this review, we will touch on 4 areas of embryonic germ cell development in Drosophila melanogaster: the assembly and function of germplasm, which houses the determinants for germ cell specification and fate and the mitochondria of the next generation; the process of pole cell formation, which will give rise to primordial germ cells (PGCs); the specification of pole cells toward the PGC fate; and finally, the migration of PGCs to the somatic gonadal precursors, where they, together with somatic gonadal precursors, form the embryonic testis and ovary.
Collapse
Affiliation(s)
- Ruoyu Chen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Sherilyn Grill
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Mariyah Saiduddin
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Vilcek Institute of Graduate Studies, Department of Cell Biology, NYU School of Medicine, New York University, New York, NY 10016, USA
| | - Ruth Lehmann
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| |
Collapse
|
2
|
Zhang F, Lee A, Freitas AV, Herb JT, Wang ZH, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. eLife 2024; 13:RP96536. [PMID: 39727307 DOI: 10.7554/elife.96536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcription factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mitochondrial DNA (mtDNA) deficiency. Among 638 transcription factors annotated in the Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenesis. Additional genetic analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Anna V Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Jake T Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zong-Heng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, United States
| |
Collapse
|
3
|
Rugman-Jones PF, Dodge CE, Stouthamer R. Pervasive heteroplasmy in an invasive ambrosia beetle (Scolytinae) in southern California. Heredity (Edinb) 2024; 133:388-399. [PMID: 39266674 PMCID: PMC11589772 DOI: 10.1038/s41437-024-00722-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/14/2024] Open
Abstract
Heteroplasmy, the presence of multiple mitochondrial genotypes (mitotypes) within an individual, has long been thought to be a rare aberrance that is quickly removed by selection or drift. However, heteroplasmy is being reported in natural populations of eukaryotes with increasing frequency, in part due to improved diagnostic methods. Here, we report a seemingly stable heteroplasmic state in California populations of the polyphagous shothole borer (PSHB), Euwallacea fornicatus; an invasive ambrosia beetle that is causing significant tree dieback. We develop and validate a qPCR assay utilizing locked nucleic acid probes to detect different mitotypes, and qualitatively assess heteroplasmy in individual PSHB. We prove the utility of this assay by: (1) mitotyping field-collected PSHB, documenting the prevalence of heteroplasmy across its range in California; and, (2) measuring relative titers of each mitotype across multiple generations of heteroplasmic laboratory colonies to assess the stability of transmission through the maternal germline. We show that our findings are unlikely to be explained by the existence of NUMTs by next generation sequencing of contiguous sections of mitochondrial DNA, where each of the observed heteroplasmic sites are found within fully functional coding regions of mtDNA. Subsequently, we find heteroplasmic individuals are common in Californian field populations, and that heteroplasmy persists for at least 10 generations in experimental colonies. We also looked for evidence of the common occurrence of paternal leakage, but found none. In light of our results, we discuss competing hypotheses as to how heteroplasmy may have arisen, and continues to perpetuate, in Californian PSHB populations.
Collapse
Affiliation(s)
- Paul F Rugman-Jones
- Department of Entomology, University of California, Riverside, CA, 92521, USA.
| | - Christine E Dodge
- Department of Entomology, University of California, Riverside, CA, 92521, USA
- Forest Pest Methods Laboratory, USDA-APHIS-PPQ-S&T, 1398 W. Truck Rd, Buzzards Bay, MA, 02542, USA
| | - Richard Stouthamer
- Department of Entomology, University of California, Riverside, CA, 92521, USA
| |
Collapse
|
4
|
Gitschlag BL, Pereira CV, Held JP, McCandlish DM, Patel MR. Multiple distinct evolutionary mechanisms govern the dynamics of selfish mitochondrial genomes in Caenorhabditis elegans. Nat Commun 2024; 15:8237. [PMID: 39300074 DOI: 10.1038/s41467-024-52596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024] Open
Abstract
Cells possess multiple mitochondrial DNA (mtDNA) copies, which undergo semi-autonomous replication and stochastic inheritance. This enables mutant mtDNA variants to arise and selfishly compete with cooperative (wildtype) mtDNA. Selfish mitochondrial genomes are subject to selection at different levels: they compete against wildtype mtDNA directly within hosts and indirectly through organism-level selection. However, determining the relative contributions of selection at different levels has proven challenging. We overcome this challenge by combining mathematical modeling with experiments designed to isolate the levels of selection. Applying this approach to many selfish mitochondrial genotypes in Caenorhabditis elegans reveals an unexpected diversity of evolutionary mechanisms. Some mutant genomes persist at high frequency for many generations, despite a host fitness cost, by aggressively outcompeting cooperative genomes within hosts. Conversely, some mutant genomes persist by evading inter-organismal selection. Strikingly, the mutant genomes vary dramatically in their susceptibility to genetic drift. Although different mechanisms can cause high frequency of selfish mtDNA, we show how they give rise to characteristically different distributions of mutant frequency among individuals. Given that heteroplasmic frequency represents a key determinant of phenotypic severity, this work outlines an evolutionary theoretic framework for predicting the distribution of phenotypic consequences among individuals carrying a selfish mitochondrial genome.
Collapse
Affiliation(s)
- Bryan L Gitschlag
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA.
| | - Claudia V Pereira
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - James P Held
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David M McCandlish
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 11724, USA
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Diabetes Research and Training Center, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Evolutionary Studies, Vanderbilt University, VU Box #34-1634, Nashville, TN, USA.
| |
Collapse
|
5
|
Zhang F, Lee A, Freitas A, Herb J, Wang Z, Gupta S, Chen Z, Xu H. A transcription network underlies the dual genomic coordination of mitochondrial biogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577217. [PMID: 38410491 PMCID: PMC10896348 DOI: 10.1101/2024.01.25.577217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Mitochondrial biogenesis requires the expression of genes encoded by both the nuclear and mitochondrial genomes. However, aside from a handful transcriptional factors regulating specific subsets of mitochondrial genes, the overall architecture of the transcriptional control of mitochondrial biogenesis remains to be elucidated. The mechanisms coordinating these two genomes are largely unknown. We performed a targeted RNAi screen in developing eyes with reduced mitochondrial DNA content, anticipating a synergistic disruption of tissue development due to impaired mitochondrial biogenesis and mtDNA deficiency. Among 638 transcription factors annotated in Drosophila genome, 77 were identified as potential regulators of mitochondrial biogenesis. Utilizing published ChIP-seq data of positive hits, we constructed a regulatory network revealing the logic of the transcription regulation of mitochondrial biogenesis. Multiple transcription factors in core layers had extensive connections, collectively governing the expression of nearly all mitochondrial genes, whereas factors sitting on the top layer may respond to cellular cues to modulate mitochondrial biogenesis through the underlying network. CG1603, a core component of the network, was found to be indispensable for the expression of most nuclear mitochondrial genes, including those required for mtDNA maintenance and gene expression, thus coordinating nuclear genome and mtDNA activities in mitochondrial biogenies. Additional genetics analyses validated YL-1, a transcription factor upstream of CG1603 in the network, as a regulator controlling CG1603 expression and mitochondrial biogenesis.
Collapse
Affiliation(s)
- Fan Zhang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Annie Lee
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Freitas
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake Herb
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zongheng Wang
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snigdha Gupta
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhe Chen
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hong Xu
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
6
|
Ru Y, Deng X, Chen J, Zhang L, Xu Z, Lv Q, Long S, Huang Z, Kong M, Guo J, Jiang M. Maternal age enhances purifying selection on pathogenic mutations in complex I genes of mammalian mtDNA. NATURE AGING 2024; 4:1211-1230. [PMID: 39075271 DOI: 10.1038/s43587-024-00672-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/14/2024] [Indexed: 07/31/2024]
Abstract
Mitochondrial diseases, caused mainly by pathogenic mitochondrial DNA (mtDNA) mutations, pose major challenges due to the lack of effective treatments. Investigating the patterns of maternal transmission of mitochondrial diseases could pave the way for preventive approaches. In this study, we used DddA-derived cytosine base editors (DdCBEs) to generate two mouse models, each haboring a single pathogenic mutation in complex I genes (ND1 and ND5), replicating those found in human patients. Our findings revealed that both mutations are under strong purifying selection during maternal transmission and occur predominantly during postnatal oocyte maturation, with increased protein synthesis playing a vital role. Interestingly, we discovered that maternal age intensifies the purifying selection, suggesting that older maternal age may offer a protective effect against the transmission of deleterious mtDNA mutations, contradicting the conventional notion that maternal age correlates with increased transmitted mtDNA mutations. As collecting comprehensive clinical data is needed to understand the relationship between maternal age and transmission patterns in humans, our findings may have profound implications for reproductive counseling of mitochondrial diseases, especially those involving complex I gene mutations.
Collapse
Affiliation(s)
- Yanfei Ru
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Xiaoling Deng
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Jiatong Chen
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Leping Zhang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Xu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
| | - Qunyu Lv
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Shiyun Long
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Zijian Huang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Fudan University, Shanghai, China
| | - Minghua Kong
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Jing Guo
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Min Jiang
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences,Westlake University, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
7
|
Zhong Y, Wang G, Yang S, Zhang Y, Wang X. The role of DNA damage in neural stem cells ageing. J Cell Physiol 2024; 239:e31187. [PMID: 38219047 DOI: 10.1002/jcp.31187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/17/2023] [Accepted: 12/20/2023] [Indexed: 01/15/2024]
Abstract
Neural stem cells (NSCs) are pluripotent stem cells with the potential to differentiate into a variety of nerve cells. NSCs are susceptible to both intracellular and extracellular insults, thus causing DNA damage. Extracellular insults include ultraviolet, ionizing radiation, base analogs, modifiers, alkyl agents and others, while intracellular factors include Reactive oxygen species (ROS) radicals produced by mitochondria, mismatches that occur during DNA replication, deamination of bases, loss of bases, and more. When encountered with DNA damage, cells typically employ three coping strategies: DNA repair, damage tolerance, and apoptosis. NSCs, like many other stem cells, have the ability to divide, differentiate, and repair DNA damage to prevent mutations from being passed down to the next generation. However, when DNA damage accumulates over time, it will lead to a series of alterations in the metabolism of cells, which will cause cellular ageing. The ageing and exhaustion of neural stem cell will have serious effects on the body, such as neurodegenerative diseases. The purpose of this review is to examine the processes by which DNA damage leads to NSCs ageing and the mechanisms of DNA repair in NSCs.
Collapse
Affiliation(s)
- Yiming Zhong
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Guangming Wang
- School of Medicine, Postdoctoral Station of Clinical Medicine, Shanghai Tongji Hospital, Tongji University, Shanghai, China
| | - Shangzhi Yang
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Zhang
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
8
|
Spinazzola A, Perez-Rodriguez D, Ježek J, Holt IJ. Mitochondrial DNA competition: starving out the mutant genome. Trends Pharmacol Sci 2024; 45:225-242. [PMID: 38402076 DOI: 10.1016/j.tips.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 02/26/2024]
Abstract
High levels of pathogenic mitochondrial DNA (mtDNA) variants lead to severe genetic diseases, and the accumulation of such mutants may also contribute to common disorders. Thus, selecting against these mutants is a major goal in mitochondrial medicine. Although mutant mtDNA can drift randomly, mounting evidence indicates that active forces play a role in the selection for and against mtDNA variants. The underlying mechanisms are beginning to be clarified, and recent studies suggest that metabolic cues, including fuel availability, contribute to shaping mtDNA heteroplasmy. In the context of pathological mtDNAs, remodeling of nutrient metabolism supports mitochondria with deleterious mtDNAs and enables them to outcompete functional variants owing to a replicative advantage. The elevated nutrient requirement represents a mutant Achilles' heel because small molecules that restrict nutrient consumption or interfere with nutrient sensing can purge cells of deleterious mtDNAs and restore mitochondrial respiration. These advances herald the dawn of a new era of small-molecule therapies to counteract pathological mtDNAs.
Collapse
Affiliation(s)
- Antonella Spinazzola
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK.
| | - Diego Perez-Rodriguez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Jan Ježek
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK
| | - Ian J Holt
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London NW3 2PF, UK; Biodonostia Health Research Institute, 20014 San Sebastián, Spain; IKERBASQUE (Basque Foundation for Science), 48013 Bilbao, Spain; CIBERNED (Center for Networked Biomedical Research on Neurodegenerative Diseases, Ministry of Economy and Competitiveness, Institute Carlos III), 28031 Madrid, Spain; Universidad de País Vasco, Barrio Sarriena s/n, 48940 Leioa, Bilbao, Spain.
| |
Collapse
|
9
|
Ng AQE, Chan SN, Pek JW. Nutrient-dependent regulation of a stable intron modulates germline mitochondrial quality control. Nat Commun 2024; 15:1252. [PMID: 38341415 PMCID: PMC10858910 DOI: 10.1038/s41467-024-45651-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Mitochondria are inherited exclusively from the mothers and are required for the proper development of embryos. Hence, germline mitochondrial quality is highly regulated during oogenesis to ensure oocyte viability. How nutrient availability influences germline mitochondrial quality control is unclear. Here we find that fasting leads to the accumulation of mitochondrial clumps and oogenesis arrest in Drosophila. Fasting induces the downregulation of the DIP1-Clueless pathway, leading to an increase in the expression of a stable intronic sequence RNA called sisR-1. Mechanistically, sisR-1 localizes to the mitochondrial clumps to inhibit the poly-ubiquitination of the outer mitochondrial protein Porin/VDAC1, thereby suppressing p62-mediated mitophagy. Alleviation of the fasting-induced high sisR-1 levels by either sisR-1 RNAi or refeeding leads to mitophagy, the resumption of oogenesis and an improvement in oocyte quality. Thus, our study provides a possible mechanism by which fasting can improve oocyte quality by modulating the mitochondrial quality control pathway. Of note, we uncover that the sisR-1 response also regulates mitochondrial clumping and oogenesis during protein deprivation, heat shock and aging, suggesting a broader role for this mechanism in germline mitochondrial quality control.
Collapse
Affiliation(s)
- Annabel Qi En Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Seow Neng Chan
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
- Department of Biological Sciences, National University of Singapore, 14 Science Drive, Singapore, 117543, Singapore.
| |
Collapse
|
10
|
Gäbelein CG, Lehmann R. Mechanical activation of mitochondria in germ cell differentiation. Trends Cell Biol 2024; 34:83-84. [PMID: 38135636 DOI: 10.1016/j.tcb.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Mitochondria are activated during stem cell differentiation. Recently, Wang et al. found that mechanical stimulation from tissue surrounding differentiating germ cells in the female fly ovary is necessary to sustain intracellular calcium levels, promoting mitochondrial activity. This suggests a molecular link between cell mechanics and developmental metabolic transitions in eukaryotes.
Collapse
Affiliation(s)
- Christoph G Gäbelein
- Whitehead Institute and Department of Biology, MIT, 455 Mainstreet, Cambridge, MA 02142, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Mainstreet, Cambridge, MA 02142, USA.
| |
Collapse
|
11
|
Spradling AC. The Ancient Origin and Function of Germline Cysts. Results Probl Cell Differ 2024; 71:3-21. [PMID: 37996670 DOI: 10.1007/978-3-031-37936-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Gamete production in most animal species is initiated within an evolutionarily ancient multicellular germline structure, the germline cyst, whose interconnected premeiotic cells synchronously develop from a single progenitor arising just downstream from a stem cell. Cysts in mice, Drosophila, and many other animals protect developing sperm, while in females, cysts generate nurse cells that guard sister oocytes from transposons (TEs) and help them grow and build a Balbiani body. However, the origin and extreme evolutionary conservation of germline cysts remains a mystery. We suggest that cysts arose in ancestral animals like Hydra and Planaria whose multipotent somatic and germline stem cells (neoblasts) express genes conserved in all animal germ cells and frequently begin differentiation in cysts. A syncytial state is proposed to help multipotent stem cell chromatin transition to an epigenetic state with heterochromatic domains suitable for TE repression and specialized function. Most modern animals now lack neoblasts but have retained stem cells and cysts in their early germlines, which continue to function using this ancient epigenetic strategy.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
12
|
Brubacher JL. Female Germline Cysts in Animals: Evolution and Function. Results Probl Cell Differ 2024; 71:23-46. [PMID: 37996671 DOI: 10.1007/978-3-031-37936-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Germline cysts are syncytia formed by incomplete cytokinesis of mitotic germline precursors (cystoblasts) in which the cystocytes are interconnected by cytoplasmic bridges, permitting the sharing of molecules and organelles. Among animals, such cysts are a nearly universal feature of spermatogenesis and are also often involved in oogenesis. Recent, elegant studies have demonstrated remarkable similarities in the oogenic cysts of mammals and insects, leading to proposals of widespread conservation of these features among animals. Unfortunately, such claims obscure the well-described diversity of female germline cysts in animals and ignore major taxa in which female germline cysts appear to be absent. In this review, I explore the phylogenetic patterns of oogenic cysts in the animal kingdom, with a focus on the hexapods as an informative example of a clade in which such cysts have been lost, regained, and modified in various ways. My aim is to build on the fascinating insights of recent comparative studies, by calling for a more nuanced view of evolutionary conservation. Female germline cysts in the Metazoa are an example of a phenomenon that-though essential for the continuance of many, diverse animal lineages-nevertheless exhibits intriguing patterns of evolutionary innovation, loss, and convergence.
Collapse
|
13
|
Udagawa O. Oocyte Health and Quality: Implication of Mitochondria-related Organelle Interactions. Results Probl Cell Differ 2024; 73:25-42. [PMID: 39242373 DOI: 10.1007/978-3-031-62036-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Among factors like hormonal imbalance and uterine condition, oocyte quality is regarded as one of the key factors involved in age-related decline in the reproductive capacity. Here, are discussions about the functions played by organelles within the oocyte in forming the next generation that is more suitable for survival. Many insights on the adaptation to aging and maintenance of quality can be obtained from: interactions between mitochondria and other organelles that enable the long life of primordial oocytes; characteristics of organelle interactions after breaking dormancy from primary oocytes to mature oocytes; and characteristics of interactions between mitochondria and other organelles of aged oocytes collected during the ovulatory cycle from elderly individuals and animals. This information would potentially be beneficial to the development of future therapeutic methods or agents.
Collapse
Affiliation(s)
- Osamu Udagawa
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
14
|
Mitochondrial remodelling is essential for female germ cell differentiation and survival. PLoS Genet 2023; 19:e1010610. [PMID: 36696418 PMCID: PMC9901744 DOI: 10.1371/journal.pgen.1010610] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 02/06/2023] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
Stem cells often possess immature mitochondria with few inner membrane invaginations, which increase as stem cells differentiate. Despite this being a conserved feature across many stem cell types in numerous organisms, how and why mitochondria undergo such remodelling during stem cell differentiation has remained unclear. Here, using Drosophila germline stem cells (GSCs), we show that Complex V drives mitochondrial remodelling during the early stages of GSC differentiation, prior to terminal differentiation. This endows germline mitochondria with the capacity to generate large amounts of ATP required for later egg growth and development. Interestingly, impairing mitochondrial remodelling prior to terminal differentiation results in endoplasmic reticulum (ER) lipid bilayer stress, Protein kinase R-like ER kinase (PERK)-mediated activation of the Integrated Stress Response (ISR) and germ cell death. Taken together, our data suggest that mitochondrial remodelling is an essential and tightly integrated aspect of stem cell differentiation. This work sheds light on the potential impact of mitochondrial dysfunction on stem and germ cell function, highlighting ER lipid bilayer stress as a potential major driver of phenotypes caused by mitochondrial dysfunction.
Collapse
|
15
|
Burgstaller JP, Chiaratti MR. Mitochondrial Inheritance Following Nuclear Transfer: From Cloned Animals to Patients with Mitochondrial Disease. Methods Mol Biol 2023; 2647:83-104. [PMID: 37041330 DOI: 10.1007/978-1-0716-3064-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Mitochondria are indispensable power plants of eukaryotic cells that also act as a major biochemical hub. As such, mitochondrial dysfunction, which can originate from mutations in the mitochondrial genome (mtDNA), may impair organism fitness and lead to severe diseases in humans. MtDNA is a multi-copy, highly polymorphic genome that is uniparentally transmitted through the maternal line. Several mechanisms act in the germline to counteract heteroplasmy (i.e., coexistence of two or more mtDNA variants) and prevent expansion of mtDNA mutations. However, reproductive biotechnologies such as cloning by nuclear transfer can disrupt mtDNA inheritance, resulting in new genetic combinations that may be unstable and have physiological consequences. Here, we review the current understanding of mitochondrial inheritance, with emphasis on its pattern in animals and human embryos generated by nuclear transfer.
Collapse
Affiliation(s)
- Jörg P Burgstaller
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine, Vienna, Austria
| | - Marcos R Chiaratti
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, Brazil.
| |
Collapse
|
16
|
Spradling AC, Niu W, Yin Q, Pathak M, Maurya B. Conservation of oocyte development in germline cysts from Drosophila to mouse. eLife 2022; 11:83230. [PMID: 36445738 PMCID: PMC9708067 DOI: 10.7554/elife.83230] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
Abstract
Recent studies show that pre-follicular mouse oogenesis takes place in germline cysts, highly conserved groups of oogonial cells connected by intercellular bridges that develop as nurse cells as well as an oocyte. Long studied in Drosophila and insect gametogenesis, female germline cysts acquire cytoskeletal polarity and traffic centrosomes and organelles between nurse cells and the oocyte to form the Balbiani body, a conserved marker of polarity. Mouse oocyte development and nurse cell dumping are supported by dynamic, cell-specific programs of germline gene expression. High levels of perinatal germ cell death in this species primarily result from programmed nurse cell turnover after transfer rather than defective oocyte production. The striking evolutionary conservation of early oogenesis mechanisms between distant animal groups strongly suggests that gametogenesis and early embryonic development in vertebrates and invertebrates share even more in common than currently believed.
Collapse
Affiliation(s)
- Allan C Spradling
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Wanbao Niu
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Qi Yin
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Madhulika Pathak
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| | - Bhawana Maurya
- Carnegie Institution for Science/Howard Hughes Medical Institute, Baltimore, United States
| |
Collapse
|
17
|
Chiaratti MR, Chinnery PF. Modulating mitochondrial DNA mutations: factors shaping heteroplasmy in the germ line and somatic cells. Pharmacol Res 2022; 185:106466. [PMID: 36174964 DOI: 10.1016/j.phrs.2022.106466] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
Abstract
Until recently it was thought that most humans only harbor one type of mitochondrial DNA (mtDNA), however, deep sequencing and single-cell analysis has shown the converse - that mixed populations of mtDNA (heteroplasmy) are the norm. This is important because heteroplasmy levels can change dramatically during transmission in the female germ line, leading to high levels causing severe mitochondrial diseases. There is also emerging evidence that low level mtDNA mutations contribute to common late onset diseases such as neurodegenerative disorders and cardiometabolic diseases because the inherited mutation levels can change within developing organs and non-dividing cells over time. Initial predictions suggested that the segregation of mtDNA heteroplasmy was largely stochastic, with an equal tendency for levels to increase or decrease. However, transgenic animal work and single-cell analysis have shown this not to be the case during germ-line transmission and in somatic tissues during life. Mutation levels in specific mtDNA regions can increase or decrease in different contexts and the underlying molecular mechanisms are starting to be unraveled. In this review we provide a synthesis of recent literature on the mechanisms of selection for and against mtDNA variants. We identify the most pertinent gaps in our understanding and suggest ways these could be addressed using state of the art techniques.
Collapse
Affiliation(s)
- Marcos R Chiaratti
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, Brazil.
| | - Patrick F Chinnery
- Department of Clinical Neurosciences, School of Clinical Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK; Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
18
|
Palozzi JM, Jeedigunta SP, Minenkova AV, Monteiro VL, Thompson ZS, Lieber T, Hurd TR. Mitochondrial DNA quality control in the female germline requires a unique programmed mitophagy. Cell Metab 2022; 34:1809-1823.e6. [PMID: 36323236 DOI: 10.1016/j.cmet.2022.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/22/2022] [Accepted: 10/06/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria have their own DNA (mtDNA), which is susceptible to the accumulation of disease-causing mutations. To prevent deleterious mutations from being inherited, the female germline has evolved a conserved quality control mechanism that remains poorly understood. Here, through a large-scale screen, we uncover a unique programmed germline mitophagy (PGM) that is essential for mtDNA quality control. We find that PGM is developmentally triggered as germ cells enter meiosis by inhibition of the target of rapamycin complex 1 (TORC1). We identify a role for the RNA-binding protein Ataxin-2 (Atx2) in coordinating the timing of PGM with meiosis. We show that PGM requires the mitophagy receptor BNIP3, mitochondrial fission and translation factors, and members of the Atg1 complex, but not the mitophagy factors PINK1 and Parkin. Additionally, we report several factors that are critical for germline mtDNA quality control and show that pharmacological manipulation of one of these factors promotes mtDNA quality control.
Collapse
Affiliation(s)
- Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Vernon L Monteiro
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Zoe S Thompson
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada
| | - Toby Lieber
- HHMI and Kimmel Center for Biology and Medicine of the Skirball Institute, Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, 661 University Avenue, Toronto, ON M5G 1M1, Canada.
| |
Collapse
|
19
|
Schwartz AZA, Tsyba N, Abdu Y, Patel MR, Nance J. Independent regulation of mitochondrial DNA quantity and quality in Caenorhabditis elegans primordial germ cells. eLife 2022; 11:e80396. [PMID: 36200990 PMCID: PMC9536838 DOI: 10.7554/elife.80396] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondria harbor an independent genome, called mitochondrial DNA (mtDNA), which contains essential metabolic genes. Although mtDNA mutations occur at high frequency, they are inherited infrequently, indicating that germline mechanisms limit their accumulation. To determine how germline mtDNA is regulated, we examined the control of mtDNA quantity and quality in C. elegans primordial germ cells (PGCs). We show that PGCs combine strategies to generate a low point in mtDNA number by segregating mitochondria into lobe-like protrusions that are cannibalized by adjacent cells, and by concurrently eliminating mitochondria through autophagy, reducing overall mtDNA content twofold. As PGCs exit quiescence and divide, mtDNAs replicate to maintain a set point of ~200 mtDNAs per germline stem cell. Whereas cannibalism and autophagy eliminate mtDNAs stochastically, we show that the kinase PTEN-induced kinase 1 (PINK1), operating independently of Parkin and autophagy, preferentially reduces the fraction of mutant mtDNAs. Thus, PGCs employ parallel mechanisms to control both the quantity and quality of the founding population of germline mtDNAs.
Collapse
Affiliation(s)
- Aaron ZA Schwartz
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| | - Nikita Tsyba
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
| | - Yusuff Abdu
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| | - Maulik R Patel
- Department of Biological Sciences, Vanderbilt UniversityNashvilleUnited States
- Department of Cell and Developmental Biology, Vanderbilt University School of MedicineNashvilleUnited States
- Diabetes Research and Training Center, Vanderbilt University School of MedicineNashvilleUnited States
| | - Jeremy Nance
- Department of Cell Biology, NYU Grossman School of MedicineNew YorkUnited States
- Skirball Institute of Biomolecular Medicine, NYU Grossman School of MedicineNew YorkUnited States
| |
Collapse
|
20
|
Leuthner T, Benzing L, Kohrn B, Bergemann C, Hipp M, Hershberger K, Mello D, Sokolskyi T, Stevenson K, Merutka I, Seay S, Gregory S, Kennedy S, Meyer J. Resistance of mitochondrial DNA to cadmium and Aflatoxin B1 damage-induced germline mutation accumulation in C. elegans. Nucleic Acids Res 2022; 50:8626-8642. [PMID: 35947695 PMCID: PMC9410910 DOI: 10.1093/nar/gkac666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 01/12/2023] Open
Abstract
Mitochondrial DNA (mtDNA) is prone to mutation in aging and over evolutionary time, yet the processes that regulate the accumulation of de novo mtDNA mutations and modulate mtDNA heteroplasmy are not fully elucidated. Mitochondria lack certain DNA repair processes, which could contribute to polymerase error-induced mutations and increase susceptibility to chemical-induced mtDNA mutagenesis. We conducted error-corrected, ultra-sensitive Duplex Sequencing to investigate the effects of two known nuclear genome mutagens, cadmium and Aflatoxin B1, on germline mtDNA mutagenesis in Caenorhabditis elegans. Detection of thousands of mtDNA mutations revealed pervasive heteroplasmy in C. elegans and that mtDNA mutagenesis is dominated by C:G → A:T mutations generally attributed to oxidative damage. However, there was no effect of either exposure on mtDNA mutation frequency, spectrum, or trinucleotide context signature despite a significant increase in nuclear mutation rate after aflatoxin B1 exposure. Mitophagy-deficient mutants pink-1 and dct-1 accumulated significantly higher levels of mtDNA damage compared to wild-type C. elegans after exposures. However, there were only small differences in mtDNA mutation frequency, spectrum, or trinucleotide context signature compared to wild-type after 3050 generations, across all treatments. These findings suggest mitochondria harbor additional previously uncharacterized mechanisms that regulate mtDNA mutational processes across generations.
Collapse
Affiliation(s)
- Tess C Leuthner
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Laura Benzing
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Brendan F Kohrn
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Michael J Hipp
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | | | - Danielle F Mello
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Tymofii Sokolskyi
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Kevin Stevenson
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA
| | - Ilaria R Merutka
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Sarah A Seay
- Nicholas School of the Environment, Duke University, Durham, NC 27708, USA
| | - Simon G Gregory
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27701, USA,Department of Neurology, Duke University, Durham, NC 27708, USA
| | - Scott R Kennedy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Joel N Meyer
- To whom correspondence should be addressed. Tel: +1 919 613 8109;
| |
Collapse
|
21
|
Stenberg S, Li J, Gjuvsland AB, Persson K, Demitz-Helin E, González Peña C, Yue JX, Gilchrist C, Ärengård T, Ghiaci P, Larsson-Berglund L, Zackrisson M, Smits S, Hallin J, Höög JL, Molin M, Liti G, Omholt SW, Warringer J. Genetically controlled mtDNA deletions prevent ROS damage by arresting oxidative phosphorylation. eLife 2022; 11:e76095. [PMID: 35801695 PMCID: PMC9427111 DOI: 10.7554/elife.76095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 07/07/2022] [Indexed: 11/15/2022] Open
Abstract
Deletion of mitochondrial DNA in eukaryotes is currently attributed to rare accidental events associated with mitochondrial replication or repair of double-strand breaks. We report the discovery that yeast cells arrest harmful intramitochondrial superoxide production by shutting down respiration through genetically controlled deletion of mitochondrial oxidative phosphorylation genes. We show that this process critically involves the antioxidant enzyme superoxide dismutase 2 and two-way mitochondrial-nuclear communication through Rtg2 and Rtg3. While mitochondrial DNA homeostasis is rapidly restored after cessation of a short-term superoxide stress, long-term stress causes maladaptive persistence of the deletion process, leading to complete annihilation of the cellular pool of intact mitochondrial genomes and irrevocable loss of respiratory ability. This shows that oxidative stress-induced mitochondrial impairment may be under strict regulatory control. If the results extend to human cells, the results may prove to be of etiological as well as therapeutic importance with regard to age-related mitochondrial impairment and disease.
Collapse
Affiliation(s)
- Simon Stenberg
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jing Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Arne B Gjuvsland
- Centre for Integrative Genetics, Department of Animal and Aquacultural Sciences, Norwegian University of Life SciencesÅsNorway
| | - Karl Persson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Erik Demitz-Helin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Carles González Peña
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Jia-Xing Yue
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer CenterGuangzhouChina
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Ciaran Gilchrist
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Timmy Ärengård
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Lisa Larsson-Berglund
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Martin Zackrisson
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Silvana Smits
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johan Hallin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Johanna L Höög
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| | - Mikael Molin
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
- Department of Biology and Biological Engineering, Chalmers University of TechnologyGothenburgSweden
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCANNiceFrance
| | - Stig W Omholt
- Department of Circulation and Medical Imaging, Cardiac Exercise Research Group, Norwegian University of Science and TechnologyTrondheimNorway
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of GothenburgGothenburgSweden
| |
Collapse
|
22
|
Yang H, Sibilla C, Liu R, Yun J, Hay BA, Blackstone C, Chan DC, Harvey RJ, Guo M. Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria. Nat Commun 2022; 13:1582. [PMID: 35332133 PMCID: PMC8948191 DOI: 10.1038/s41467-022-29071-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 02/04/2022] [Indexed: 02/08/2023] Open
Abstract
Mitochondrial fission is critically important for controlling mitochondrial morphology, function, quality and transport. Drp1 is the master regulator driving mitochondrial fission, but exactly how Drp1 is regulated remains unclear. Here, we identified Drosophila Clueless and its mammalian orthologue CLUH as key regulators of Drp1. As with loss of drp1, depletion of clueless or CLUH results in mitochondrial elongation, while as with drp1 overexpression, clueless or CLUH overexpression leads to mitochondrial fragmentation. Importantly, drp1 overexpression rescues adult lethality, tissue disintegration and mitochondrial defects of clueless null mutants in Drosophila. Mechanistically, Clueless and CLUH promote recruitment of Drp1 to mitochondria from the cytosol. This involves CLUH binding to mRNAs encoding Drp1 receptors MiD49 and Mff, and regulation of their translation. Our findings identify a crucial role of Clueless and CLUH in controlling mitochondrial fission through regulation of Drp1. Drp1 is the master regulator of mitochondrial fission, which has important impact on cellular functions. Here, Yang et al identified evolutionarily conserved proteins Clueless and its homolog CLUH as key regulators of Drp1 that function via translation of Drp1 receptors MiD49 and Mff.
Collapse
Affiliation(s)
- Huan Yang
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA
| | - Caroline Sibilla
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Department of Pharmacology, University College London School of Pharmacy, London, UK.,AstraZeneca PLC, Cambridge Biomedical Campus, Cambridge, UK
| | - Raymond Liu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.,Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Jina Yun
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA.,Genentech, Inc., South San Francisco, CA, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Craig Blackstone
- Cell Biology Section, Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Robert J Harvey
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Sippy Downs, QLD, Australia.,Sunshine Coast Health Institute, Birtinya, QLD, Australia
| | - Ming Guo
- Department of Neurology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA. .,Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, CA, USA. .,California NanoSystems Institute at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Bateman JM. Mitochondrial DNA Transport in Drosophila Neurons. Methods Mol Biol 2022; 2431:409-416. [PMID: 35412289 DOI: 10.1007/978-1-0716-1990-2_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mitochondria are essential organelles that generate energy and play vital roles in cellular metabolism. The small circular mitochondrial genome encodes key components of the mitochondrial respiratory apparatus. Depletion of, or mutations in mitochondrial DNA (mtDNA) cause mitochondrial dysfunction and disease. mtDNA is packaged into nucleoids, which are transported throughout the cell within mitochondria. Efficient transport of nucleoids is essential in neurons, where mitochondrial function is required locally at synapses. Here I describe methods for visualization of nucleoids in Drosophila neurons using a GFP fusion of the mitochondrial transcription factor TFAM. TFAM-GFP, together with mCherry-labeled mitochondria, was used to visualize nucleoids in fixed larval segmental nerves. I also describe how these tools can be used for live imaging of nucleoid dynamics. Using Drosophila as a model system, these methods will enable further characterization and analysis of nucleoid dynamics in neurons.
Collapse
Affiliation(s)
- Joseph M Bateman
- Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK.
| |
Collapse
|
24
|
Annuario E, Ng K, Vagnoni A. High-Resolution Imaging of Mitochondria and Mitochondrial Nucleoids in Differentiated SH-SY5Y Cells. Methods Mol Biol 2022; 2431:291-310. [PMID: 35412283 DOI: 10.1007/978-1-0716-1990-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mitochondria are highly dynamic organelles which form intricate networks with complex dynamics. Mitochondrial transport and distribution are essential to ensure proper cell function, especially in cells with an extremely polarised morphology such as neurons. A layer of complexity is added when considering mitochondria have their own genome, packaged into nucleoids. Major mitochondrial morphological transitions, for example mitochondrial division, often occur in conjunction with mitochondrial DNA (mtDNA) replication and changes in the dynamic behaviour of the nucleoids. However, the relationship between mtDNA dynamics and mitochondrial motility in the processes of neurons has been largely overlooked. In this chapter, we describe a method for live imaging of mitochondria and nucleoids in differentiated SH-SY5Y cells by instant structured illumination microscopy (iSIM). We also include a detailed protocol for the differentiation of SH-SY5Y cells into cells with a pronounced neuronal-like morphology and show examples of coordinated mitochondrial and nucleoid motility in the long processes of these cells.
Collapse
Affiliation(s)
- Emily Annuario
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Kristal Ng
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Alessio Vagnoni
- Department of Basic and Clinical Neurosciences, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| |
Collapse
|
25
|
So M, Stiban J, Ciesielski GL, Hovde SL, Kaguni LS. Implications of Membrane Binding by the Fe-S Cluster-Containing N-Terminal Domain in the Drosophila Mitochondrial Replicative DNA Helicase. Front Genet 2021; 12:790521. [PMID: 34950192 PMCID: PMC8688847 DOI: 10.3389/fgene.2021.790521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Recent evidence suggests that iron-sulfur clusters (ISCs) in DNA replicative proteins sense DNA-mediated charge transfer to modulate nuclear DNA replication. In the mitochondrial DNA replisome, only the replicative DNA helicase (mtDNA helicase) from Drosophila melanogaster (Dm) has been shown to contain an ISC in its N-terminal, primase-like domain (NTD). In this report, we confirm the presence of the ISC and demonstrate the importance of a metal cofactor in the structural stability of the Dm mtDNA helicase. Further, we show that the NTD also serves a role in membrane binding. We demonstrate that the NTD binds to asolectin liposomes, which mimic phospholipid membranes, through electrostatic interactions. Notably, membrane binding is more specific with increasing cardiolipin content, which is characteristically high in the mitochondrial inner membrane (MIM). We suggest that the N-terminal domain of the mtDNA helicase interacts with the MIM to recruit mtDNA and initiate mtDNA replication. Furthermore, Dm NUBPL, the known ISC donor for respiratory complex I and a putative donor for Dm mtDNA helicase, was identified as a peripheral membrane protein that is likely to execute membrane-mediated ISC delivery to its target proteins.
Collapse
Affiliation(s)
- Minyoung So
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Johnny Stiban
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Department of Biology and Biochemistry, Birzeit University, Birzeit, Palestine
| | - Grzegorz L Ciesielski
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland.,Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States
| | - Stacy L Hovde
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States
| | - Laurie S Kaguni
- Department of Biochemistry and Molecular Biology and Center for Mitochondrial Science and Medicine, Michigan State University, East Lansing, MI, United States.,Institute of Biosciences and Medical Technology, University of Tampere, Tampere, Finland
| |
Collapse
|
26
|
Rewiring cell signalling pathways in pathogenic mtDNA mutations. Trends Cell Biol 2021; 32:391-405. [PMID: 34836781 DOI: 10.1016/j.tcb.2021.10.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022]
Abstract
Mitochondria generate the energy to sustain cell viability and serve as a hub for cell signalling. Their own genome (mtDNA) encodes genes critical for oxidative phosphorylation. Mutations of mtDNA cause major disease and disability with a wide range of presentations and severity. We review here an emerging body of data suggesting that changes in cell metabolism and signalling pathways in response to the presence of mtDNA mutations play a key role in shaping disease presentation and progression. Understanding the impact of mtDNA mutations on cellular energy homeostasis and signalling pathways seems fundamental to identify novel therapeutic interventions with the potential to improve the prognosis for patients with primary mitochondrial disease.
Collapse
|
27
|
Jakubke C, Roussou R, Maiser A, Schug C, Thoma F, Bunk R, Hörl D, Leonhardt H, Walter P, Klecker T, Osman C. Cristae-dependent quality control of the mitochondrial genome. SCIENCE ADVANCES 2021; 7:eabi8886. [PMID: 34516914 PMCID: PMC8442932 DOI: 10.1126/sciadv.abi8886] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/08/2021] [Indexed: 06/10/2023]
Abstract
Mitochondrial genomes (mtDNA) encode essential subunits of the mitochondrial respiratory chain. Mutations in mtDNA can cause a shortage in cellular energy supply, which can lead to numerous mitochondrial diseases. How cells secure mtDNA integrity over generations has remained unanswered. Here, we show that the single-celled yeast Saccharomyces cerevisiae can intracellularly distinguish between functional and defective mtDNA and promote generation of daughter cells with increasingly healthy mtDNA content. Purifying selection for functional mtDNA occurs in a continuous mitochondrial network and does not require mitochondrial fission but necessitates stable mitochondrial subdomains that depend on intact cristae morphology. Our findings support a model in which cristae-dependent proximity between mtDNA and the proteins it encodes creates a spatial “sphere of influence,” which links a lack of functional fitness to clearance of defective mtDNA.
Collapse
Affiliation(s)
- Christopher Jakubke
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Rodaria Roussou
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Andreas Maiser
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | | | - Felix Thoma
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
- Graduate School Life Science Munich, Planegg, Germany
| | - Raven Bunk
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - David Hörl
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Heinrich Leonhardt
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| | - Peter Walter
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA
- Department of Physiology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Till Klecker
- Zellbiologie, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Christof Osman
- Faculty of Biology, Ludwig-Maximilian-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Colnaghi M, Pomiankowski A, Lane N. The need for high-quality oocyte mitochondria at extreme ploidy dictates mammalian germline development. eLife 2021; 10:69344. [PMID: 34279226 PMCID: PMC8337077 DOI: 10.7554/elife.69344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/16/2021] [Indexed: 12/16/2022] Open
Abstract
Selection against deleterious mitochondrial mutations is facilitated by germline processes, lowering the risk of genetic diseases. How selection works is disputed: experimental data are conflicting and previous modeling work has not clarified the issues; here, we develop computational and evolutionary models that compare the outcome of selection at the level of individuals, cells and mitochondria. Using realistic de novo mutation rates and germline development parameters from mouse and humans, the evolutionary model predicts the observed prevalence of mitochondrial mutations and diseases in human populations. We show the importance of organelle-level selection, seen in the selective pooling of mitochondria into the Balbiani body, in achieving high-quality mitochondria at extreme ploidy in mature oocytes. Alternative mechanisms debated in the literature, bottlenecks and follicular atresia, are unlikely to account for the clinical data, because neither process effectively eliminates mitochondrial mutations under realistic conditions. Our findings explain the major features of female germline architecture, notably the longstanding paradox of over-proliferation of primordial germ cells followed by massive loss. The near-universality of these processes across animal taxa makes sense in light of the need to maintain mitochondrial quality at extreme ploidy in mature oocytes, in the absence of sex and recombination.
Collapse
Affiliation(s)
- Marco Colnaghi
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Andrew Pomiankowski
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Nick Lane
- CoMPLEX, University College London, London, United Kingdom.,Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
29
|
Abstract
Mitochondria are organelles with vital functions in almost all eukaryotic cells. Often described as the cellular 'powerhouses' due to their essential role in aerobic oxidative phosphorylation, mitochondria perform many other essential functions beyond energy production. As signaling organelles, mitochondria communicate with the nucleus and other organelles to help maintain cellular homeostasis, allow cellular adaptation to diverse stresses, and help steer cell fate decisions during development. Mitochondria have taken center stage in the research of normal and pathological processes, including normal tissue homeostasis and metabolism, neurodegeneration, immunity and infectious diseases. The central role that mitochondria assume within cells is evidenced by the broad impact of mitochondrial diseases, caused by defects in either mitochondrial or nuclear genes encoding for mitochondrial proteins, on different organ systems. In this Review, we will provide the reader with a foundation of the mitochondrial 'hardware', the mitochondrion itself, with its specific dynamics, quality control mechanisms and cross-organelle communication, including its roles as a driver of an innate immune response, all with a focus on development, disease and aging. We will further discuss how mitochondrial DNA is inherited, how its mutation affects cell and organismal fitness, and current therapeutic approaches for mitochondrial diseases in both model organisms and humans.
Collapse
Affiliation(s)
- Marlies P. Rossmann
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| | - Sonia M. Dubois
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Suneet Agarwal
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Leonard I. Zon
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 01238, USA
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA 02115, USA
| |
Collapse
|
30
|
Jeedigunta SP, Minenkova AV, Palozzi JM, Hurd TR. Avoiding Extinction: Recent Advances in Understanding Mechanisms of Mitochondrial DNA Purifying Selection in the Germline. Annu Rev Genomics Hum Genet 2021; 22:55-80. [PMID: 34038145 DOI: 10.1146/annurev-genom-121420-081805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mitochondria are unusual organelles in that they contain their own genomes, which are kept apart from the rest of the DNA in the cell. While mitochondrial DNA (mtDNA) is essential for respiration and most multicellular life, maintaining a genome outside the nucleus brings with it a number of challenges. Chief among these is preserving mtDNA genomic integrity from one generation to the next. In this review, we discuss what is known about negative (purifying) selection mechanisms that prevent deleterious mutations from accumulating in mtDNA in the germline. Throughout, we focus on the female germline, as it is the tissue through which mtDNA is inherited in most organisms and, therefore, the tissue that most profoundly shapes the genome. We discuss recent progress in uncovering the mechanisms of germline mtDNA selection, from humans to invertebrates.
Collapse
Affiliation(s)
- Swathi P Jeedigunta
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Anastasia V Minenkova
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Jonathan M Palozzi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| | - Thomas R Hurd
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|