1
|
Yin W, Xue H, Zhang Y, Li R, Liu M, Yue H, Ge D, Liu N. Steroid constituents of Solidago canadensis alleviate LPS-induced inflammation via AMPK regulated mitophagy/NLRP3 and NF-κB pathway. Eur J Pharmacol 2025; 998:177512. [PMID: 40113066 DOI: 10.1016/j.ejphar.2025.177512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/22/2025]
Abstract
Inflammation is a major risk factor for a variety of human diseases, such as sepsis, Inflammatory Bowel Disease (IBD) and also major cardiovascular disease including atherosclerosis. Solidago canadensis is used as a traditional medicine to treat inflammation-related diseases. However, the component with anti-inflammatory activity of Solidago canadensis is not clear. In this study, we aimed to search for new bioactive steroids from Solidago canadensis and investigate their anti-inflammatory activity both in vitro and in vivo. Lipopolysaccharides (LPS)-stimulated RAW264.7 cells, mouse bone marrow-derived macrophages (BMDMs) and peripheral blood mononuclear cells (PBMCs) were used to induce an inflammation response. Compound 10 outperformed other compounds for superior anti-inflammatory activity and significant inhibition of NLR family, pyrin domain containing 3 (NLRP3) inflammasome activation. Mechanistically, compound 10 induced mitophagy by activating AMP-activated protein kinas (AMPK) to suppress NLRP3 inflammasome activation. Inhibiting AMPK by inhibitor BML-275 significantly attenuated compound 10 induced mitophagy and subsequent the NLRP3 inflammasome. Besides, the NF-κB activation, key step in NLRP3 inflammasome priming, was also suppressed by compound 10 via activation of AMPK. In addition, the in vivo experiments showed that compound 10 could alleviate LPS-induced inflammatory and dextran sulfate sodium salt -induced colitis in C57BL/6 mice. Collectively, the present study, for the first time, shows that the steroids compound 10 exhibited anti-inflammatory effect via AMPK/mitophagy/NLRP3 as well as AMPK/NF-κB/NLRP3 signaling pathway, which strongly suggests the therapeutic potential of compound 10 in various inflammatory diseases.
Collapse
Affiliation(s)
- Wenying Yin
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Han Xue
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Yongqi Zhang
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Rongxian Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Mengjia Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Hongwei Yue
- Department of Emergency Medicine, Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Qilu Hospital, Shandong University, Jinan, China.
| | - Di Ge
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| | - Na Liu
- School of Biological Science and Technology, University of Jinan, Jinan, 250024, China.
| |
Collapse
|
2
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025; 22:563-596. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Zhang H, Zhao C, Hong G, Xiong W, Xia J, Dong R, Wang Q, Zhang K, Wang B. Fatty acid oxidation contributed to NLRP3 inflammasome activation caused by N-nitrosamines co-exposure. Food Chem Toxicol 2025; 202:115549. [PMID: 40374002 DOI: 10.1016/j.fct.2025.115549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Nitrosamines, as common environmental carcinogens, are closely related to the development of esophageal inflammation (EI). Studies have revealed that NLRP3 inflammasome activation was a key event in nitrosamine-induced EI. However, the involvement of fatty acid metabolism in nitrosamine-induced NLRP3 inflammasome activation has not been reported. In this study, we used human esophageal epithelial (Het-1A) cells to investigate the underlying mechanisms of fatty acid oxidation (FAO) dysregulation caused by nitrosamines mixture commonly found in drinking water. The results showed that the activity of CPT1A, the key rate-limiting enzyme for FAO, upregulated with the increase of nitrosamine concentrations, while the level of acetyl-CoA revealed decreasing trends. The cells in nitrosamine-stained groups underwent fatty acid metabolism disorders, in which the concentrations of key fatty acids showed accelerated decomposition trends. Furthermore, our results revealed that nitrosamines promoted FAO via the AMPK/ACC/CPT1A pathway. Nitrosamines triggered the activation of NLRP3 inflammatory vesicles in a dose-dependent manner, with concomitant elevation in the expression of NLRP3 activation-associated ASC oligomer, caspase-1 and acetyl-α-tubulin. In brief, FAO involved in the activation of NLRP3 inflammatory vesicles in Het-1A cells due to nitrosamines exposure. This study revealed the new perspective on the mechanism of fatty acid metabolism disruption triggered by nitrosamines co-exposure.
Collapse
Affiliation(s)
- Hu Zhang
- School of Public Health, Yangzhou University, Yangzhou, 225000, China.
| | - Chao Zhao
- School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Guo Hong
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Wen Xiong
- Yangzhou Centre for Disease Control and Prevention, Yangzhou, 225000, China
| | - Junpeng Xia
- Yangzhou Centre for Disease Control and Prevention, Yangzhou, 225000, China
| | - Ruijun Dong
- School of Public Health, Yangzhou University, Yangzhou, 225000, China
| | - Qianqian Wang
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, 225000, China
| | - Kaiyue Zhang
- Yangzhou Centre for Disease Control and Prevention, Yangzhou, 225000, China
| | - Bing Wang
- Yangzhou Centre for Disease Control and Prevention, Yangzhou, 225000, China.
| |
Collapse
|
4
|
Su K, Ye N, Lin L, Wu J, Zhao M, Jiang X, Zhang R, Cai X, Zhang X, Peng J, Tang M, Li N, Chen L, Ye H, Wu W. Valtrate alleviates inflammation by targeting USP9X to enhance NLRP3 degradation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 143:156835. [PMID: 40378590 DOI: 10.1016/j.phymed.2025.156835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/20/2025] [Accepted: 05/06/2025] [Indexed: 05/19/2025]
Abstract
BACKGROUND The NLRP3 inflammasome is a key regulator of innate immunity and plays a critical role in the pathogenesis of various inflammatory diseases. Regulating NLRP3 has emerged as a promising strategy for the development of anti-inflammatory therapies. Valtrate (Val), a natural compound derived from Valeriana officinalis Jones, has demonstrated significant anti-inflammatory activity. However, its precise mechanism of action remains unclear. PURPOSE This study elucidates the molecular mechanisms of Val suppressing NLRP3 inflammasome activation. METHODS We screened 100 natural compounds for anti-pyroptotic in lipopolysaccharide (LPS)/nigericin-stimulated THP-1 cells and bone marrow-derived macrophages (BMDMs) using lactate dehydrogenase (LDH) release assays. Val's effect on NLRP3 were assessed via immunoblotting and ELISA. Target identification employed DARTS, proteomics, thermal shift assay (TSA), microscale thermophoresis (MST), and molecular dynamics (MD) simulations. In vivo efficacy was evaluated in acetaminophen (APAP)- and LPS-induced liver injury models. RESULTS Val potently inhibited pyroptosis (99.20 % LDH reduction) and selectively degraded NLRP3 via post-translation mechanisms (PTMs) without altering its mRNA. DARTS and CETSA confirmed that Val directly interacts with the C2 fragment of USP9X without inhibiting its enzymatic activity, while RMSD, RMSF, and Gibbs energy landscape analyses supported its stable binding to USP9X, which was further confirmed by MST. Mechanistically, Val downregulated USP9X protein expression and promoted K48- and K63-linked ubiquitination and proteasomal degradation of NLRP3. In vivo, Val exhibited therapeutic potential in murine models of acute liver injury induced by APAP and LPS. Val reduced serum ALT and AST levels, inflammatory cytokines, and liver injury (histopathological analysis (H&E) and TUNEL). CONCLUSION This study uncovers an unrecognized mechanism by which Val attenuates NLRP3 inflammasome activation by disrupting the USP9X-NLRP3 axis, thereby promoting NLRP3 ubiquitination and proteasomal degradation. Notably, Val down-regulates USP9X protein levels without impairing its catalytic activity, representing a distinct mechanism from existing USP9X inhibitors. These findings not only deepen our understanding of Val's anti-inflammatory action but also underscore its promise as a lead compound for the development of novel therapeutics targeting NLRP3-driven inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu, 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lijuan Chen
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China; Chengdu Zenitar Biomedical Technology Co., Ltd, Chengdu, 610041, China
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
5
|
Liang JY, Yuan XL, Jiang JM, Zhang P, Tan K. Targeting the NLRP3 inflammasome in Parkinson's disease: From molecular mechanism to therapeutic strategy. Exp Neurol 2025; 386:115167. [PMID: 39884329 DOI: 10.1016/j.expneurol.2025.115167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/13/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
Parkinson's disease is the second most common neurodegenerative disease, characterized by substantial loss of dopaminergic (DA) neurons, the formation of Lewy bodies (LBs) in the substantia nigra, and pronounced neuroinflammation. The nucleotide-binding domain like leucine-rich repeat- and pyrin domain-containing protein 3 (NLRP3) inflammasome is one of the pattern recognition receptors (PRRs) that function as intracellular sensors in response to both pathogenic microbes and sterile triggers associated with Parkinson's disease. These triggers include reactive oxygen species (ROS), misfolding protein aggregation, and potassium ion (K+) efflux. Upon activation, it recruits and activates caspase-1, then processes the pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18, which mediate neuroinflammation in Parkinson's disease. In this review, we provide a comprehensive overview of NLRP3 inflammasome, detailing its structure, activation pathways, and the factors that trigger its activation. We also explore the pathological mechanisms by which NLRP3 contributes to Parkinson's disease and discuss potential strategies for targeting NLRP3 as a therapeutic approach.
Collapse
Affiliation(s)
- Jin-Yu Liang
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China
| | - Xiao-Lei Yuan
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Jia-Mei Jiang
- Institute of Neurology, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Ping Zhang
- Department of Neurology, the Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang 421000, Hunan, PR China
| | - Kuang Tan
- Department of Clinical Laboratory Medicine, Zhuzhou Kind Cardiovascular Disease Hospital, Hunan Province, China.
| |
Collapse
|
6
|
Anand PK. From fat to fire: The lipid-inflammasome connection. Immunol Rev 2025; 329:e13403. [PMID: 39327931 PMCID: PMC11744241 DOI: 10.1111/imr.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Inflammasomes are multiprotein complexes that play a crucial role in regulating immune responses by governing the activation of Caspase-1, the secretion of pro-inflammatory cytokines, and the induction of inflammatory cell death, pyroptosis. The inflammasomes are pivotal in effective host defense against a range of pathogens. Yet, overt activation of inflammasome signaling can be detrimental. The most well-studied NLRP3 inflammasome has the ability to detect a variety of stimuli including pathogen-associated molecular patterns, environmental irritants, and endogenous stimuli released from dying cells. Additionally, NLRP3 acts as a key sensor of cellular homeostasis and can be activated by disturbances in diverse metabolic pathways. Consequently, NLRP3 is considered a key player linking metabolic dysregulation to numerous inflammatory disorders such as gout, diabetes, and atherosclerosis. Recently, compelling studies have highlighted a connection between lipids and the regulation of NLRP3 inflammasome. Lipids are integral to cellular processes that serve not only in maintaining the structural integrity and subcellular compartmentalization, but also in contributing to physiological equilibrium. Certain lipid species are known to define NLRP3 subcellular localization, therefore directly influencing the site of inflammasome assembly and activation. For instance, phosphatidylinositol 4-phosphate plays a crucial role in NLRP3 localization to the trans Golgi network. Moreover, new evidence has demonstrated the roles of lipid biosynthesis and trafficking in activation of the NLRP3 inflammasome. This review summarizes and discusses these emerging and varied roles of lipid metabolism in inflammasome activation. A deeper understanding of lipid-inflammasome interactions may open new avenues for therapeutic interventions to prevent or treat chronic inflammatory and autoimmune conditions.
Collapse
Affiliation(s)
- Paras K. Anand
- Department of Infectious Disease, Faculty of MedicineImperial College LondonLondonUK
| |
Collapse
|
7
|
Luo J, Zhou Y, Wang M, Zhang J, Jiang E. Inflammasomes: potential therapeutic targets in hematopoietic stem cell transplantation. Cell Commun Signal 2024; 22:596. [PMID: 39695742 DOI: 10.1186/s12964-024-01974-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/30/2024] [Indexed: 12/20/2024] Open
Abstract
The realm of hematopoietic stem cell transplantation (HSCT) has witnessed remarkable advancements in elevating the cure and survival rates for patients with both malignant and non-malignant hematologic diseases. Nevertheless, a considerable number of patients continue to face challenges, including transplant-related complications, infection, graft failure, and mortality. Inflammasomes, the multi-protein complexes of the innate immune system, respond to various danger signals by releasing inflammatory cytokines and even mediating cell death. While moderate activation of inflammasomes is essential for immune defense and homeostasis maintenance, excessive activation precipitates inflammatory damage. The intricate interplay between HSCT and inflammasomes arises from their pivotal roles in immune responses and inflammation. This review examines the molecular architecture and composition of various types of inflammasomes, highlighting their activation and effector mechanisms within the context of the HSCT process and its associated complications. Additionally, we summarize the therapeutic implications of targeting inflammasomes and related factors in HSCT.
Collapse
Affiliation(s)
- Jieya Luo
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Yunxia Zhou
- Tianjin Institutes of Health Science, Tianjin, 301600, China
- Haihe Laboratory of Cell Ecosystem, Tianjin Medical University, Tianjin, 300051, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Junan Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
- Tianjin Institutes of Health Science, Tianjin, 301600, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Tianjin Institutes of Health Science, Tianjin, 301600, China.
| |
Collapse
|
8
|
Yu X, Peng J, Zhong Q, Wu A, Deng X, Zhu Y. Caspase-1 knockout disrupts pyroptosis and protects photoreceptor cells from photochemical damage. Mol Cell Probes 2024; 78:101991. [PMID: 39505154 DOI: 10.1016/j.mcp.2024.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 10/01/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
AIM Retinal photochemical damage (RPD) plays a significant role in the development of various ocular diseases, with Caspase-1 being a key contributor. This study investigates the protective effects of Caspase-1 gene-mediated pyroptosis against RPD. METHODS Differentially expressed genes (DEGs) associated with RPD were identified through the analysis of two expression profiles from the GEO database. Correlation analysis was used to pinpoint pyroptosis-related genes (PRGs) linked to RPD. A Caspase-1 knockout 661 W cell line was generated via CRISPR-Cas9 gene editing, and single-cell colonies were screened and purified. Validation of knockout cells was performed through RT-qPCR, gene sequencing, and Western blot analysis. Comparative assays on cell proliferation, intracellular reactive oxygen species (ROS), and cytotoxicity were conducted between wild-type and Caspase-1 knockout cells under light exposure. Further RT-qPCR and Western blot experiments examined changes in the mRNA and protein levels of key pyroptosis pathway components. RESULTS Significant alterations in Caspase-1 expression were observed among PRGs. Homozygous Caspase-1 knockout cell lines were confirmed through RT-qPCR, genomic PCR product sequencing, and Western blot analysis. Compared to wild-type 661 W cells, Caspase-1 knockout cells exhibited higher viability and proliferation rates after 24 h of light exposure, alongside reduced LDH release. The expression of downstream pyroptosis factors at both the mRNA and protein levels was markedly decreased in the knockout group. CONCLUSION CRISPR/Cas9-mediated Caspase-1 knockout enhanced the resistance of 661 W cells to photochemical damage, suggesting that Caspase-1 may serve as a potential therapeutic target for RPD-related diseases.
Collapse
Affiliation(s)
- Xiaoping Yu
- School of Medicine and Nursing, Chengdu University, 610106, Sichuan Province, China; Department of Public Health, Chengdu Medical College, 610500, Sichuan Province, China.
| | - Jiayuan Peng
- Department of Pathology, People's Hospital of Leshan, 614000, Sichuan Province, China; Department of Basic Medical Science, Chengdu Medical College, 610500, Sichuan Province, China
| | - Qian Zhong
- Department of Pharmacy, Chengdu Medical College, 610500, Sichuan Province, China
| | - Ailin Wu
- Department of Basic Medical Science, Chengdu Medical College, 610500, Sichuan Province, China
| | - Xiaoming Deng
- Department of Basic Medical Science, Chengdu Medical College, 610500, Sichuan Province, China
| | - Yanfeng Zhu
- Department of Public Health, Chengdu Medical College, 610500, Sichuan Province, China
| |
Collapse
|
9
|
Liu H, Li H, Chen T, Yu F, Lin Q, Zhao H, Jin L, Peng R. Research Progress on Micro(nano)plastic-Induced Programmed Cell Death Associated with Disease Risks. TOXICS 2024; 12:493. [PMID: 39058145 PMCID: PMC11281249 DOI: 10.3390/toxics12070493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Due to their robust migration capabilities, slow degradation, and propensity for adsorbing environmental pollutants, micro(nano)plastics (MNPs) are pervasive across diverse ecosystems. They infiltrate various organisms within different food chains through multiple pathways including inhalation and dermal contact, and pose a significant environmental challenge in the 21st century. Research indicates that MNPs pose health threats to a broad range of organisms, including humans. Currently, extensive detection data and studies using experimental animals and in vitro cell culture indicate that MNPs can trigger various forms of programmed cell death (PCD) and can induce various diseases. This review provides a comprehensive and systematic analysis of different MNP-induced PCD processes, including pyroptosis, ferroptosis, autophagy, necroptosis, and apoptosis, based on recent research findings and focuses on elucidating the links between PCD and diseases. Additionally, targeted therapeutic interventions for these diseases are described. This review provides original insights into the opportunities and challenges posed by current research findings. This review evaluates ways to mitigate various diseases resulting from cell death patterns. Moreover, this paper enhances the understanding of the biohazards associated with MNPs by providing a systematic reference for subsequent toxicological research and health risk mitigation efforts.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (H.L.); (H.L.); (T.C.); (F.Y.); (Q.L.); (H.Z.); (L.J.)
| |
Collapse
|
10
|
Mateo SV, Vidal-Correoso D, Muñoz-Morales AM, Jover-Aguilar M, Alconchel F, de la Peña J, Martínez-Alarcón L, López-López V, Ríos-Zambudio A, Cascales P, Pons JA, Ramírez P, Pelegrín P, Baroja-Mazo A. Detection of inflammasome activation in liver tissue during the donation process as potential biomarker for liver transplantation. Cell Death Discov 2024; 10:266. [PMID: 38816358 PMCID: PMC11139956 DOI: 10.1038/s41420-024-02042-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Deceased donor liver transplantation (LT) is a crucial lifesaving option for patients with end-stage liver diseases. Although donation after brain death (DBD) remains the main source of donated organs, exploration of donation after circulatory death (DCD) addresses donor scarcity but introduces challenges due to warm ischemia. While technical advances have improved outcomes, challenges persist, with a 13% mortality rate within the first year. Delving into liver transplantation complexities reveals the profound impact of molecular signaling on organ fate. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation play a pivotal role, influencing inflammatory responses. The NLRP3 inflammasome, found in hepatocytes, contributes to inflammation, fibrosis, and liver cell death. This study explores these dynamics, shedding light on potential biomarkers and therapeutic targets. Samples from 36 liver transplant patients were analyzed for ASC specks detection and inflammasome-related gene expression. Liver biopsies, obtained before and after cold ischemia storage, were processed for immunofluorescence, qRT-PCR, and Western blot. One year post-LT clinical follow-up included diagnostic procedures for complications, and global survival was assessed. Immunofluorescence detected activated inflammasome complexes in fixed liver tissues. ASC specks were identified in hepatocytes, showing a trend toward more specks in DCD livers. Likewise, inflammasome-related gene expression analysis indicated higher expression in DCD livers, decreasing after cold ischemia. Similar results were found at protein level. Patients with increased ASC specks staining exhibited lower overall survival rates, correlating with IL1B expression after cold ischemia. Although preliminary, these findings offer novel insights into utilizing direct detection of inflammasome activation in liver tissue as a biomarker. They suggest its potential impact on post-transplant outcomes, potentially paving the way for improved diagnostic approaches and personalized treatment strategies in LT.
Collapse
Affiliation(s)
- Sandra V Mateo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Daniel Vidal-Correoso
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Ana M Muñoz-Morales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Marta Jover-Aguilar
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Felipe Alconchel
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Jesús de la Peña
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Patology Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Laura Martínez-Alarcón
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
| | - Víctor López-López
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Antonio Ríos-Zambudio
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pedro Cascales
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - José A Pons
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Hepatology and Liver Transplant Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Ramírez
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- General Surgery and Abdominal Solid Organ Transplantation Unit, University Clinical Hospital Virgen de la Arrixaca, 30120, Murcia, Spain
| | - Pablo Pelegrín
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, 30120, Murcia, Spain
| | - Alberto Baroja-Mazo
- Molecular Inflammation Group, University Clinical Hospital Virgen de la Arrixaca, Biomedical Research Institute of Murcia (IMIB-Pascual Parrilla), 30120, Murcia, Spain.
| |
Collapse
|
11
|
Korhonen E. Inflammasome activation in response to aberrations of cellular homeostasis in epithelial cells from human cornea and retina. Acta Ophthalmol 2024; 102 Suppl 281:3-68. [PMID: 38386419 DOI: 10.1111/aos.16646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
|
12
|
Shen J, Zhang K, Liu M, Wang T. Letter to the Editor: Alcohol-induced extracellular ASC specks perpetuate liver inflammation and damage in alcohol-associated hepatitis even after alcohol cessation. Hepatology 2024; 79:E26-E27. [PMID: 38016034 DOI: 10.1097/hep.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 11/30/2023]
Affiliation(s)
- Jiayan Shen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Kaiyue Zhang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengyang Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tao Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|