1
|
Vats P, Saini C, Baweja B, Srivastava SK, Kumar A, Kushwah AS, Nema R. Aurora kinases signaling in cancer: from molecular perception to targeted therapies. Mol Cancer 2025; 24:180. [PMID: 40533769 PMCID: PMC12175390 DOI: 10.1186/s12943-025-02353-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 05/14/2025] [Indexed: 06/22/2025] Open
Abstract
Aurora kinases, AURKA, AURKB, and AURKC, are serine/threonine kinases that play a vital role in regulating cell division and mitosis, particularly in the separation of chromosomes. These kinases are often overexpressed in human tumor cell lines, indicating their potential involvement in tumorigenesis. Preliminary evidence supports the use of Aurora kinase inhibitors for certain types of tumors, several AURKs inhibitors are currently under phase I and II trials. As a result, there is a growing interest in identifying small-molecule Aurora kinase inhibitors to develop as anti-cancer agents. The regulation of the cell cycle, including mitosis, is increasingly recognized as a key target in the fight against various forms of cancer. Novel drugs are being designed to inhibit the function of regulatory proteins, such as Aurora kinases, with the goal of creating personalized treatments. This review summarizes the biology of Aurora kinases in the context of cancer, integrating both preclinical and clinical data. It discusses the challenges and opportunities associated with using Aurora kinases to enhance cancer treatment. Future directions for Aurora kinase-based therapies include developing more selective inhibitors that minimize off-target effects and improve therapeutic efficacy. Researchers are also exploring combination therapies that use Aurora kinase inhibitors alongside other targeted treatments to overcome resistance and improve patient outcomes. Additionally, advancements in biomarker discovery are expected to facilitate the identification of patients most likely to benefit from Aurora kinase-targeted therapies, paving the way for more personalized approaches to cancer treatment.
Collapse
Affiliation(s)
- Prerna Vats
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur- Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Chainsee Saini
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur- Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Bhavika Baweja
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur- Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Sandeep K Srivastava
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur- Ajmer Expressway, Jaipur, Rajasthan, 303007, India
| | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Atar Singh Kushwah
- Women's Biomedical Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Rajeev Nema
- Department of Biosciences, Manipal University Jaipur, Dehmi Kalan, Jaipur- Ajmer Expressway, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
2
|
Liu M, Guo J, Liu W, Yang Z, Yu F. Dual Targeting of Aurora-A and Bcl-xL Synergistically Reshapes the Immune Microenvironment and Induces Apoptosis in Breast Cancer. Cancer Sci 2025. [PMID: 40159464 DOI: 10.1111/cas.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
The Aurora-A kinase inhibitor MLN8237 has shown efficacy in clinical trials for advanced breast cancer; however, its use as a monotherapy is limited by significant side effects and modest efficacy. Therefore, combining MLN8237 with other agents at lower doses may provide a viable alternative. In this study, we evaluated the combination of MLN8237 with the BH3 mimetic ABT263 for the treatment of triple-negative breast cancer (TNBC). We found that this combination significantly suppressed tumor growth and metastasis in immunocompetent syngeneic mouse models, whereas its efficacy was attenuated in immunodeficient xenograft models. Mechanistic studies revealed that the combination enhanced anti-tumor immunity by increasing the presence of CD8+ T cells and NK cells, while reducing the number of immunosuppressive cells in the tumor microenvironment. This shift resulted in elevated levels of IFN-γ and granzyme B, which activated the extrinsic apoptotic pathways in cancer cells. Notably, the combination treatment did not affect tumor cell proliferation but promoted apoptosis with minimal toxicity. Furthermore, the synergistic effect of MLN8237 and ABT263 in inducing intrinsic apoptosis was primarily driven by the inhibition of the AKT-Mcl-1 and Bcl-xL survival pathways in cultured tumor cells. Together, these findings support the MLN8237-ABT263 combination as an effective treatment strategy for TNBC, promoting both immune-mediated extrinsic apoptosis and inactivation of Bcl-xL/Mcl-1-dependent intrinsic anti-apoptotic pathways.
Collapse
Affiliation(s)
- Mingxue Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyong Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenye Yang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fazhi Yu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Barrera-Vázquez OS, Escobar-Ramírez JL, Magos-Guerrero GA. Network Pharmacology Approaches Used to Identify Therapeutic Molecules for Chronic Venous Disease Based on Potential miRNA Biomarkers. J Xenobiot 2024; 14:1519-1540. [PMID: 39449424 PMCID: PMC11503387 DOI: 10.3390/jox14040083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/26/2024] Open
Abstract
Chronic venous disease (CVD) is a prevalent condition in adults, significantly affecting the global elderly population, with a higher incidence in women than in men. The modulation of gene expression through microRNA (miRNA) partly regulated the development of cardiovascular disease (CVD). Previous research identified a functional analysis of seven genes (CDS2, HDAC5, PPP6R2, PRRC2B, TBC1D22A, WNK1, and PABPC3) as targets of miRNAs related to CVD. In this context, miRNAs emerge as essential candidates for CVD diagnosis, representing novel molecular and biological knowledge. This work aims to identify, by network analysis, the miRNAs involved in CVD as potential biomarkers, either by interacting with small molecules such as toxins and pollutants or by searching for new drugs. Our study shows an updated landscape of the signaling pathways involving miRNAs in CVD pathology. This latest research includes data found through experimental tests and uses predictions to propose both miRNAs and genes as potential biomarkers to develop diagnostic and therapeutic methods for the early detection of CVD in the clinical setting. In addition, our pharmacological network analysis has, for the first time, shown how to use these potential biomarkers to find small molecules that may regulate them. Between the small molecules in this research, toxins, pollutants, and drugs showed outstanding interactions with these miRNAs. One of them, hesperidin, a widely prescribed drug for treating CVD and modulating the gene expression associated with CVD, was used as a reference for searching for new molecules that may interact with miRNAs involved in CVD. Among the drugs that exhibit the same miRNA expression profile as hesperidin, potential candidates include desoximetasone, curcumin, flurandrenolide, trifluridine, fludrocortisone, diflorasone, gemcitabine, floxuridine, and reversine. Further investigation of these drugs is essential to improve the treatment of cardiovascular disease. Additionally, supporting the clinical use of miRNAs as biomarkers for diagnosing and predicting CVD is crucial.
Collapse
Affiliation(s)
| | | | - Gil Alfonso Magos-Guerrero
- Department of Pharmacology, Faculty of Medicine, University National Autonomous of Mexico (UNAM), Mexico City 04510, Mexico; (O.S.B.-V.); (J.L.E.-R.)
| |
Collapse
|
4
|
Nikhil K, Shah K. The significant others of aurora kinase a in cancer: combination is the key. Biomark Res 2024; 12:109. [PMID: 39334449 PMCID: PMC11438406 DOI: 10.1186/s40364-024-00651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
AURKA is predominantly famous as an essential mitotic kinase. Recent findings have also established its critical role in a plethora of other biological processes including ciliogenesis, mitochondrial dynamics, neuronal outgrowth, DNA replication and cell cycle progression. AURKA overexpression in numerous cancers is strongly associated with poor prognosis and survival. Still no AURKA-targeted drug has been approved yet, partially because of the associated collateral toxicity and partly due to its limited efficacy as a single agent in a wide range of tumors. Mechanistically, AURKA overexpression allows it to phosphorylate numerous pathological substrates promoting highly aggressive oncogenic phenotypes. Our review examines the most recent advances in AURKA regulation and focuses on 33 such direct cancer-specific targets of AURKA and their associated oncogenic signaling cascades. One of the common themes that emerge is that AURKA is often involved in a feedback loop with its substrates, which could be the decisive factor causing its sustained upregulation and hyperactivation in cancer cells, an Achilles heel not exploited before. This dynamic interplay between AURKA and its substrates offers potential opportunities for targeted therapeutic interventions. By targeting these substrates, it may be possible to disrupt this feedback loop to effectively reverse AURKA levels, thereby providing a promising avenue for developing safer AURKA-targeted therapeutics. Additionally, exploring the synergistic effects of AURKA inhibition with its other oncogenic and/or tumor-suppressor targets could provide further opportunities for developing effective combination therapies against AURKA-driven cancers, thereby maximizing its potential as a critical drug target.
Collapse
Affiliation(s)
- Kumar Nikhil
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
- School of Biotechnology, Kalinga Institute of Industrial Technology, Bhubaneswar, 751024, India.
| | - Kavita Shah
- Department of Chemistry, Purdue University Institute for Cancer Research, 560 Oval Drive, West Lafayette, IN, 47907, USA.
| |
Collapse
|
5
|
Zheng H, Zhang Q, Liu X, Shi F, Yang F, Xiang S, Jiang H. Aurora-A condensation mediated by BuGZ aids its mitotic centrosome functions. iScience 2024; 27:109785. [PMID: 38746663 PMCID: PMC11090908 DOI: 10.1016/j.isci.2024.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/30/2023] [Accepted: 04/16/2024] [Indexed: 03/17/2025] Open
Abstract
Centrosomes composed of centrioles and the pericentriolar material (PCM), serve as the platform for microtubule polymerization during mitosis. Despite some centriole and PCM proteins have been reported to utilize liquid-liquid phase separation (LLPS) to perform their mitotic functions, whether and how centrosomal kinases exert the coacervation in mitosis is still unknown. Here we reveal that Aurora-A, one key centrosomal kinase in regulating centrosome formation and functions, undergoes phase separation in vitro or in centrosomes from prophase, mediated by the conserved positive-charged residues inside its intrinsic disordered region (IDR) and the intramolecular interaction between its N- and C-terminus. Aurora-A condensation affects centrosome maturation, separation, initial spindle formation from the spindle pole and its kinase activity. Moreover, BuGZ interacts with Aurora-A to enhance its LLPS and centrosome functions. Thus, we propose that Aurora-A collaborates with BuGZ to exhibit the property of LLPS in centrosomes to control its centrosome-dependent functions from prophase.
Collapse
Affiliation(s)
- Hui Zheng
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Qiaoqiao Zhang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
- Key Laboratory of Gene Engineering of the Ministry of Education, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, Guangdong, China
| | - Xing Liu
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Fan Shi
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Fengrui Yang
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Center for Cross-disciplinary Sciences, University of Science & Technology of China, School of Life Sciences, Hefei, China
| | - Shengqi Xiang
- MOE Key Lab for Cellular Dynamics, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Hao Jiang
- Laboratory for Aging and Cancer Research, Frontiers Science Center Disease-related Molecular Network, State Key Laboratory of Respiratory Health and Multimorbidity and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
6
|
Mascanzoni F, Ayala I, Iannitti R, Luini A, Colanzi A. The Golgi checkpoint: Golgi unlinking during G2 is necessary for spindle formation and cytokinesis. Life Sci Alliance 2024; 7:e202302469. [PMID: 38479814 PMCID: PMC10941482 DOI: 10.26508/lsa.202302469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/17/2024] Open
Abstract
Entry into mitosis requires not only correct DNA replication but also extensive cell reorganization, including the separation of the Golgi ribbon into isolated stacks. To understand the significance of pre-mitotic Golgi reorganization, we devised a strategy to first block Golgi segregation, with the consequent G2-arrest, and then force entry into mitosis. We found that the cells forced to enter mitosis with an intact Golgi ribbon showed remarkable cell division defects, including spindle multipolarity and binucleation. The spindle defects were caused by reduced levels at the centrosome of the kinase Aurora-A, a pivotal spindle formation regulator controlled by Golgi segregation. Overexpression of Aurora-A rescued spindle formation, indicating a crucial role of the Golgi-dependent recruitment of Aurora-A at the centrosome. Thus, our results reveal that alterations of the pre-mitotic Golgi segregation in G2 have profound consequences on the fidelity of later mitotic processes and represent potential risk factors for cell transformation and cancer development.
Collapse
Affiliation(s)
- Fabiola Mascanzoni
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Inmaculada Ayala
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Roberta Iannitti
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Alberto Luini
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology "G. Salvatore" (IEOS), National Research Council (CNR), Naples, Italy
| |
Collapse
|
7
|
Lee H, Kim E, Hwang N, Yoo J, Nam Y, Hwang I, Park JG, Park SE, Chung KS, Won Chung H, Song C, Ji MJ, Park HM, Lee IK, Lee KT, Joo Roh E, Hur W. Discovery of N-benzylbenzamide-based allosteric inhibitors of Aurora kinase A. Bioorg Med Chem 2024; 102:117658. [PMID: 38460487 DOI: 10.1016/j.bmc.2024.117658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/11/2024]
Abstract
Aurora kinases (AurkA/B/C) regulate the assembly of bipolar mitotic spindles and the fidelity of chromosome segregation during mitosis, and are attractive therapeutic targets for cancers. Numerous ATP-competitive AurkA inhibitors have been developed as potential anti-cancer agents. Recently, a few allosteric inhibitors have been reported that bind to the allosteric Y-pocket within AurkA kinase domain and disrupt the interaction between AurkA and its activator TPX2. Herein we report a novel allosteric AurkA inhibitor (6h) of N-benzylbenzamide backbone. Compound 6h suppressed the both catalytic activity and non-catalytic functions of AurkA. The inhibitory activity of 6h against AurkA (IC50 = 6.50 μM) was comparable to that of the most potent allosteric AurkA inhibitor AurkinA. Docking analysis against the Y-pocket revealed important pharmacophores and interactions that were coherent with structure-activity relationship. In addition, 6h suppressed DNA replication in G1-S phase, which is a feature of allosteric inhibition of AurA. Our current study may provide a useful insight in designing potent allosteric AurkA inhibitors.
Collapse
Affiliation(s)
- Hyomin Lee
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea
| | - Euijung Kim
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Narae Hwang
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jesik Yoo
- Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea; Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Yunju Nam
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Injeoung Hwang
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Jin-Gyeong Park
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hwan Won Chung
- Computational Science Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Chiman Song
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Mi-Jung Ji
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyun-Mee Park
- Advanced Analysis Data Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - In-Kyun Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Joo Roh
- Division of Biomedical Science and Technology, UST KIST School, Seoul 02792, Republic of Korea; Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea.
| | - Wooyoung Hur
- Medicinal Materials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; HY-KIST Bioconvergence, Hanyang University, Seoul 04763, Republic of Korea.
| |
Collapse
|
8
|
Lakkaniga NR, Wang Z, Xiao Y, Kharbanda A, Lan L, Li HY. Revisiting Aurora Kinase B: A promising therapeutic target for cancer therapy. Med Res Rev 2024; 44:686-706. [PMID: 37983866 DOI: 10.1002/med.21994] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 03/28/2023] [Accepted: 10/29/2023] [Indexed: 11/22/2023]
Abstract
Cancer continues to be a major health concern globally, although the advent of targeted therapy has revolutionized treatment options. Aurora Kinase B is a serine-threonine kinase that has been explored as an oncology therapeutic target for more than two decades. Aurora Kinase B inhibitors show promising biological results in in-vitro and in-vivo experiments. However, there are no inhibitors approved yet for clinical use, primarily because of the side effects associated with Aurora B inhibitors. Several studies demonstrate that Aurora B inhibitors show excellent synergy with various chemotherapeutic agents, radiation therapy, and targeted therapies. This makes it an excellent choice as an adjuvant therapy to first-line therapies, which greatly improves the therapeutic window and side effect profile. Recent studies indicate the role of Aurora B in some deadly cancers with limited therapeutic options, like triple-negative breast cancer and glioblastoma. Herein, we review the latest developments in Aurora Kinase B targeted research, with emphasis on its potential as an adjuvant therapy and its role in some of the most difficult-to-treat cancers.
Collapse
Affiliation(s)
- Naga Rajiv Lakkaniga
- Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Zhengyu Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Yao Xiao
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Anupreet Kharbanda
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Li Lan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Hong-Yu Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
9
|
Altiner P, Çınaroğlu SS, Timucin AC, Timucin E. Computational completion of the Aurora interaction region of N-Myc in the Aurora a kinase complex. Sci Rep 2023; 13:18399. [PMID: 37884585 PMCID: PMC10603048 DOI: 10.1038/s41598-023-45272-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
Inhibiting protein-protein interactions of the Myc family is a viable pharmacological strategy for modulation of the levels of Myc oncoproteins in cancer. Aurora A kinase (AurA) and N-Myc interaction is one of the most attractive targets of this strategy because formation of this complex blocks proteasomal degradation of N-Myc in neuroblastoma. Two crystallization studies have captured this complex (PDB IDs: 5g1x, 7ztl), partially resolving the AurA interaction region (AIR) of N-Myc. Prompted by the missing N-Myc fragment in these crystal structures, we modeled the complete structure between AurA and N-Myc, and comprehensively analyzed how the incomplete and complete N-Myc behave in complex by molecular dynamics simulations. Molecular dynamics simulations of the incomplete PDB complex (5g1x) repeatedly showed partial dissociation of the short N-Myc fragment (61-89) from the kinase. The missing N-Myc (19-60) fragment was modeled utilizing the N-terminal lobe of AurA as the protein-protein interaction surface, wherein TPX2, a well-known partner of AurA, also binds. Binding free energy calculations along with flexibility analysis confirmed that the complete AIR of N-Myc stabilizes the complex, accentuating the N-terminal lobe of AurA as a binding site for the missing N-Myc fragment (19-60). We further generated additional models consisting of only the missing N-Myc (19-60), and the fused form of TPX2 (7-43) and N-Myc (61-89). These partners also formed more stable interactions with the N-terminal lobe of AurA than did the incomplete N-Myc fragment (61-89) in the 5g1x complex. Altogether, this study provides structural insights into the involvement of the N-terminus of the AIR of N-Myc and the N-terminal lobe of AurA in formation of a stable complex, reflecting its potential for effective targeting of N-Myc.
Collapse
Affiliation(s)
- Pinar Altiner
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS, Université Toulouse III - Paul Sabatier (UT3), 31077, Toulouse, France
| | | | - Ahmet Can Timucin
- Department of Molecular Biology and Genetics, Faculty of Engineering and Natural Sciences, Acibadem University, 34752, Istanbul, Turkey.
| | - Emel Timucin
- Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem University, 34752, Istanbul, Turkey.
| |
Collapse
|
10
|
El Dika M, Dudka D, Kloc M, Kubiak JZ. CDC6 as a Key Inhibitory Regulator of CDK1 Activation Dynamics and the Timing of Mitotic Entry and Progression. BIOLOGY 2023; 12:855. [PMID: 37372141 DOI: 10.3390/biology12060855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Timely mitosis is critically important for early embryo development. It is regulated by the activity of the conserved protein kinase CDK1. The dynamics of CDK1 activation must be precisely controlled to assure physiologic and timely entry into mitosis. Recently, a known S-phase regulator CDC6 emerged as a key player in mitotic CDK1 activation cascade in early embryonic divisions, operating together with Xic1 as a CDK1 inhibitor upstream of the Aurora A and PLK1, both CDK1 activators. Herein, we review the molecular mechanisms that underlie the control of mitotic timing, with special emphasis on how CDC6/Xic1 function impacts CDK1 regulatory network in the Xenopus system. We focus on the presence of two independent mechanisms inhibiting the dynamics of CDK1 activation, namely Wee1/Myt1- and CDC6/Xic1-dependent, and how they cooperate with CDK1-activating mechanisms. As a result, we propose a comprehensive model integrating CDC6/Xic1-dependent inhibition into the CDK1-activation cascade. The physiological dynamics of CDK1 activation appear to be controlled by the system of multiple inhibitors and activators, and their integrated modulation ensures concomitantly both the robustness and certain flexibility of the control of this process. Identification of multiple activators and inhibitors of CDK1 upon M-phase entry allows for a better understanding of why cells divide at a specific time and how the pathways involved in the timely regulation of cell division are all integrated to precisely tune the control of mitotic events.
Collapse
Affiliation(s)
- Mohammed El Dika
- Department of Biochemistry, Larner College of Medicine, UVM Cancer Center, University of Vermont, Burlington, VT 05405, USA
| | - Damian Dudka
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Malgorzata Kloc
- The Houston Methodist Research Institute, Transplant Immunology, Houston, TX 77030, USA
- Department of Surgery, The Houston Methodist Hospital, Houston, TX 77030, USA
- Department of Genetics, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Jacek Z Kubiak
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine-National Research Institute (WIM-PIB), Szaserow 128, 04-141 Warsaw, Poland
- Dynamics and Mechanics of Epithelia Group, Faculty of Medicine, Institute of Genetics and Development of Rennes, University of Rennes, CNRS, UMR 6290, 35043 Rennes, France
| |
Collapse
|
11
|
Park JG, Jeon H, Shin S, Song C, Lee H, Kim NK, Kim EE, Hwang KY, Lee BJ, Lee IG. Structural basis for CEP192-mediated regulation of centrosomal AURKA. SCIENCE ADVANCES 2023; 9:eadf8582. [PMID: 37083534 PMCID: PMC10121170 DOI: 10.1126/sciadv.adf8582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Aurora kinase A (AURKA) performs critical functions in mitosis. Thus, the activity and subcellular localization of AURKA are tightly regulated and depend on diverse factors including interactions with the multiple binding cofactors. How these different cofactors regulate AURKA to elicit different levels of activity at distinct subcellular locations and times is poorly understood. Here, we identified a conserved region of CEP192, the major cofactor of AURKA, that mediates the interaction with AURKA. Quantitative binding studies were performed to map the interactions of a conserved helix (Helix-1) within CEP192. The crystal structure of Helix-1 bound to AURKA revealed a distinct binding site that is different from other cofactor proteins such as TPX2. Inhibiting the interaction between Helix-1 and AURKA in cells led to the mitotic defects, demonstrating the importance of the interaction. Collectively, we revealed a structural basis for the CEP192-mediated AURKA regulation at the centrosome, which is distinct from TPX2-mediated regulation on the spindle microtubule.
Collapse
Affiliation(s)
- Jin-Gyeong Park
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Hanul Jeon
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Sangchul Shin
- Technology Support Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Chiman Song
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
| | - Hyomin Lee
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Chemical Kinomics Research Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Nak-Kyoon Kim
- Advanced Analysis Center, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Eunice EunKyeong Kim
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kwang Yeon Hwang
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Bong-Jin Lee
- The Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - In-Gyun Lee
- Biomedical Research Division, Korea Institute of Science and Technology, Seoul 02792, South Korea
- Department of Biological Chemistry, University of Science and Technology, Daejeon 34113, South Korea
- Corresponding author.
| |
Collapse
|
12
|
Fatma H, Siddique HR. AURORA KINASE A and related downstream molecules: A potential network for cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:115-145. [PMID: 36858732 DOI: 10.1016/bs.apcsb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aurora-A kinase (AURKA) belongs to the serine/threonine kinase family specific to cell division. In normal cells, activation of the AURKA protein is essential for regulating chromosomal segregation and centrosome maturation. The physiological concentration of AURKA accumulation has utmost importance during cell division. AURKA starts accumulating during the S phase of the cell cycle, gets functionally activated during the G2/M phase, attaches to the microtubule, and gets degraded during mitotic exit. Overexpression of AURKA could lead to deregulated cell cycle division, which is intrinsic to numerous cancers. Moreover, dysregulated AURKA affects various downstream molecules that aid in cancer pathogenesis. AURKA phosphorylates its substrates, including oncoproteins, transcriptional factors, tumor suppressor proteins, or other kinases central to various oncogenic signaling pathways critical to cancer. Considering the central role of AURKA in cell proliferation and tumorigenesis, targeting AURKA can be a novel alternative to cancer management. Several AURKA inhibitors have shown promising responses against different cancers either as a single agent or combined with various therapies. This chapter briefly discusses the role of AURKA and its downstream molecules in cancer vis-à-vis the role of AURKA inhibitor in chemoprevention.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
13
|
Wińska P, Sobiepanek A, Pawlak K, Staniszewska M, Cieśla J. Phosphorylation of Thymidylate Synthase and Dihydrofolate Reductase in Cancer Cells and the Effect of CK2α Silencing. Int J Mol Sci 2023; 24:ijms24033023. [PMID: 36769342 PMCID: PMC9917831 DOI: 10.3390/ijms24033023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/08/2023] Open
Abstract
Our previous research suggests an important regulatory role of CK2-mediated phosphorylation of enzymes involved in the thymidylate biosynthesis cycle, i.e., thymidylate synthase (TS), dihydrofolate reductase (DHFR), and serine hydroxymethyltransferase (SHMT). The aim of this study was to show whether silencing of the CK2α gene affects TS and DHFR expression in A-549 cells. Additionally, we attempted to identify the endogenous kinases that phosphorylate TS and DHFR in CCRF-CEM and A-549 cells. We used immunodetection, immunofluorescence/confocal analyses, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), in-gel kinase assay, and mass spectrometry analysis. Our results demonstrate that silencing of the CK2α gene in lung adenocarcinoma cells significantly increases both TS and DHFR expression and affects their cellular distribution. Additionally, we show for the first time that both TS and DHFR are very likely phosphorylated by endogenous CK2 in two types of cancer cells, i.e., acute lymphoblastic leukaemia and lung adenocarcinoma. Moreover, our studies indicate that DHFR is phosphorylated intracellularly by CK2 to a greater extent in leukaemia cells than in lung adenocarcinoma cells. Interestingly, in-gel kinase assay results indicate that the CK2α' isoform was more active than the CK2α subunit. Our results confirm the previous studies concerning the physiological relevance of CK2-mediated phosphorylation of TS and DHFR.
Collapse
Affiliation(s)
- Patrycja Wińska
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
- Correspondence: (P.W.); (M.S.); Tel.: +48-222-345-573 (P.W.); +48-606-438-241 (M.S.)
| | - Anna Sobiepanek
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Katarzyna Pawlak
- Chair of Analytical Chemistry, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Staniszewska
- Centre for Advanced Materials and Technologies, Warsaw University of Technology, Poleczki 19, 02-822 Warsaw, Poland
- Correspondence: (P.W.); (M.S.); Tel.: +48-222-345-573 (P.W.); +48-606-438-241 (M.S.)
| | - Joanna Cieśla
- Chair of Drug and Cosmetics Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
14
|
Pereira M, Vale N. Evolution of Antiretroviral Drug Rilpivirine and Approach to Oncology. Int J Mol Sci 2023; 24:ijms24032890. [PMID: 36769210 PMCID: PMC9917964 DOI: 10.3390/ijms24032890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Rilpivirine is an antiretroviral drug used to treat AIDS worldwide. The drug is a non-nucleoside reverse transcriptase inhibitor that halts the cDNA elongation process and, thus, the capacity of the HIV-1 virus to replicate. With the new wave of drug repurposing in recent years, rilpivirine has been studied in this regard. This drug is useful in Zika virus treatment, with in vivo results indicating regression in neuronal effects often associated with this infection. Several cancer types have also been researched, from breast to leukemia and pancreatic cancer, and rilpivirine has proved to have inhibitory effects in various cell lines with low concentrations, causing cellular death, apoptosis, and cell cycle arrest. The pathways are not yet established, but some works have hypothesized and demonstrated that rilpivirine causes inhibition of Aurora A kinase and has effects on the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway and the vascular endothelial growth factors-receptors (VEGFs-VEGFRs) pathway, which are known to be altered in cancer and tumors and can be targeted for cancer treatment. Further testing and clinical trials are needed, but this review demonstrates the potential of rilpivirine's repurposing for cancer treatment.
Collapse
Affiliation(s)
- Mariana Pereira
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), Universidade do Porto (UP), 4050-313 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), 4200-450 Porto, Portugal
- CINTESIS@RISE, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, 4200-450 Porto, Portugal
- Correspondence: ; Tel.: +351-220-426-537
| |
Collapse
|
15
|
Rani B, Gupta DK, Johansson S, Kamranvar SA. Contribution of integrin adhesion to cytokinetic abscission and genomic integrity. Front Cell Dev Biol 2022; 10:1048717. [PMID: 36578785 PMCID: PMC9791049 DOI: 10.3389/fcell.2022.1048717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Recent research shows that integrin-mediated adhesion contributes to the regulation of cell division at two key steps: the formation of the mitotic spindle at the mitotic entry and the final cytokinetic abscission at the mitotic exit. Failure in either of these processes will have a direct impact on the other in each round of the cell cycle and on the genomic integrity. This review aims to present how integrin signals are involved at these cell cycle stages under normal conditions and some safety mechanisms that may counteract the generation of aneuploid cells in cases of defective integrin signals.
Collapse
Affiliation(s)
- Bhavna Rani
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Deepesh K. Gupta
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, United States
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| | - Siamak A. Kamranvar
- Department of Medical Biochemistry and Microbiology (IMBIM), Biomedical Center, Uppsala University, Uppsala, Sweden,*Correspondence: Staffan Johansson, ; Siamak A. Kamranvar,
| |
Collapse
|
16
|
Pang K, Wang W, Qin J, Shi Z, Hao L, Ma Y, Xu H, Wu Z, Pan D, Chen Z, Han C. Role of protein phosphorylation in cell signaling, disease, and the intervention therapy. MedComm (Beijing) 2022; 3:e175. [PMID: 36349142 PMCID: PMC9632491 DOI: 10.1002/mco2.175] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/18/2022] [Accepted: 08/22/2022] [Indexed: 11/06/2022] Open
Abstract
Protein phosphorylation is an important post-transcriptional modification involving an extremely wide range of intracellular signaling transduction pathways, making it an important therapeutic target for disease intervention. At present, numerous drugs targeting protein phosphorylation have been developed for the treatment of various diseases including malignant tumors, neurological diseases, infectious diseases, and immune diseases. In this review article, we analyzed 303 small-molecule protein phosphorylation kinase inhibitors (PKIs) registered and participated in clinical research obtained in a database named Protein Kinase Inhibitor Database (PKIDB), including 68 drugs approved by the Food and Drug Administration of the United States. Based on previous classifications of kinases, we divided these human protein phosphorylation kinases into eight groups and nearly 50 families, and delineated their main regulatory pathways, upstream and downstream targets. These groups include: protein kinase A, G, and C (AGC) and receptor guanylate cyclase (RGC) group, calmodulin-dependent protein kinase (CaMK) group, CMGC [Cyclin-dependent kinases (CDKs), Mitogen-activated protein kinases (MAPKs), Glycogen synthase kinases (GSKs), and Cdc2-like kinases (CLKs)] group, sterile (STE)-MAPKs group, tyrosine kinases (TK) group, tyrosine kinase-like (TKL) group, atypical group, and other groups. Different groups and families of inhibitors stimulate or inhibit others, forming an intricate molecular signaling regulatory network. This review takes newly developed new PKIs as breakthrough point, aiming to clarify the regulatory network and relationship of each pathway, as well as their roles in disease intervention, and provide a direction for future drug development.
Collapse
Affiliation(s)
- Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Wei Wang
- Department of Medical CollegeSoutheast UniversityNanjingJiangsuChina
| | - Jia‐Xin Qin
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Zhen‐Duo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| | - Yu‐Yang Ma
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Hao Xu
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhuo‐Xun Wu
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Deng Pan
- Graduate SchoolBengbu Medical CollegeBengbuAnhuiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesSt. John's University, QueensNew YorkNew YorkUSA
| | - Cong‐Hui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical CollegeThe Affiliated Xuzhou Hospital of Medical College of Southeast UniversityThe Affiliated Xuzhou Center Hospital of Nanjing University of Chinese MedicineXuzhouJiangsuChina
| |
Collapse
|
17
|
Di Paola S, Matarese M, Barretta ML, Dathan N, Colanzi A, Corda D, Grimaldi G. PARP10 Mediates Mono-ADP-Ribosylation of Aurora-A Regulating G2/M Transition of the Cell Cycle. Cancers (Basel) 2022; 14:5210. [PMID: 36358629 PMCID: PMC9659153 DOI: 10.3390/cancers14215210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/11/2022] [Accepted: 10/22/2022] [Indexed: 08/13/2023] Open
Abstract
Intracellular mono-ADP-ribosyltransferases (mono-ARTs) catalyze the covalent attachment of a single ADP-ribose molecule to protein substrates, thus regulating their functions. PARP10 is a soluble mono-ART involved in the modulation of intracellular signaling, metabolism and apoptosis. PARP10 also participates in the regulation of the G1- and S-phase of the cell cycle. However, the role of this enzyme in G2/M progression is not defined. In this study, we found that genetic ablation, protein depletion and pharmacological inhibition of PARP10 cause a delay in the G2/M transition of the cell cycle. Moreover, we found that the mitotic kinase Aurora-A, a previously identified PARP10 substrate, is actively mono-ADP-ribosylated (MARylated) during G2/M transition in a PARP10-dependent manner. Notably, we showed that PARP10-mediated MARylation of Aurora-A enhances the activity of the kinase in vitro. Consistent with an impairment in the endogenous activity of Aurora-A, cells lacking PARP10 show a decreased localization of the kinase on the centrosomes and mitotic spindle during G2/M progression. Taken together, our data provide the first evidence of a direct role played by PARP10 in the progression of G2 and mitosis, an event that is strictly correlated to the endogenous MARylation of Aurora-A, thus proposing a novel mechanism for the modulation of Aurora-A kinase activity.
Collapse
Affiliation(s)
- Simone Di Paola
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Matarese
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Maria Luisa Barretta
- National Research Council (CNR), Piazzale Aldo Moro, 700185 Rome, Italy
- Steril Farma Srl, Via L. Da Vinci 128, 80055 Portici, Italy
| | - Nina Dathan
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Antonino Colanzi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Daniela Corda
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| | - Giovanna Grimaldi
- Institute of Experimental Endocrinology and Oncology “G. Salvatore” (IEOS), National Research Council (CNR), 80131 Naples, Italy
| |
Collapse
|
18
|
Wang F, Zhang H, Wang H, Qiu T, He B, Yang Q. Combination of AURKA inhibitor and HSP90 inhibitor to treat breast cancer with AURKA overexpression and TP53 mutations. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:180. [PMID: 36071247 DOI: 10.1007/s12032-022-01777-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Breast cancer is the most common cancer among women worldwide. Researches show that Aurora kinase A (AURKA) is highly expressed in approximately 73% of breast cancer patients, which induces drug resistance in breast cancer patients and decreases the median survival time. AURKA regulates spindle assembly, centrosome maturation, and chromosome alignment. AURKA overexpression affects the occurrence and development of breast cancer. Besides AURKA overexpression, heat shock protein 90 (HSP90) maintains the survival and proliferation of tumor cells by stabilizing the structure of oncoproteins, including P53 mutants (mtP53). TP53 mutations accounted for approximately 13%, 40%, 80%, 33%, 71%, and 82% of luminal A, Luminal B, Luminal C, normal basal-like, HER2-amplified, and basal-like breast cancers, respectively. TP53 mutation can aggravate cell genome instability and enhance the invasion, migration, and resistance of cancer cell. This review describes the research status of AURKA and HSP90 in breast cancer, summarizes the structure, function, and the chaperone cycle of HSP90, elaborates the interrelation between HSP90, mtP53, P53, and AURKA, and proposes the combination of HSP90 inhibitor and AURKA inhibitor to treat breast cancer. Targeting AURKA and HSP90 to treat cancer with AURKA overexpression and TP53 mutations will help improve the specificity and efficiency of breast cancer treatment and solve the problem of drug resistance.
Collapse
Affiliation(s)
- Fuping Wang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Haotian Zhang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Haitao Wang
- Department of Hematology, Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100000, China
| | - Tian Qiu
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100000, China
| | - Binghong He
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China
| | - Qiong Yang
- Beijing Key Laboratory of Resistant Gene Resources and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing, 100000, China.
| |
Collapse
|
19
|
Pillan A, Tavernier N, Pintard L. [The kiss of life: Aurora A embraces the phosphate of its cofactor Bora to trigger mitotic entry]. Med Sci (Paris) 2022; 38:345-347. [PMID: 35485893 DOI: 10.1051/medsci/2022033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Anaïs Pillan
- Programme Équipe labellisée Ligue nationale contre le cancer, Équipe Cycle cellulaire & développement, Université Paris Cité, CNRS, Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75013 Paris, France
| | - Nicolas Tavernier
- Programme Équipe labellisée Ligue nationale contre le cancer, Équipe Cycle cellulaire & développement, Université Paris Cité, CNRS, Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75013 Paris, France
| | - Lionel Pintard
- Programme Équipe labellisée Ligue nationale contre le cancer, Équipe Cycle cellulaire & développement, Université Paris Cité, CNRS, Institut Jacques Monod, Bâtiment Buffon, 15 rue Hélène Brion, 75013 Paris, France
| |
Collapse
|
20
|
Integrin-Mediated Adhesion Promotes Centrosome Separation in Early Mitosis. Cells 2022; 11:cells11081360. [PMID: 35456039 PMCID: PMC9030014 DOI: 10.3390/cells11081360] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 01/17/2023] Open
Abstract
Integrin-mediated adhesion to the extracellular matrix is a key regulator of the cell cycle, as demonstrated for the passage of the G1/S checkpoint and the completion of cytokinetic abscission. Here, integrin-dependent regulation of the cell cycle in G2 and early M phases was investigated. The progression through the G2 and M phases was monitored by live-cell imaging and immunofluorescence staining in adherent and non-adherent fibroblast cells. Non-adherent cells, as well as adherent cells lacking FAK activity due to suppressed expression or pharmacological inhibition, exhibited a prolonged G2 phase and severely defect centrosome separation, resulting in delayed progress through the early mitotic stages. The activation of the critical mitotic regulator PLK1 and its indirect target Eg5, a kinesin-family motor protein driving the centrosome separation, were reduced in the cells lacking FAK activity. Furthermore, the absence of integrin adhesion or FAK activity destabilized the structural integrity of centrosomes and often caused detachment of pericentriolar material from the centrioles. These data identify a novel adhesion-dependent mechanism by which integrins via FAK and PLK1 contribute to the regulation of the cell cycle in the G2 and early M phases, and to the maintenance of genome integrity.
Collapse
|