1
|
P A H, Basavaraju N, Gupta A, Kommaddi RP. Actin Cytoskeleton at the Synapse: An Alzheimer's Disease Perspective. Cytoskeleton (Hoboken) 2025. [PMID: 39840749 DOI: 10.1002/cm.21993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 12/18/2024] [Accepted: 01/05/2025] [Indexed: 01/23/2025]
Abstract
Actin, a ubiquitous and highly conserved cytoskeletal protein, plays a pivotal role in various cellular functions such as structural support, facilitating cell motility, and contributing to the dynamic processes of synaptic function. Apart from its established role in inducing morphological changes, recent developments in the field indicate an active involvement of actin in modulating both the structure and function of pre- and postsynaptic terminals. Within the presynapse, it is involved in the organization and trafficking of synaptic vesicles, contributing to neurotransmitter release. In the postsynapse, actin dynamically modulates dendritic spines, influencing the postsynaptic density organization and anchoring of neurotransmitter receptors. In addition, the dynamic interplay of actin at the synapse underscores its essential role in regulating neural communication. This review strives to offer a comprehensive overview of the recent advancements in understanding the multifaceted role of the actin cytoskeleton in synaptic functions. By emphasizing its aberrant regulation, we aim to provide valuable insights into the underlying mechanisms of Alzheimer's disease pathophysiology.
Collapse
Affiliation(s)
- Haseena P A
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | - Anant Gupta
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
- Manipal Academy of Higher Education, Manipal, India
| | | |
Collapse
|
2
|
Das G, Malak OA, Sharma K, Alia AG, Gopalakrishnan S, Menon RV, Yamanouchi HM, Nose A, Kazama H, Moore AW, Suzuki T. The fly brain lands in Tokyo: A report on the 3rd Asia Pacific Drosophila Neurobiology Conference. Genes Cells 2024; 29:1111-1117. [PMID: 39500337 DOI: 10.1111/gtc.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 01/23/2025]
Abstract
The third Asia Pacific Drosophila Neurobiology Conference (APDNC3) was held in the Wako Campus of RIKEN in Tokyo, Japan, from February 27th to March 1st, 2024. While APDNC2 was held in Taiwan in 2019, the global coronavirus pandemic enforced a long hiatus. Hence, APDNC3 was a much-anticipated meeting that attracted ~218 scientists from 18 different countries and regions, 154 from outside Japan. The meeting was divided into 13 scientific, 2 poster, and 3 career development sessions. Two plenary talks were delivered by Professor Daisuke Yamamoto, from NICT and Professor Claude Desplan from NYU. Thirty-seven other speakers were invited to give lectures. Eighty-six poster presenters were selected from submitted abstracts. Talks and posters described how neuronal circuits underlying specific behaviors were identified and how they developed. The presented work also demonstrated circuit-specific cellular and molecular mechanisms in health and disease. It was clear that technological advances, like molecular genetic tools for identifying, manipulating, and imaging individual neurons and the great granularity of the fly brain connectome, were significantly augmenting research. Overall, the meeting highlighted the remarkable biological insights that fly neurobiologists continue to provide.
Collapse
Affiliation(s)
- Gaurav Das
- Brain and Feeding Behaviour Laboratory, National Centre for Cell Science, S.P Pune University Campus, Pune, India
| | - Olfat A Malak
- Neuroscience and Age-Related Diseases Laboratory, Buck Institute for Research on Aging, Novato, California, USA
| | - Khushboo Sharma
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Abdalla G Alia
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Swetha Gopalakrishnan
- Chronobiology Laboratory, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | - Reshma V Menon
- Drosophila Research in Energy And Metabolism (DREAM) Lab, Indian Institute of Science Education and Research, Thiruvananthapuram, India
| | | | - Akinao Nose
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | | | | | - Takashi Suzuki
- School of Life Science and Technology, Institute of Science Tokyo, Yokohama, Japan
| |
Collapse
|
3
|
Kim YD, Park HG, Song S, Kim J, Lee BJ, Broadie K, Lee S. Presynaptic structural and functional plasticity are coupled by convergent Rap1 signaling. J Cell Biol 2024; 223:e202309095. [PMID: 38748250 PMCID: PMC11096849 DOI: 10.1083/jcb.202309095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/18/2024] Open
Abstract
Dynamic presynaptic actin remodeling drives structural and functional plasticity at synapses, but the underlying mechanisms remain largely unknown. Previous work has shown that actin regulation via Rac1 guanine exchange factor (GEF) Vav signaling restrains synaptic growth via bone morphogenetic protein (BMP)-induced receptor macropinocytosis and mediates synaptic potentiation via mobilization of reserve pool vesicles in presynaptic boutons. Here, we find that Gef26/PDZ-GEF and small GTPase Rap1 signaling couples the BMP-induced activation of Abelson kinase to this Vav-mediated macropinocytosis. Moreover, we find that adenylate cyclase Rutabaga (Rut) signaling via exchange protein activated by cAMP (Epac) drives the mobilization of reserve pool vesicles during post-tetanic potentiation (PTP). We discover that Rap1 couples activation of Rut-cAMP-Epac signaling to Vav-mediated synaptic potentiation. These findings indicate that Rap1 acts as an essential, convergent node for Abelson kinase and cAMP signaling to mediate BMP-induced structural plasticity and activity-induced functional plasticity via Vav-dependent regulation of the presynaptic actin cytoskeleton.
Collapse
Affiliation(s)
- Yeongjin David Kim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Hyun Gwan Park
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Seunghwan Song
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
| | - Joohyung Kim
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Byoung Ju Lee
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| | - Kendal Broadie
- Departments of Cell and Developmental Biology, Pharmacology, and Biological Sciences, Vanderbilt University and Medical Center, Nashville, TN, USA
| | - Seungbok Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, Korea
- Department of Cell and Developmental Biology and Dental Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
4
|
Dominicci-Cotto C, Vazquez M, Marie B. The Wingless planar cell polarity pathway is essential for optimal activity-dependent synaptic plasticity. Front Synaptic Neurosci 2024; 16:1322771. [PMID: 38633293 PMCID: PMC11021733 DOI: 10.3389/fnsyn.2024.1322771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/18/2024] [Indexed: 04/19/2024] Open
Abstract
From fly to man, the Wingless (Wg)/Wnt signaling molecule is essential for both the stability and plasticity of the nervous system. The Drosophila neuromuscular junction (NMJ) has proven to be a useful system for deciphering the role of Wg in directing activity-dependent synaptic plasticity (ADSP), which, in the motoneuron, has been shown to be dependent on both the canonical and the noncanonical calcium Wg pathways. Here we show that the noncanonical planar cell polarity (PCP) pathway is an essential component of the Wg signaling system controlling plasticity at the motoneuron synapse. We present evidence that disturbing the PCP pathway leads to a perturbation in ADSP. We first show that a PCP-specific allele of disheveled (dsh) affects the de novo synaptic structures produced during ADSP. We then show that the Rho GTPases downstream of Dsh in the PCP pathway are also involved in regulating the morphological changes that take place after repeated stimulation. Finally, we show that Jun kinase is essential for this phenomenon, whereas we found no indication of the involvement of the transcription factor complex AP1 (Jun/Fos). This work shows the involvement of the neuronal PCP signaling pathway in supporting ADSP. Because we find that AP1 mutants can perform ADSP adequately, we hypothesize that, upon Wg activation, the Rho GTPases and Jun kinase are involved locally at the synapse, in instructing cytoskeletal dynamics responsible for the appearance of the morphological changes occurring during ADSP.
Collapse
Affiliation(s)
- Carihann Dominicci-Cotto
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
| | - Mariam Vazquez
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| | - Bruno Marie
- Department of Anatomy and Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Institute of Neurobiology, Medical Sciences Campus, University of Puerto Rico, San Juan, PR, United States
- Molecular Sciences Research Center, University of Puerto Rico, San Juan, PR, United States
| |
Collapse
|
5
|
Machesky LM. CYRI proteins: controllers of actin dynamics in the cellular 'eat vs walk' decision. Biochem Soc Trans 2023; 51:579-585. [PMID: 36892409 PMCID: PMC10212538 DOI: 10.1042/bst20221354] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/10/2023]
Abstract
Cells use actin-based protrusions not only to migrate, but also to sample their environment and take up liquids and particles, including nutrients, antigens and pathogens. Lamellipodia are sheet-like actin-based protrusions involved in sensing the substratum and directing cell migration. Related structures, macropinocytic cups, arise from lamellipodia ruffles and can take in large gulps of the surrounding medium. How cells regulate the balance between using lamellipodia for migration and macropinocytosis is not yet well understood. We recently identified CYRI proteins as RAC1-binding regulators of the dynamics of lamellipodia and macropinocytic events. This review discusses recent advances in our understanding of how cells regulate the balance between eating and walking by repurposing their actin cytoskeletons in response to environmental cues.
Collapse
Affiliation(s)
- Laura M. Machesky
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, U.K
- CRUK Beatson Institute and Institute of Cancer Sciences, University of Glasgow, Glasgow, U.K
| |
Collapse
|
6
|
Zhou X, Gan G, Sun Y, Ou M, Geng J, Wang J, Yang X, Huang S, Jia D, Xie W, He H. GTPase-activating protein TBC1D5 coordinates with retromer to constrain synaptic growth by inhibiting BMP signaling. J Genet Genomics 2023; 50:163-177. [PMID: 36473687 DOI: 10.1016/j.jgg.2022.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/22/2022] [Indexed: 12/12/2022]
Abstract
Formation and plasticity of neural circuits rely on precise regulation of synaptic growth. At Drosophila neuromuscular junction (NMJ), Bone Morphogenetic Protein (BMP) signaling is critical for many aspects of synapse formation and function. The evolutionarily conserved retromer complex and its associated GTPase-activating protein TBC1D5 are critical regulators of membrane trafficking and cellular signaling. However, their functions in regulating the formation of NMJ are less understood. Here, we report that TBC1D5 is required for inhibition of synaptic growth, and loss of TBC1D5 leads to abnormal presynaptic terminal development, including excessive satellite boutons and branch formation. Ultrastructure analysis reveals that the size of synaptic vesicles and the density of subsynaptic reticulum are increased in TBC1D5 mutant boutons. Disruption of interactions of TBC1D5 with Rab7 and retromer phenocopies the loss of TBC1D5. Unexpectedly, we find that TBC1D5 is functionally linked to Rab6, in addition to Rab7, to regulate synaptic growth. Mechanistically, we show that loss of TBC1D5 leads to upregulated BMP signaling by increasing the protein level of BMP type II receptor Wishful Thinking (Wit) at NMJ. Overall, our data establish that TBC1D5 in coordination with retromer constrains synaptic growth by regulating Rab7 activity, which negatively regulates BMP signaling through inhibiting Wit level.
Collapse
Affiliation(s)
- Xiu Zhou
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guangming Gan
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China; The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Medicine, Southeast University, Nanjing, Jiangsu 210009, China
| | - Yichen Sun
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Mengzhu Ou
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Junhua Geng
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China
| | - Jing Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xi Yang
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Huang
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Xie
- The Key Laboratory of Developmental Genes and Human Disease (MOE), School of Life Science and Technology, Southeast University, Nanjing, Jiangsu 210096, China.
| | - Haihuai He
- State Key Laboratory of Biotherapy, Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
7
|
Qi L, Ge W, Pan C, Jiang W, Lin D, Zhang L. Compromised osteogenic effect of exosomes internalized by senescent bone marrow stem cells via endocytoses involving clathrin, macropinocytosis and caveolae. Front Bioeng Biotechnol 2023; 10:1090914. [PMID: 36686252 PMCID: PMC9846034 DOI: 10.3389/fbioe.2022.1090914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 12/19/2022] [Indexed: 01/05/2023] Open
Abstract
Stem cell senescence leads to progressive functional declines and disrupts the physiological homeostasis of bone environment. Stem cell-derived exosomes are emerging as promising therapeutical approaches to treat diverse aging-related osseous diseases. Herein, a previously reported osteoinductive exosome (OI-exo) was applied as a therapeutic agent for bone repair in aging individuals and its internalization mechanisms in senescent bone marrow stem cells (BMSCs) were explored. The results demonstrated that OI-exos derived from young BMSCs could partially rescue the proliferation, osteogenic differentiation and alleviate aging phenotypes in vitro. OI-exo-delivered hierarchical mesoporous bioactive glass (MBG) scaffold effectively promote in vivo bone formation in aging rat cranial defect model. However, the osteogenic effects of OI-exo both in vitro and in vivo were compromised in senescent individuals and for aging BMSCs compared to younger ones. This study revealed that non-senescent BMSCs internalized exosomes exclusively via clathrin-mediated endocytosis, while senescent BMSCs additionally evoked macropinocytosis and caveolae-mediated endocytosis to mediate the internalization of exosomes. The alteration of endocytic manner of senescent BMSCs and the involvement of macropinocytosis might be responsible for the compromised effects of therapeutical exosomes. The phenomena discovered in this study could also be extended to other scenarios where drugs or treatments exerted compromised effects in aging individuals. The influence of endocytic manner, avoidance of macropinocytosis-related negative effects should be taken into considerations in future therapeutic design for aging populations.
Collapse
Affiliation(s)
- Lei Qi
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weiwen Ge
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Cancan Pan
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weidong Jiang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dan Lin
- Shanghai University of Medicine and Health Sciences, Shanghai, China,*Correspondence: Lei Zhang, ; Dan Lin,
| | - Lei Zhang
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China,*Correspondence: Lei Zhang, ; Dan Lin,
| |
Collapse
|