1
|
Ahmed EN, Cutmore LC, Marshall JF. Syngeneic Mouse Models for Pre-Clinical Evaluation of CAR T Cells. Cancers (Basel) 2024; 16:3186. [PMID: 39335157 PMCID: PMC11430534 DOI: 10.3390/cancers16183186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cells have revolutionized the treatment of hematological malignancies. Unfortunately, this improvement has yet to be translated into the solid tumor field. Current immunodeficient models used in pre-clinical testing often overestimate the efficacy of CAR T cell therapy as they fail to recapitulate the immunosuppressive tumor microenvironment characteristic of solid tumors. As CAR T cell monotherapy is unlikely to be curative for many solid tumors, combination therapies must be investigated, for example, stromal remodeling agents and immunomodulators. The evaluation of these combination therapies requires a fully immunocompetent mouse model in order to recapitulate the interaction between the host's immune system and the CAR T cells. This review will discuss the need for improved immunocompetent murine models for the pre-clinical evaluation of CAR T cells, the current use of such models and future directions.
Collapse
Affiliation(s)
- Eman N Ahmed
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Lauren C Cutmore
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
2
|
Chimeric antigen receptor T cells therapy in solid tumors. Clin Transl Oncol 2023:10.1007/s12094-023-03122-8. [PMID: 36853399 DOI: 10.1007/s12094-023-03122-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/10/2023] [Indexed: 03/01/2023]
Abstract
Chimeric antigen receptor T cells therapy (CAR-T therapy) is a class of ACT therapy. Chimeric antigen receptor (CAR) is an engineered synthetic receptor of CAR-T, which give T cells the ability to recognize tumor antigens in a human leukocyte antigen-independent (HLA-independent) manner and enables them to recognize more extensive target antigens than natural T cell surface receptor (TCR), resulting in tumor destruction. CAR-T is composed of an extracellular single-chain variable fragment (scFv) of antibody, which serves as the targeting moiety, hinge region, transmembrane spacer, and intracellular signaling domain(s). CAR-T has been developing in many generations, which differ according to costimulatory domains. CAR-T therapy has several limitations that reduce its wide availability in immunotherapy which we can summarize in antigen escape that shows either partial or complete loss of target antigen expression, so multiplexing CAR-T cells are promoted to enhance targeting of tumor profiles. In addition, the large diversity in the tumor microenvironment also plays a major role in limiting this kind of treatment. Therefore, engineered CAR-T cells can evoke immunostimulatory signals that rebalance the tumor microenvironment. Using CAR-T therapy in treating the solid tumor is mainly restricted by the difficulty of CAR-T cells infiltrating the tumor site, so local administration was developed to improve the quality of treatment. The most severe toxicity after CAR-T therapy is on-target/on-tumor toxicity, such as cytokine release syndrome (CRS). Another type of toxicity is on-target/off-tumor toxicity which originates from the binding of CAR-T cells to target antigen that has shared expression on normal cells leading to damage in healthy cells and organs. Toxicity management should become a focus of implementation to permit management beyond specialized centers.
Collapse
|
3
|
Boccalatte F, Mina R, Aroldi A, Leone S, Suryadevara CM, Placantonakis DG, Bruno B. Advances and Hurdles in CAR T Cell Immune Therapy for Solid Tumors. Cancers (Basel) 2022; 14:5108. [PMID: 36291891 PMCID: PMC9600451 DOI: 10.3390/cancers14205108] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Chimeric antigen receptor (CAR) T cells in solid tumors have so far yielded limited results, in terms of therapeutic effects, as compared to the dramatic results observed for hematological malignancies. Many factors involve both the tumor cells and the microenvironment. The lack of specific target antigens and severe, potentially fatal, toxicities caused by on-target off-tumor toxicities constitute major hurdles. Furthermore, the tumor microenvironment is usually characterized by chronic inflammation, the presence of immunosuppressive molecules, and immune cells that can reduce CAR T cell efficacy and facilitate antigen escape. Nonetheless, solid tumors are under investigation as possible targets despite their complexity, which represents a significant challenge. In preclinical mouse models, CAR T cells are able to efficiently recognize and kill several tumor xenografts. Overall, in the next few years, there will be intensive research into optimizing novel cell therapies to improve their effector functions and keep untoward effects in check. In this review, we provide an update on the state-of-the-art CAR T cell therapies in solid tumors, focusing on the preclinical studies and preliminary clinical findings aimed at developing optimal strategies to reduce toxicity and improve efficacy.
Collapse
Affiliation(s)
- Francesco Boccalatte
- Department of Pathology, NYU Grossman School of Medicine, New York, NY 10016, USA
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
| | - Roberto Mina
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| | - Andrea Aroldi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, MB, Italy
| | - Sarah Leone
- Department of Population Health, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Carter M. Suryadevara
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Dimitris G. Placantonakis
- Perlmutter Cancer Center, NYU Langone Health, New York, NY 10016, USA
- Department of Neurosurgery, NYU Grossman School of Medicine, New York, NY 10016, USA
- Brain and Spine Tumor Center/Neuroscience Institute, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Benedetto Bruno
- Division of Hematology, A.O.U. Città della Salute e della Scienza di Torino, University of Torino, 10126 Torino, TO, Italy
- Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, TO, Italy
| |
Collapse
|
4
|
Lewis ED, Wu D, Meydani SN. Age-associated alterations in immune function and inflammation. Prog Neuropsychopharmacol Biol Psychiatry 2022; 118:110576. [PMID: 35588939 DOI: 10.1016/j.pnpbp.2022.110576] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunosenescence is a term used to describe the age-related changes in the immune system. Immunosenescence is associated with complex alterations and dysregulation of immune function and inflammatory processes. Age-related changes in innate immune responses including alterations in chemotactic, phagocytic, and natural killing functions, impaired antigen presenting capacity, and dysregulated inflammatory response have been described. The most striking and best characterized feature of immunosenescence is the decline in both number and function of T cells. With age there is decreased proliferation, decreased number of antigen-naïve T cells, and increased number of antigen-experienced memory T cells. This decline in naïve T cell population is associated with impaired immunity and reduced response to new or mutated pathogens. While the absolute number of peripheral B cells appears constant with age, changes in B cell functions including reduced antibody production and response and cell memory have been described. However, the main alteration in cell-mediated function that has been reported across all species with aging is those observed in in T cell. These T cell mediated changes have been shown to contribute to increased susceptibility to infection and cancer in older adults. In addition to functional and phenotype alterations in immune cells, studies demonstrate that circulating concentrations of inflammatory mediators in older adults are higher than those of young. This low grade, chronic inflammatory state that occurs in the context of aging has been termed "inflammaging". This review will focus on age-related changes in the immune system including immunosenescence and inflammation as well as the functional consequences of these age-related alterations for the aged.
Collapse
Affiliation(s)
- Erin Diane Lewis
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America
| | - Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, United States of America.
| |
Collapse
|
5
|
Deal B, Reynolds LM, Patterson C, Janjic JM, Pollock JA. Behavioral and inflammatory sex differences revealed by celecoxib nanotherapeutic treatment of peripheral neuroinflammation. Sci Rep 2022; 12:8472. [PMID: 35637203 PMCID: PMC9151909 DOI: 10.1038/s41598-022-12248-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/04/2022] [Indexed: 11/09/2022] Open
Abstract
Neuropathic pain affects millions of people worldwide, yet the molecular mechanisms of how it develops and persists are poorly understood. Given that males have historically been utilized as the primary sex in preclinical studies, less is known about the female neuroinflammatory response to injury, formation of pain, or response to pain-relieving therapies. Macrophages contribute to the development of neuroinflammatory pain via the activation of their cyclooxygenase-2 (COX-2) enzyme, which leads to the production of prostaglandin E2 (PGE2). PGE2 activates nociception and influences additional leukocyte infiltration. Attenuation of COX-2 activity decreases inflammatory pain, most commonly achieved by nonsteroidal anti-inflammatory drugs (NSAIDs), yet NSAIDs are considered ineffective for neuropathic pain due to off target toxicity. Using chronic constriction injury of the rat sciatic nerve, we show that males and females exhibit quantitatively the same degree of mechanical allodynia post injury. Furthermore, a low-dose nanotherapeutic containing the NSAID celecoxib is phagocytosed by circulating monocytes that then naturally accumulate at sites of injury as macrophages. Using this nanotherapeutic, we show that treated males exhibit complete reversal of hypersensitivity, while the same dose of nanotherapeutic in females provides an attenuated relief. The difference in behavioral response to the nanotherapy is reflected in the reduction of infiltrating macrophages at the site of injury. The observations contained in this study reinforce the notion that female neuroinflammation is different than males.
Collapse
|
6
|
Mehrabadi AZ, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Hamidinejad MA, Ghaleh HEG. Therapeutic potential of CAR T cell in malignancies: A scoping review. Biomed Pharmacother 2022; 146:112512. [PMID: 34894519 DOI: 10.1016/j.biopha.2021.112512] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 02/08/2023] Open
Abstract
Although tremendous advancements in cancer therapy over the last several years, cancer still is a complex illness to cure. Traditional cancer treatments, including chemotherapy, radiotherapy, and surgery, have a poor therapeutic effect, emphasizing the significance of employing innovative treatments like activated cell therapy. Chimeric antigen receptor T cell is one of the most prevalent types of activated cell therapy have been developed to direct T lymphocytes toward cancers (CAR-T cells). CAR-T cells therapy has illustrated poor impact versus solid tumors despite the remarkable success in patients suffering from hematological malignancies. CAR-T cells must overcome various hurdles to obtain full responses to solid tumors, including growth, stability, trafficking, and destiny inside tumors. As a result, novel treatment methods will entail overcoming the challenges that CAR-T cells face in solid tumors. The use of CAR-T cells in combination with other therapeutic approaches such as chemotherapy, radiotherapy, immuno-checkpoint inhibitors, and oncolytic viruses can promote the effectiveness of CAR-T cell therapy for the treatment of solid tumors. However, more research is needed to determine the safety and effectiveness of these therapies. CAR-T cell treatment success rates vary by type of disease, but are predicted to reach up to 90% in patients with leukemia. However, since this kind of immunotherapy is still in its infancy, there is much to learn about its efficacy. This review provided an in-depth examination of CAR-T cell therapy and its success and failure as a cancer treatment approach. We also discuss combination therapies with CAR-T Cell.
Collapse
Affiliation(s)
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Hamidinejad
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
7
|
Vu BT, Le HT, Nguyen KN, Van Pham P. Hypoxia, Serum Starvation, and TNF-α Can Modify the Immunomodulation Potency of Human Adipose-Derived Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021:3-18. [PMID: 34739720 DOI: 10.1007/5584_2021_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Adipose-derived stem cells (ADSCs) are mesenchymal stem cells (MSCs) that are found in adipose tissues, which are easily obtained from liposuction procedures using an enzyme mixture. The adhering cells are then selectively cultivated. ADSCs have great potential in regenerative medicine because they are plentiful, easily accessible, and less invasive. They also have an impressive proliferation ability and can be differentiated into mesenchymal lineages and trans-differentiating into many other cell types. In particular, they have extraordinary abilities in immunomodulation. This study aimed to investigate the effects of culture conditions (hypoxia, starvation, and TNF-α treatment) on the immunomodulation of human ADSCs. METHODS Human ADSCs were expanded in vitro in the standard condition before they were cultured in different stress conditions. ADSCs from passages fifth were confirmed as MSCs by some standard assays suggested by the International Society for Cell and Gene Therapy. These MSCs were used to culture in four different stress conditions: hypoxia, serum starvation, and TNF-α treatment in 48 h. After treatments, MSCs were used to evaluate their immunomodulation capacity using MSCs mixed lymphocyte reaction assay, and the concentrations of IDO, PGE2, IL-6, and IL-10 were secreted in the culture medium. RESULTS In different stress conditions, ADSCs exhibited different responses related to their immunomodulation. In serum starvation, ADSCs exerted a strong secretion of IDO and PGE2, whereas they showed strong IL-6 secretion in the TNF-α-supplemented medium. When exposed to lymphocytes, ADSCs caused an increase in the ratio of regulatory T cells (Tregs), and co-culture lymphocytes with ADSCs induced in hypoxic malnutrition conditions increased the IL-10 level the most. In addition, when exposed to dendritic cells (DCs), ADSCs inhibited the mature marker expressions of the DCs. CONCLUSION The current research showed that ADSCs change their immunomodulation properties to survive in in vitro culture environments. Treatment of ADSCs in the starvation medium for 48 h can increase the immunomodulation of ADSCs.
Collapse
Affiliation(s)
- Binh Thanh Vu
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hanh Thi Le
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Khanh Nha Nguyen
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Stem Cell Institute, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuc Van Pham
- Laboratory of Stem Cell Research and Application, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
- Stem Cell Institute, University of Science, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam.
| |
Collapse
|
8
|
The effect of smoking on chronic inflammation, immune function and blood cell composition. Sci Rep 2020; 10:19480. [PMID: 33173057 PMCID: PMC7655856 DOI: 10.1038/s41598-020-76556-7] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
Smoking is the number one risk factor for cancer mortality but only 15-20% of heavy smokers develop lung cancer. It would, therefore, be of great benefit to identify those at high risk early on so that preventative measures can be initiated. To investigate this, we evaluated the effects of smoking on inflammatory markers, innate and adaptive immune responses to bacterial and viral challenges and blood cell composition. We found that plasma samples from 30 heavy smokers (16 men and 14 women) had significantly higher CRP, fibrinogen, IL-6 and CEA levels than 36 non-smoking controls. Whole blood samples from smokers, incubated for 7 h at 37 °C in the absence of any exogenous stimuli, secreted significantly higher levels of IL-8 and a number of other cytokines/chemokines than non-smokers. When challenged for 7 h with E. coli, whole blood samples from smokers secreted significantly lower levels of many inflammatory cytokines/chemokines. However, when stimulated with HSV-1, significantly higher levels of both PGE2 and many cytokines/chemokines were secreted from smokers' blood samples than from controls. In terms of blood cell composition, red blood cells, hematocrits, hemoglobin levels, MCV, MCH, MCHC, Pct and RDW levels were all elevated in smokers, in keeping with their compromised lung capacity. As well, total leukocytes were significantly higher, driven by increases in granulocytes and monocytes. In addition, smokers had lower NK cells and higher Tregs than controls, suggesting that smoking may reduce the ability to kill nascent tumor cells. Importantly, there was substantial person-to person variation amongst smokers with some showing markedly different values from controls and others showing normal levels of many parameters measured, indicating the former may be at significantly higher risk of developing lung cancer.
Collapse
|
9
|
Qian F, Misra S, Prabhu KS. Selenium and selenoproteins in prostanoid metabolism and immunity. Crit Rev Biochem Mol Biol 2019; 54:484-516. [PMID: 31996052 PMCID: PMC7122104 DOI: 10.1080/10409238.2020.1717430] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
Abstract
Selenium (Se) is an essential trace element that functions in the form of the 21st amino acid, selenocysteine (Sec) in a defined set of proteins. Se deficiency is associated with pathological conditions in humans and animals, where incorporation of Sec into selenoproteins is reduced along with their expression and catalytic activity. Supplementation of Se-deficient population with Se has shown health benefits suggesting the importance of Se in physiology. An interesting paradigm to explain, in part, the health benefits of Se stems from the observations that selenoprotein-dependent modulation of inflammation and efficient resolution of inflammation relies on mechanisms involving a group of bioactive lipid mediators, prostanoids, which orchestrate a concerted action toward maintenance and restoration of homeostatic immune responses. Such an effect involves the interaction of various immune cells with these lipid mediators where cellular redox gatekeeper functions of selenoproteins further aid in not only dampening inflammation, but also initiating an effective and active resolution process. Here we have summarized the current literature on the multifaceted roles of Se/selenoproteins in the regulation of these bioactive lipid mediators and their immunomodulatory effects.
Collapse
Affiliation(s)
- Fenghua Qian
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - Sougat Misra
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| | - K. Sandeep Prabhu
- Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, Department of Veterinary and Biomedical Sciences and The Penn State Cancer Institute, The Pennsylvania State University, University Park, PA. 16802, USA
| |
Collapse
|
10
|
Khan JF, Khan AS, Brentjens RJ. Application of CAR T cells for the treatment of solid tumors. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:293-327. [PMID: 31383408 DOI: 10.1016/bs.pmbts.2019.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
CAR T cell therapy of cancers promises to revolutionize oncology by harnessing the powers of synthetic biology and immunotherapy in a single agent. CARs are synthetic receptors composed of an extracellular antigen binding domain and one or more intracellular signaling domains which act in concert to activate the T cell upon antigen recognition. CARs targeting B cell associated CD19 demonstrated robust in vivo cytolytic activity, expansion, and persistence upon antigen exposure paving the way for clinical application of this technology and ultimately FDA approval for pediatric and young adult acute lymphoblastic leukemia as well as patients with relapsed or refractory diffuse large B cell lymphoma. However, these successes have not yet been replicated in the arena of solid tumors. Unlike hematologic malignancies, solid tumors present numerous challenges in the form of an immunosuppressive tumor microenvironment. In this chapter, we will highlight clinical application of CAR T cells in solid tumors, discuss hurdles that have impeded CAR T cell function in these malignancies, and propose methods to overcome these limitations.
Collapse
Affiliation(s)
- Jonathan F Khan
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Abdul Salam Khan
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Renier J Brentjens
- Department of Pharmacology, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, United States; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
11
|
Liu J, Curtin J, You D, Hillerman S, Li-Wang B, Eraslan R, Xie J, Swanson J, Ho CP, Oppenheimer S, Warrack BM, McNaney CA, Nelson DM, Blum J, Kim T, Fereshteh M, Reily M, Shipkova P, Murtaza A, Sanjuan M, Hunt JT, Salter-Cid L. Critical role of kinase activity of hematopoietic progenitor kinase 1 in anti-tumor immune surveillance. PLoS One 2019; 14:e0212670. [PMID: 30913212 PMCID: PMC6435129 DOI: 10.1371/journal.pone.0212670] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/07/2019] [Indexed: 01/05/2023] Open
Abstract
Immunotherapy has fundamentally changed the landscape of cancer treatment. Despite the encouraging results with the checkpoint modulators, response rates vary widely across tumor types, with a majority of patients exhibiting either primary resistance without a significant initial response to treatment or acquired resistance with subsequent disease progression. Hematopoietic progenitor kinase 1 (HPK1) is predominantly expressed in hematopoietic cell linages and serves as a negative regulator in T cells and dendritic cells (DC). While HPK1 gene knockout (KO) studies suggest its role in anti-tumor immune responses, the involvement of kinase activity and thereof its therapeutic potential remain unknown. To investigate the potential of pharmacological intervention using inhibitors of HPK1, we generated HPK1 kinase dead (KD) mice which carry a single loss-of-function point mutation in the kinase domain and interrogated the role of kinase activity in immune cells in the context of suppressive factors or the tumor microenvironment (TME). Our data provide novel findings that HKP1 kinase activity is critical in conferring suppressive functions of HPK1 in a wide range of immune cells including CD4+, CD8+, DC, NK to Tregs, and inactivation of kinase domain was sufficient to elicit robust anti-tumor immune responses. These data support the concept that an HPK1 small molecule kinase inhibitor could serve as a novel agent to provide additional benefit in combination with existing immunotherapies, particularly to overcome resistance to current treatment regimens.
Collapse
Affiliation(s)
- Jinqi Liu
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Joshua Curtin
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Dan You
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Stephen Hillerman
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Bifang Li-Wang
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Rukiye Eraslan
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jenny Xie
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jesse Swanson
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Ching-Ping Ho
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Simone Oppenheimer
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Bethanne M. Warrack
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Colleen A. McNaney
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - David M. Nelson
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Jordan Blum
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Taeg Kim
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Mark Fereshteh
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Michael Reily
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Petia Shipkova
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Anwar Murtaza
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Miguel Sanjuan
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - John T. Hunt
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| | - Luisa Salter-Cid
- Immuno-oncology Discovery, Bristol Myers Squibb, Princeton, New Jersey, United States of America
| |
Collapse
|
12
|
Tariq SM, Haider SA, Hasan M, Tahir A, Khan M, Rehan A, Kamal A. Chimeric Antigen Receptor T-Cell Therapy: A Beacon of Hope in the Fight Against Cancer. Cureus 2018; 10:e3486. [PMID: 30613448 PMCID: PMC6314790 DOI: 10.7759/cureus.3486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Despite significant advancements, relapses, and persistent malignancies are still a major challenge faced by the oncologists. Immunotherapy has shown remarkable potential in induction of sustained remission in refractory malignancies. Chimeric antigen receptor T-cell (CAR-T) therapy is a newer treatment methodology approved by the Food and Drug Administration (FDA). The chimeric pairing of an antigen receptor with the T-cell receptor (TCR) intracellular signaling domain allows cluster of designation 8 (CD8) cytotoxic T-cells to target cell surface makers independent of major histocompatibility complex (MHC) activation. Another essential feature which contributes to the broad applicability of CARs and expanding their potential targets is their ability to bind not only to proteins but also to carbohydrate and glycolipid structures. Their antigen-specific and targeted immune responses have shown promising outcomes in clinical trials particularly involving B-cell malignancies and solid tumors. High remission rates and low percentages of relapses have caused a paradigm shift in the treatment of relapsed or refractory cancers. Challenges include side effects such as cytokine release syndrome, on-target off-tumor toxicities, and replication of its success in treating solid tumors. The burden of side effects and hefty cost of treatment are major obstacles which could hinder its progress globally. Nevertheless, ongoing research would only result in a maximized therapeutic potential in addition to more patient- and cost-friendly treatment. In this review, we aim to provide the readers an overview of chimeric antigen receptor T-cell therapy, a relatively new advancement in the world of immuno-oncology and thereby also discussing its advantages, side effects and future challenges.
Collapse
Affiliation(s)
- Syed Maaz Tariq
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Syed Ali Haider
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Mohammad Hasan
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Amber Tahir
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Maria Khan
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Arisha Rehan
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Anum Kamal
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| |
Collapse
|
13
|
Meydani SN, Lewis ED, Wu D. Perspective: Should Vitamin E Recommendations for Older Adults Be Increased? Adv Nutr 2018; 9:533-543. [PMID: 30107519 PMCID: PMC6140432 DOI: 10.1093/advances/nmy035] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 02/14/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Current vitamin E requirements are uniformly applied across the population for those >14 y of age. However, aging is associated with alterations in cellular and physiologic functions, which are affected by vitamin E. Therefore, it is questionable whether vitamin E requirements can be uniformly applied to all adult age categories. With aging, there is dysregulation of the immune system in which there are decreased cell-mediated and pathogen defense responses coupled with an overactive, prolonged inflammatory state. Both animal and human studies in the aged suggest that intake above currently recommended levels of vitamin E may improve immune and inflammatory responses and be associated with a reduced risk of infectious disease. We review the evidence that was considered in establishing the current requirements for vitamin E and highlight data that should be considered in determining the vitamin E requirements in older adults, particularly focusing on the evidence suggesting a benefit of increased vitamin E intake on immune function and inflammatory processes and resistance to infection. The main objective of this Perspective is to initiate the discussion of whether the current Dietary Reference Intake for vitamin E should be increased for the older population. We make this suggestion on the basis of mechanistic studies showing biological plausibility, correction of a major cellular dysfunction in older adults, and strong evidence from several animal and a few human studies indicating a reduction in risk and morbidity from infections.
Collapse
Affiliation(s)
- Simin Nikbin Meydani
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Erin Diane Lewis
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| | - Dayong Wu
- Nutritional Immunology Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA
| |
Collapse
|
14
|
Morley J, Beets JL, Bray MA, Paul W. Regulation of Allergic Responses by Prostaglandins: A Review. J R Soc Med 2018; 73:443-7. [PMID: 7014889 PMCID: PMC1437598 DOI: 10.1177/014107688007300610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
|
15
|
Mirzaei HR, Rodriguez A, Shepphird J, Brown CE, Badie B. Chimeric Antigen Receptors T Cell Therapy in Solid Tumor: Challenges and Clinical Applications. Front Immunol 2017; 8:1850. [PMID: 29312333 PMCID: PMC5744011 DOI: 10.3389/fimmu.2017.01850] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/06/2017] [Indexed: 12/21/2022] Open
Abstract
Adoptive cellular immunotherapy (ACT) employing engineered T lymphocytes expressing chimeric antigen receptors (CARs) has demonstrated promising antitumor effects in advanced hematologic cancers, such as relapsed or refractory acute lymphoblastic leukemia, chronic lymphocytic leukemia, and non-Hodgkin lymphoma, supporting the translation of ACT to non-hematological malignancies. Although CAR T cell therapy has made remarkable strides in the treatment of patients with certain hematological cancers, in solid tumors success has been limited likely due to heterogeneous antigen expression, immunosuppressive networks in the tumor microenvironment limiting CAR T cell function and persistence, and suboptimal trafficking to solid tumors. Here, we outline specific approaches to overcome barriers to CAR T cell effectiveness in the context of the tumor microenvironment and offer our perspective on how expanding the use of CAR T cells in solid tumors may require modifications in CAR T cell design. We anticipate these modifications will further expand CAR T cell therapy in clinical practice.
Collapse
Affiliation(s)
- Hamid R Mirzaei
- Department of Medical Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Analiz Rodriguez
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| | - Jennifer Shepphird
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Christine E Brown
- Department of Hematology and Hematopoietic Cell Transplantation, T Cell Therapeutics Research Laboratory, City of Hope Beckman Research Institute, Duarte, CA, United States
| | - Behnam Badie
- Division of Neurosurgery, Department of Surgery, City of Hope National Medical Center, Duarte, CA, United States
| |
Collapse
|
16
|
Li X, DuBois DC, Song D, Almon RR, Jusko WJ, Chen X. Modeling Combined Immunosuppressive and Anti-inflammatory Effects of Dexamethasone and Naproxen in Rats Predicts the Steroid-Sparing Potential of Naproxen. Drug Metab Dispos 2017; 45:834-845. [PMID: 28416614 PMCID: PMC5469402 DOI: 10.1124/dmd.117.075614] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 04/13/2017] [Indexed: 12/29/2022] Open
Abstract
Dexamethasone (DEX), a widely prescribed corticosteroid, has long been the cornerstone of the treatment of inflammation and immunologic dysfunctions in rheumatoid arthritis. Corticosteroids are frequently used in combination with other antirheumatic agents such as nonsteroidal anti-inflammatory drugs (NSAIDs) and disease-modifying antirheumatic drugs to mitigate disease symptoms and minimize unwanted effects. We explored the steroid dose-sparing potential of the NSAID naproxen (NPX) with in vitro and in vivo studies. The single and joint suppressive effects of DEX and NPX on the in vitro mitogen-induced proliferation of T lymphocytes in blood and their anti-inflammatory actions on paw edema were investigated in female and male Lewis rats with collagen-induced arthritis (CIA). As expected, DEX was far more potent than NPX in these systems. Mathematical models incorporating an interaction term ψ were applied to quantitatively assess the nature and intensity of pharmacodynamic interactions between DEX and NPX. Modest synergistic effects of the two drugs were found in suppressing the mitogenic response of T lymphocytes. A pharmacokinetic/pharmacodynamic/disease progression model integrating dual drug inhibition quantitatively described the pharmacokinetics, time-course of single and joint anti-inflammatory effects (paw edema), and sex differences in CIA rats, and indicated additive effects of DEX and NPX. Further model simulations demonstrated the promising steroid-sparing potential of NPX in CIA rats, with the beneficial effects of the combination therapy more likely in males than females.
Collapse
Affiliation(s)
- Xiaonan Li
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Debra C DuBois
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Dawei Song
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Richard R Almon
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, People's Republic of China (X.L., X.C.); Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences (X.L., D.C.D., D.S., R.R.A., W.J.J.), and Department of Biological Sciences (D.C.D., R.R.A.), State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
17
|
Abstract
The field of cancer immunotherapy has been re-energized by the application of chimeric antigen receptor (CAR) T cell therapy in cancers. These CAR T cells are engineered to express synthetic receptors that redirect polyclonal T cells to surface antigens for subsequent tumor elimination. Many CARs are designed with elements that augment T cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematologic malignancies (e.g., CD19 CARs in leukemias). However, this success has yet to be extrapolated to solid tumors, and the reasons for this are being actively investigated. We characterize some of the challenges that CAR T cells have to surmount in the solid tumor microenvironment and new approaches that are being considered to overcome these hurdles.
Collapse
Affiliation(s)
- Kheng Newick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Shaun O'Brien
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Edmund Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| |
Collapse
|
18
|
Abstract
Background: Nonsteroidal anti-inflammatory drugs (NSAIDs) have been an important therapy in the treatment of a large number of cutaneous pathologies for more than three decades. Objective: In this retrospective review, we document the use of NSAIDs in more than 15 common and uncommon dermatoses, including acne, psoriasis, sunburn, erythema nodosum, cryoglobulinemia, Sweet's syndrome, systemic mastocytosis, as well as urticarial, livedoid, and nodular vasculitis. NSAIDs act mainly by inhibiting prostaglandin synthesis by the cyclooxygenase (COX) pathway. Conclusion: Recent studies link prostaglandin to cutaneous carcinogenesis, thus expanding the dermatologic use of NSAIDs. They may be effective in the treatment and prevention of non-melanoma skin cancer, and specific COX-2 inhibitors promise safer, broader, long-term use of these pharmacologically innovative drugs.
Collapse
Affiliation(s)
- Edward S. Friedman
- Department of Dermatology, Columbia-Presbyterian Medical Center, New York, New York
| | - Nicole LaNatra
- Department of Dermatology, Columbia-Presbyterian Medical Center, New York, New York
| | - Matthew J. Stiller
- Department of Dermatology, Columbia-Presbyterian Medical Center, New York, New York
| |
Collapse
|
19
|
Newick K, Moon E, Albelda SM. Chimeric antigen receptor T-cell therapy for solid tumors. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:16006. [PMID: 27162934 PMCID: PMC4849432 DOI: 10.1038/mto.2016.6] [Citation(s) in RCA: 166] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/20/2016] [Accepted: 01/21/2016] [Indexed: 12/18/2022]
Abstract
Chimeric antigen receptor (CAR) T cells are engineered constructs composed of synthetic receptors that direct T cells to surface antigens for subsequent elimination. Many CAR constructs are also manufactured with elements that augment T-cell persistence and activity. To date, CAR T cells have demonstrated tremendous success in eradicating hematological malignancies (e.g., CD19 CARs in leukemias). This success is not yet extrapolated to solid tumors, and the reasons for this are being actively investigated. Here in this mini-review, we discuss some of the key hurdles encountered by CAR T cells in the solid tumor microenvironment.
Collapse
Affiliation(s)
- Kheng Newick
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Edmund Moon
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| | - Steven M Albelda
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania , Philadelphia, Pennsylvania, USA
| |
Collapse
|
20
|
Li J, Jiang R, Liu WS, Liu Q, Xu M, Feng QS, Chen LZ, Bei JX, Chen MY, Zeng YX. A large cohort study reveals the association of elevated peripheral blood lymphocyte-to-monocyte ratio with favorable prognosis in nasopharyngeal carcinoma. PLoS One 2013; 8:e83069. [PMID: 24386144 PMCID: PMC3873908 DOI: 10.1371/journal.pone.0083069] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 11/08/2013] [Indexed: 02/06/2023] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is an endemic neoplasm in southern China. Although NPC sufferers are sensitive to radiotherapy, 20–30% of patients finally progress with recurrence and metastases. Elevated lymphocyte-to-monocyte ratio (LMR) has been reported to be associated with favorable prognosis in some hematology malignancies, but has not been studied in NPC. The aim of this study was to evaluate whether LMR could predict the prognosis of NPC patients. Methods A retrospective cohort of 1,547 non-metastatic NPC patients was recruited between January 2005 and June 2008. The counts for peripheral lymphocyte and monocyte were retrieved, and the LMR was calculated. Receiver operating characteristic curve analysis, univariate and multivariate COX proportional hazards analyses were applied to evaluate the associations of LMR with overall survival (OS), disease-free survival (DFS), distant metastasis-free survival (DMFS) and loco-regional recurrence-free survival (LRRFS), respectively. Results Univariate analysis revealed that higher LMR level (≥5.220) was significantly associated with superior OS, DFS and DMFS (P values <0.001). The higher lymphocyte count (≥2.145×109/L) was significantly associated with better OS (P = 0.002) and DMFS (P = 0.031), respectively, while the lower monocyte count (<0.475×109/L) was associated with better OS (P = 0.012), DFS (P = 0.011) and DMFS (P = 0.003), respectively. Multivariate Cox proportional hazard analysis showed that higher LMR level was a significantly independent predictor for superior OS (hazard ratio or HR = 0.558, 95% confidence interval or 95% CI = 0.417–0.748; P<0.001), DFS (HR = 0.669, 95% CI = 0.535–0.838; P<0.001) and DMFS (HR = 0.543, 95% CI = 0.403–0.732; P<0.001), respectively. The advanced T and N stages were also independent indicators for worse OS, DFS, and DMFS, except that T stage showed borderline statistical significance for DFS (P = 0.053) and DMFS (P = 0.080). Conclusions The elevated pretreatment peripheral LMR level was a significant favorable factor for NPC prognosis and this easily accessed variable may serve as a potent marker to predict the outcomes of NPC patients.
Collapse
Affiliation(s)
- Jing Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Rou Jiang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Wen-Sheng Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qing Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Epidemiology, Sun Yat-Sen University Cancer Center, Guangzhou, People's Republic of China
| | - Miao Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Qi-Sheng Feng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Li-Zhen Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Jin-Xin Bei
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
| | - Ming-Yuan Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Nasopharyngeal Carcinoma, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- * E-mail: (MYC); (YXZ)
| | - Yi-Xin Zeng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- Department of Experimental Research, Sun Yat-sen University Cancer Center, Guangzhou, People's Republic of China
- * E-mail: (MYC); (YXZ)
| |
Collapse
|
21
|
Shiraishi N, Nomura T, Tanizaki H, Nakajima S, Narumiya S, Miyachi Y, Tokura Y, Kabashima K. Prostaglandin E2-EP3 axis in fine-tuning excessive skin inflammation by restricting dendritic cell functions. PLoS One 2013; 8:e69599. [PMID: 23922752 PMCID: PMC3726673 DOI: 10.1371/journal.pone.0069599] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 06/11/2013] [Indexed: 11/29/2022] Open
Abstract
Prostaglandin E2 (PGE2) is produced in the skin and is suggested to play a role in the regulation of cutaneous immune homeostasis and responses. However, the multifaceted functions of PGE2 continue to elude our understanding, especially because of the multiplicity of PGE2 receptors—EP1, EP2, EP3, and EP4. While cAMP-elevating EP4 is known to activate the functions of cutaneous dendritic cells (DCs), including Langerhans cells (LCs) and dermal DCs, the role of cAMP-suppressing EP3 in this process remains unknown. Here we demonstrated that an EP3 receptor selective agonist, ONO-AE-248, inhibited chemotaxis and co-stimulatory molecule expressions of DCs in vitro. A suboptimal dose of antigen was sufficient to induce contact hypersensitivity in EP3-deficient mice. Intriguingly, EP3 deficiency did not impair skin inflammation at all when the antigen dose was sufficiently high. EP3 limited the functions of cutaneous DCs only when the antigen dose was low. In contrast to EP4, the observed unappreciated function of EP3 may stabilize the cutaneous DCs to halt the impetuous response to a suboptimal dose of antigen. Taken together, PGE2-EP3 signaling is essential for fine-tuning excessive skin inflammation by restricting DC functions.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Cell Movement/drug effects
- Dendritic Cells/cytology
- Dendritic Cells/drug effects
- Dendritic Cells/metabolism
- Dinoprostone/pharmacology
- Flow Cytometry
- Inflammation/metabolism
- Mice
- Mice, Inbred BALB C
- Receptors, Prostaglandin E, EP1 Subtype/metabolism
- Receptors, Prostaglandin E, EP2 Subtype/metabolism
- Receptors, Prostaglandin E, EP3 Subtype/metabolism
- Receptors, Prostaglandin E, EP4 Subtype/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Skin/drug effects
- Skin/immunology
Collapse
Affiliation(s)
- Noriko Shiraishi
- Department of Dermatology, University of Environmental and Occupational Health, Kitakyushu, Japan
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Tanizaki
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Saeko Nakajima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Shuh Narumiya
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Miyachi
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiki Tokura
- Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- * E-mail:
| |
Collapse
|
22
|
Kim I, Lee SK, Yoon JI, Kim DE, Kim M, Ha H. Fibrin glue improves the therapeutic effect of MSCs by sustaining survival and paracrine function. Tissue Eng Part A 2013; 19:2373-81. [PMID: 23701237 DOI: 10.1089/ten.tea.2012.0665] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fibrin glue has been widely investigated as a cell delivery vehicle for improving the therapeutic effects of mesenchymal stem cells (MSCs). Implanted MSCs produce their therapeutic effects by secreting paracrine factors and by replacing damaged tissues after differentiation. While the influence of fibrin glue on the differentiation potential of MSCs has been well documented, its effect on paracrine function of MSCs is largely unknown. Herein we investigated the influence of fibrin glue on the paracrine effects of MSCs. MSCs were isolated from human adipose tissue. The effects of fibrin glue on survival, migration, secretion of growth factors, and immune suppression of MSCs were investigated in vitro. MSCs in fibrin glue survived and secreted growth factors such as the vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) over 14 days. VEGF and immune modulators, including the transforming growth factor (TGF)-β1 and prostaglandin E2, secreted from MSCs in fibrin glue significantly increased under inflammatory conditions. Thus, MSCs in fibrin glue effectively suppressed immune reactions. In addition, fibrin glue protected the MSCs from oxidative stress and prevented human dermal fibroblast death induced by exposure to extreme stress. In contrast, MSCs within fibrin glue hardly migrated. These results suggest that fibrin glue may sustain survival of implanted MSCs and their paracrine function. Our results provide a mechanistic data to allow further development of MSCs with fibrin glue as a clinical treatment.
Collapse
Affiliation(s)
- Inok Kim
- 1 Division of Life and Pharmaceutical Sciences, the Center for Cell Signaling & Drug Discovery Research, College of Pharmacy, Ewha Womans University , Global Top 5 Research Program, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
23
|
Lone AM, Taskén K. Proinflammatory and immunoregulatory roles of eicosanoids in T cells. Front Immunol 2013; 4:130. [PMID: 23760108 PMCID: PMC3671288 DOI: 10.3389/fimmu.2013.00130] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/17/2013] [Indexed: 01/08/2023] Open
Abstract
Eicosanoids are inflammatory mediators primarily generated by hydrolysis of membrane phospholipids by phospholipase A2 to ω-3 and ω-6 C20 fatty acids that next are converted to leukotrienes (LTs), prostaglandins (PGs), prostacyclins (PCs), and thromboxanes (TXAs). The rate-limiting and tightly regulated lipoxygenases control synthesis of LTs while the equally well-controlled cyclooxygenases 1 and 2 generate prostanoids, including PGs, PCs, and TXAs. While many of the classical signs of inflammation such as redness, swelling, pain, and heat are caused by eicosanoid species with vasoactive, pyretic, and pain-inducing effects locally, some eicosanoids also regulate T cell functions. Here, we will review eicosanoid production in T cell subsets and the inflammatory and immunoregulatory functions of LTs, PGs, PCs, and TXAs in T cells.
Collapse
Affiliation(s)
- Anna Mari Lone
- Centre for Molecular Medicine Norway, Nordic EMBL Partnership, University of Oslo and Oslo University Hospital , Oslo , Norway ; Biotechnology Centre, University of Oslo , Oslo , Norway ; K.G. Jebsen Inflammation Research Centre, University of Oslo , Oslo , Norway
| | | |
Collapse
|
24
|
Ghosh S, Adhikary A, Chakraborty S, Nandi P, Mohanty S, Chakraborty S, Bhattacharjee P, Mukherjee S, Putatunda S, Chakraborty S, Chakraborty A, Sa G, Das T, Sen PC. Nifetepimine, a dihydropyrimidone, ensures CD4+ T cell survival in a tumor microenvironment by maneuvering sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA). J Biol Chem 2012; 287:32881-96. [PMID: 22851172 DOI: 10.1074/jbc.m112.357889] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Multiple mechanisms have been proposed by which tumors induce T cell apoptosis to circumvent tumor immune-surveillance. Although sarco/endoplasmic reticulum Ca(2+)-ATPase (SERCA) have long been known to regulate intracellular Ca(2+) homeostasis, few studies have examined the role of SERCA in processes of T lymphocyte survival and activation. In this context it remains largely unexplored as to how tumors jeopardize SERCA function to disable T cell-mediated anti-tumor immunity. Here, we show that human CD4(+) T cells in the presence of tumor conditions manifested an up-regulation of SERCA3 expression that resulted in development of endoplasmic reticulum stress leading to CD4(+) T cell apoptosis. Prostaglandin E(2) produced by the tumor cell plays a critical role in up-regulating SERCA3 by enhancing the binding of its transcription factor Sp1. Gene manipulation and pharmacological approaches further established that an increase in SERCA expression also resulted in subsequent inhibition of PKCα and -θ and retention of NFκB in the cytosol; however, down-modulation of SERCA3 expression by a dihydropyrimidone derivative, ethyl-4-(3-nitro)-phenyl-6-methyl-2-oxo-1,2,3,4-tetrahydropyrimidine-5 carboxylate (nifetepimine), protected the CD4(+) T cells from tumor-induced apoptosis. In fact, nifetepimine-mediated restoration of PKC activity resulted in nuclear translocation of p65NFκB, thereby ensuring its survival. Studies further undertaken in a tumor-bearing mice model revalidated the immunoprotective role of nifetepimine. Our present study thus strongly suggests that imbalance in cellular calcium homeostasis is an important factor leading to CD4(+) T cell death during cancer and holds promise that nifetepimine may have the potential to be used as an immunorestoring agent in cancer bearers.
Collapse
Affiliation(s)
- Swatilekha Ghosh
- Division of Molecular Medicine, Bose Institute, P1/12 Calcutta Improvement Trust Scheme VIIM Kolkata 700054, India
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Total dietary fat and fatty acid content modifies plasma phospholipid fatty acids, desaturase activity indices, and urinary prostaglandin E in women. Nutr Res 2012; 32:1-7. [PMID: 22260857 DOI: 10.1016/j.nutres.2011.12.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 12/21/2022]
Abstract
Compared with diets high in fat, low-fat diets are associated with reduced risk of cardiovascular disease. We hypothesized that a low-fat (LF) (20% fat) and an LF high-omega-3 (n-3) fatty acid diet (LFn3) (23% fat with 3% as α-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid [DHA]) would enhance n-3 composition of plasma phospholipid fatty acid and reduce urinary prostaglandin E(2) (PGE(2)) relative to a high-fat diet (HF) (40% fat) and that these changes would be associated with alterations in δ5 desaturase (D5D) and δ6 desaturase (D6D) activity. Phospholipid fatty acids and urinary PGE(2) were measured, and D5D and D6D activity indices calculated in a crossover trial in 17 postmenopausal women fed each of 3 test diets (HF, LF, and LFn3) for 8-week feeding periods. Desaturase activity indices were calculated as D5D, 20:4n-6/20:3n-6, and D6D, 20:3n-6/18:2n-6. Plasma phospholipid fatty acid, α-linolenic acid, eicosapentaenoic acid, docosapentaenoic acid (DPA), DHA, and total n-3 fatty acids increased, whereas linoleic acid and arachidonic acid decreased with consumption of LFn3. The LF resulted in enhanced arachidonic acid and DHA. High fat reduced D6D, whereas both HF and LF increased D5D. Urinary PGE(2) was reduced in response to both the LF and LFn3 diets. Low-fat diets, with or without long-chain n-3 fatty acids, promote positive health effects due in part to favorable alteration of plasma phospholipid fatty acid profiles and modification in desaturase activity indices, suggesting that the type and amount of fat consumed are modifiable risk factors for the prevention of cardiovascular disease.
Collapse
|
26
|
Abstract
Potent, oxygenated lipid molecules called prostanoids regulate a wide variety of physiological responses and pathological processes. Prostanoids are produced by various cell types and act on target cells through specific G protein-coupled receptors. Although prostanoids have historically been considered acute inflammation mediators, studies using specific receptor knockout mice indicate that prostanoids, in fact, regulate various aspects of both innate and adaptive immunity. Each prostanoid, depending on which receptor it acts on, exerts specific effects on immune cells such as macrophages, dendritic cells, and T and B lymphocytes, often in concert with microbial ligands and cytokines, to affect the strength, quality, and duration of immune responses. Prostanoids are also relevant to immunopathology, from inflammation to autoimmunity and cancer. Here, we review the role of prostanoids in regulating immunity, their involvement in immunopathology, and areas of insight that may lead to new therapeutic opportunities.
Collapse
Affiliation(s)
- Takako Hirata
- Department of Pharmacology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | |
Collapse
|
27
|
Are mesenchymal stem cells major sources of safe signals in immune system? Cell Immunol 2012; 272:112-6. [DOI: 10.1016/j.cellimm.2011.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/23/2011] [Accepted: 10/17/2011] [Indexed: 12/29/2022]
|
28
|
Chen L, Zhu Y, Zhang G, Gao C, Zhong W, Zhang X. CD83-stimulated monocytes suppress T-cell immune responses through production of prostaglandin E2. Proc Natl Acad Sci U S A 2011; 108:18778-83. [PMID: 22065790 PMCID: PMC3219128 DOI: 10.1073/pnas.1018994108] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
CD83 is commonly known as a specific marker for mature dendritic cells. It has been shown to be important for CD4(+) T-cell development in the thymus. However, its function in the peripheral immune system remains enigmatic. Here, we show that CD83 inhibits proliferation and production of IL-2 and IFN-γ by T cells, and the inhibitory effect of CD83 is mediated by monocytes. Prostaglandin E2 (PGE(2)), but not IL-10 or TGF-β, was up-regulated specifically by CD83 in monocytes. Consistent with high levels of PGE(2), expression of COX-2 also was increased upon CD83 treatment. NF-κB activation also is required for induction of PGE(2) by CD83. Finally, application of the COX-2-selective inhibitor NS-398 fully prevented CD83-triggered inhibition of T-cell responses. Our study establishes an immune-regulatory mechanism by CD83 via stimulation of PGE(2) production in monocytes.
Collapse
Affiliation(s)
| | - Yibei Zhu
- Institute of Medical Biotechnology and
- Jiangsu Stem Cell Key Laboratory, Soochow University, Suzhou 215007, China; and
| | - Guangbo Zhang
- Institute of Medical Biotechnology and
- Jiangsu Institute of Clinical Immunology, Soochow University No.1 Affiliated Hospital, Suzhou 215007, China
| | - Chao Gao
- Institute of Medical Biotechnology and
| | | | - Xueguang Zhang
- Institute of Medical Biotechnology and
- Jiangsu Stem Cell Key Laboratory, Soochow University, Suzhou 215007, China; and
- Jiangsu Institute of Clinical Immunology, Soochow University No.1 Affiliated Hospital, Suzhou 215007, China
| |
Collapse
|
29
|
Soleymaninejadian E, Pramanik K, Samadian E. Immunomodulatory Properties of Mesenchymal Stem Cells: Cytokines and Factors. Am J Reprod Immunol 2011; 67:1-8. [DOI: 10.1111/j.1600-0897.2011.01069.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
30
|
Wiemer AJ, Hegde S, Gumperz JE, Huttenlocher A. A live imaging cell motility screen identifies prostaglandin E2 as a T cell stop signal antagonist. THE JOURNAL OF IMMUNOLOGY 2011; 187:3663-70. [PMID: 21900181 DOI: 10.4049/jimmunol.1100103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The T cell migration stop signal is a central step in T cell activation and inflammation; however, its regulatory mechanisms remain largely unknown. Using a live-cell, imaging-based, high-throughput screen, we identified the PG, PGE(2), as a T cell stop signal antagonist. Src kinase inhibitors, microtubule inhibitors, and PGE(2) prevented the T cell stop signal, and impaired T cell-APC conjugation and T cell proliferation induced by primary human allogeneic dendritic cells. However, Src inhibition, but not PGE(2) or microtubule inhibition, impaired TCR-induced ZAP-70 signaling, demonstrating that T cell stop signal antagonists can function either upstream or downstream of proximal TCR signaling. Moreover, we found that PGE(2) abrogated TCR-induced activation of the small GTPase Rap1, suggesting that PGE(2) may modulate T cell adhesion and stopping through Rap1. These results identify a novel role for PGs in preventing T cell stop signals and limiting T cell activation induced by dendritic cells.
Collapse
Affiliation(s)
- Andrew J Wiemer
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
31
|
Influence of dietary fish oil supplementation on humoral immune response and some selected biochemical parameters of broiler chickens. ACTA ACUST UNITED AC 2011. [DOI: 10.2478/v10146-011-0008-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influence of dietary fish oil supplementation on humoral immune response and some selected biochemical parameters of broiler chickensThe objective of this experiment was to evaluate the influence of fish oil (FO) supplementation in the diet of broiler chickens on the humoral immune response as well as some blood parameters. Two hundred and sixteen one day old broiler chickens were divided into four dietary groups 0, 1, 2, or 4% FO with 3 replicates of 18 birds. Four chicks randomly selected and marked from each replicate were immunized intramuscularly with 0.2 ml of 5% sheep red blood cells (SRBC) as a non-infectious antigen, at the ages of 15 and 35 days and blood samples were taken 7 days after each immunization. The highest BW was observed in the 2% FO dietary group (T3), followed by T2 (P<0.01). The serum cholesterol and triglyceride levels significantly decreased in the FO groups at the age of 42 days (P<0.01). In addition, the inclusion of FO in broiler diets significantly increased the blood glucose (G) level and decreased the total protein (TP), albumin (A) and globulin (GL) concentrations. Fish oil-treated birds had significantly more serum antibody (predominantly immunoglobulin M, IgM) to SRBC than the control group. The highest response to primary and secondary injections of SRBC after 7 days, were detected for group 4 (4% FO), followed by 2% FO group (P<0.05). The results indicate that the addition of 2 % FO to broiler chick's diet may stimulate the development of the immune response and improve blood indices, while 4% level was not recommended because of probable off-flavours in the product.
Collapse
|
32
|
Garden O, Pinheiro D, Cunningham F. All creatures great and small: regulatory T cells in mice, humans, dogs and other domestic animal species. Int Immunopharmacol 2011; 11:576-88. [DOI: 10.1016/j.intimp.2010.11.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Accepted: 11/01/2010] [Indexed: 12/12/2022]
|
33
|
Cutler AJ, Limbani V, Girdlestone J, Navarrete CV. Umbilical cord-derived mesenchymal stromal cells modulate monocyte function to suppress T cell proliferation. THE JOURNAL OF IMMUNOLOGY 2010; 185:6617-23. [PMID: 20980628 DOI: 10.4049/jimmunol.1002239] [Citation(s) in RCA: 132] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) may be derived from a variety of tissues, with human umbilical cord (UC) providing an abundant and noninvasive source. Human UC-MSCs share similar in vitro immunosuppressive properties as MSCs obtained from bone marrow and cord blood. However, the mechanisms and cellular interactions used by MSCs to control immune responses remain to be fully elucidated. In this paper, we report that suppression of mitogen-induced T cell proliferation by human UC-, bone marrow-, and cord blood-MSCs required monocytes. Removal of monocytes but not B cells from human adult PBMCs (PBMNCs) reduced the immunosuppressive effects of MSCs on T cell proliferation. There was rapid modulation of a number of cell surface molecules on monocytes when PBMCs or alloantigen-activated PBMNCs were cultured with UC-MSCs. Indomethacin treatment significantly inhibited the ability of UC-MSCs to suppress T cell proliferation, indicating an important role for PGE(2). Monocytes purified from UC-MSC coculture had significantly reduced accessory cell and allostimulatory function when tested in subsequent T cell proliferation assays, an effect mediated in part by UC-MSC PGE(2) production and enhanced by PBMNC alloactivation. Therefore, we identify monocytes as an essential intermediary through which UC-MSCs mediate their suppressive effects on T cell proliferation.
Collapse
Affiliation(s)
- Antony J Cutler
- Histocompatibility and Immunogenetics Research Group, National Health Service Blood and Transplant, London, United Kingdom
| | | | | | | |
Collapse
|
34
|
Prado SMD, Cedrún JLL, Rey RL, Villaamil VM, García AA, Ayerbes MV, Aparicio LA. Evaluation of COX-2, EGFR, and p53 as biomarkers of non-dysplastic oral leukoplakias. Exp Mol Pathol 2010; 89:197-203. [PMID: 20599939 DOI: 10.1016/j.yexmp.2010.06.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 06/12/2010] [Accepted: 06/12/2010] [Indexed: 10/19/2022]
Abstract
OBJECTIVE Identify candidate SEBs (surrogate endpoint biomarkers) for premalignant trends in head and neck mucosa. STUDY DESIGN Study, by qPCR (quantitative real-time polymerase chain reaction), the expression of COX-2, EGFR and p53 in 24 biopsies of non-dysplastic oral leukoplakia and contra-lateral normal-appearing mucosa. RESULTS COX-2 was up-regulated in leukoplakia (79.2%); whereas EGFR and p53 were up-regulated (p>0.05) in oral contra-lateral normal-appearing mucosa (60% and 46% respectively). Also, p53 expression was correlated with tobacco smoke habits and Spearman's rank correlation coefficient showed a positive linear correlation between p53 and EGFR mRNA expression levels. CONCLUSIONS COX-2 would serve as SEB of oral leukoplakia. The results suggest that p53 appears to be one of the molecular targets of tobacco-related carcinogens in leukoplakia and that the co-expression of p53 and EGFR may play a role in this kind of oral pre-cancerous lesion. More detailed studies of EGFR and p53 should be continued in the future.
Collapse
|
35
|
Johansson S, Lönnqvist A, Ostman S, Sandberg AS, Wold AE. Long-chain polyunsaturated fatty acids are consumed during allergic inflammation and affect T helper type 1 (Th1)- and Th2-mediated hypersensitivity differently. Clin Exp Immunol 2010; 160:411-9. [PMID: 20148912 DOI: 10.1111/j.1365-2249.2010.04107.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Studies have shown that atopic individuals have decreased serum levels of n-3 fatty acids. Indicating these compounds may have a protective effect against allergic reaction and/or are consumed during inflammation. This study investigated whether fish (n-3) or sunflower (n-6) oil supplementation affected T helper type 1 (Th1)- and Th2-mediated hypersensitivity in the skin and airways, respectively, and whether the fatty acid serum profile changed during the inflammatory response. Mice were fed regular chow, chow + 10% fish oil or chow + 10% sunflower oil. Mice were immunized with ovalbumin (OVA) resolved in Th1 or Th2 adjuvant. For Th1 hypersensitivity, mice were challenged with OVA in the footpad. Footpad swelling, OVA-induced lymphocyte proliferation and cytokine production in the draining lymph node were evaluated. In the airway hypersensitivity model (Th2), mice were challenged intranasally with OVA and the resulting serum immunoglobulin (Ig)E and eosinophilic lung infiltration were measured. In the Th1 model, OVA-specific T cells proliferated less and produced less interferon (IFN)-gamma, tumour necrosis factor (TNF) and interleukin (IL)-6 in fish oil-fed mice versus controls. Footpad swelling was reduced marginally. In contrast, mice fed fish oil in the Th2 model produced more OVA-specific IgE and had slightly higher proportions of eosinophils in lung infiltrate. A significant fall in serum levels of long-chain n-3 fatty acids accompanied challenge and Th2-mediated inflammation in Th2 model. Fish oil supplementation affects Th1 and Th2 immune responses conversely; significant consumption of n-3 fatty acids occurs during Th2-driven inflammation. The latter observation may explain the association between Th2-mediated inflammation and low serum levels of n-3 fatty acids.
Collapse
Affiliation(s)
- S Johansson
- Food Science, Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | | | | | | | | |
Collapse
|
36
|
Vedin I, Cederholm T, Freund-Levi Y, Basun H, Hjorth E, Irving GF, Eriksdotter-Jönhagen M, Schultzberg M, Wahlund LO, Palmblad J. Reduced prostaglandin F2 alpha release from blood mononuclear leukocytes after oral supplementation of omega3 fatty acids: the OmegAD study. J Lipid Res 2009; 51:1179-85. [PMID: 19965584 DOI: 10.1194/jlr.m002667] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Omega-3 fatty acids, e.g., dokosahexaenoic acid (DHA) and eikosapentaenoic acid (EPA), ameliorate inflammatory reactions by various mechanisms, but the role of prostaglandins remains unclear. Our aim was to determine if dietary supplementation with a DHA-rich fish oil influenced the release of PGF(2alpha) from peripheral blood mononuclear cells (PBMC). In the OmegAD study, 174 Alzheimer disease patients received either 1.7 g DHA plus 0.6 g EPA or a placebo daily for six months. PBMCs from the 21 (9 on fish oil and 12 on placebo) first-randomized patients were stimulated with either lipopolysaccharide (LPS) or phytohemagglutinin (PHA) before and after 6 months. Our results showed that plasma concentrations of DHA and EPA increased significantly at 6 months in the omega-3 group. PGF(2alpha) release from LPS- (but not from PHA-) stimulated PBMC was significantly diminished in this group; no change was noted in the placebo group. PGF(2alpha) changes correlated inversely with changes in plasma DHA and EPA. Decreased IL-6 and IL-1(beta) levels correlated with decreased PGF(2alpha) levels. The stimulus-specific PGF(2alpha) release from PBMC after 6 months of oral supplementation with the DHA-rich fish oil might be one event related to reduced inflammatory reactions associated with omega-3 fatty acid intake.
Collapse
Affiliation(s)
- Inger Vedin
- Department of Medicine, Caring Sciences and Society, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Chattopadhyay S, Bhattacharyya S, Saha B, Chakraborty J, Mohanty S, Sakib Hossain DM, Banerjee S, Das K, Sa G, Das T. Tumor-shed PGE(2) impairs IL2Rgammac-signaling to inhibit CD4 T cell survival: regulation by theaflavins. PLoS One 2009; 4:e7382. [PMID: 19812686 PMCID: PMC2753647 DOI: 10.1371/journal.pone.0007382] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2009] [Accepted: 08/28/2009] [Indexed: 01/18/2023] Open
Abstract
Background Many tumors are associated with decreased cellular immunity and elevated levels of prostaglandin E2 (PGE2), a known inhibitor of CD4+ T cell activation and inducer of type-2 cytokine bias. However, the role of this immunomodulator in the survival of T helper cells remained unclear. Since CD4+ T cells play critical roles in cell-mediated immunity, detail knowledge of the effect tumor-derived PGE2 might have on CD4+ T cell survival and the underlying mechanism may, therefore, help to overcome the overall immune deviation in cancer. Methodology/Principal Findings By culturing purified human peripheral CD4+ T cells or Jurkat cells with spent media of theaflavin- or celecoxib-pre-treated MCF-7 cells, we show that tumor-shed PGE2 severely impairs interleukin 2 receptor γc (IL2Rγc)-mediated survival signaling in CD4+ T cells. Indeed, tumor-shed PGE2 down-regulates IL2Rγc expression, reduces phosphorylation as well as activation of Janus kinase 3 (Jak-3)/signal transducer and activator of transcription 5 (Stat-5) and decreases Bcl-2/Bax ratio thereby leading to activation of intrinsic apoptotic pathway. Constitutively active Stat-5A (Stat-5A1*6) over-expression efficiently elevates Bcl-2 levels in CD4+ T cells and protects them from tumor-induced death while dominant-negative Stat-5A over-expression fails to do so, indicating the importance of Stat-5A-signaling in CD4+ T cell survival. Further support towards the involvement of PGE2 comes from the results that (a) purified synthetic PGE2 induces CD4+ T cell apoptosis, and (b) when knocked out by small interfering RNA, cyclooxygenase-2 (Cox-2)-defective tumor cells fail to initiate death. Interestingly, the entire phenomena could be reverted back by theaflavins that restore cytokine-dependent IL2Rγc/Jak-3/Stat-5A signaling in CD4+ T cells thereby protecting them from tumor-shed PGE2-induced apoptosis. Conclusions/Significance These data strongly suggest that tumor-shed PGE2 is an important factor leading to CD4+ T cell apoptosis during cancer and raise the possibility that theaflavins may have the potential as an effective immunorestorer in cancer-bearer.
Collapse
Affiliation(s)
- Sreya Chattopadhyay
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Sankar Bhattacharyya
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Baisakhi Saha
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Juni Chakraborty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Suchismita Mohanty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | | | - Shuvomoy Banerjee
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Kaushik Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Gaurisankar Sa
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
| | - Tanya Das
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VIIM, Kolkata, India
- * E-mail:
| |
Collapse
|
38
|
Saito E, Nakamura O, Yamada H, Tsutsui S, Watanabe T. Suppression of lymphocyte proliferation by ovarian cavity fluid from the viviparous fish Neoditrema ransonnetii (Perciformes; Embiotocidae). FISH & SHELLFISH IMMUNOLOGY 2009; 27:549-555. [PMID: 19628045 DOI: 10.1016/j.fsi.2009.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 07/13/2009] [Accepted: 07/14/2009] [Indexed: 05/28/2023]
Abstract
As the fetus expresses paternal major histocompatibility complex molecules, viviparous vertebrates require sophisticated mechanisms to modulate maternal immunology to ensure successful pregnancy. We anticipated that ovarian cavity fluid (OCF) is likely to feature significantly in the modulation of ovarian cavity immunology. Consequently, we examined the effects of OCF upon leukocyte function in Neoditrema ransonnetii. OCF did not affect phagocytosis or superoxide production by phagocytes. However, OCF suppressed lymphocyte proliferation induced by ConA almost completely. As OCF contained PGE(2) at high levels during late pregnancy, we also investigated the effect of PGE(2) upon lymphocyte expansion. PGE(2) exhibited negative effects upon lymphocyte mitogenesis in a dose-dependent manner (10-1000 ng/ml). PGE(2) significantly suppressed lymphocyte proliferation when present at levels equivalent to that seen in OCF (30.2 +/- 16.1 approximately 185.4 +/- 107.4 ng/ml). Data indicate that PGE(2) is one of the key modulatory molecules of the maternal immune system ensuring successful pregnancy in this viviparous species.
Collapse
Affiliation(s)
- Erina Saito
- School of Marine Biosciences, Kitasato University, Ofunato, Iwate 022-0101, Japan.
| | | | | | | | | |
Collapse
|
39
|
Alzabin S, Pyarajan S, Yee H, Kiefer F, Suzuki A, Burakoff S, Sawasdikosol S. Hematopoietic progenitor kinase 1 is a critical component of prostaglandin E2-mediated suppression of the anti-tumor immune response. Cancer Immunol Immunother 2009; 59:419-29. [PMID: 19787351 PMCID: PMC2798028 DOI: 10.1007/s00262-009-0761-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 08/21/2009] [Indexed: 12/21/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality in the world, resulting in over a million deaths each year. Non-small cell lung cancers (NSCLCs) are characterized by a poor immunogenic response, which may be the result of immunosuppressive factors such as prostaglandin E2 (PGE2) present in the tumor environment. The effect of PGE2 in the suppression of anti-tumor immunity and its promotion of tumor survival has been established for over three decades, but with limited mechanistic understanding. We have previously reported that PGE2 activates hematopoietic progenitor kinase 1 (HPK1), a hematopoietic-specific kinase known to negatively regulate T-cell receptor signaling. Here, we report that mice genetically lacking HPK1 resist the growth of PGE2-producing Lewis lung carcinoma (LLC). The presence of tumor-infiltrating lymphocytes (TILs) and T-cell transfer into T cell-deficient mice revealed that tumor rejection is T cell mediated. Further analysis demonstrated that this may be significantly due to the ability of HPK1−/− T cells to withstand PGE2-mediated suppression of T-cell proliferation, IL-2 production, and apoptosis. We conclude that PGE2 utilizes HPK1 to suppress T cell-mediated anti-tumor responses.
Collapse
Affiliation(s)
- Saba Alzabin
- NYU Cancer Institute, Department of Medicine, New York University School of Medicine, New York, 10016, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Miyaki A, Yang P, Tai HH, Subbaramaiah K, Dannenberg AJ. Bile acids inhibit NAD+-dependent 15-hydroxyprostaglandin dehydrogenase transcription in colonocytes. Am J Physiol Gastrointest Liver Physiol 2009; 297:G559-66. [PMID: 19608733 PMCID: PMC2739822 DOI: 10.1152/ajpgi.00133.2009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Multiple lines of evidence have suggested a role for both bile acids and prostaglandins (PG) in gastrointestinal carcinogenesis. Levels of PGE(2) are determined by both synthesis and catabolism. Previously, bile acid-mediated induction of cyclooxygenase-2 (COX-2) was found to stimulate PGE(2) synthesis. NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), the key enzyme responsible for the catabolism of PGE(2), has been linked to colorectal carcinogenesis. In this study, we determined whether bile acids altered the expression of 15-PGDH in human colon cancer cell lines. Treatment with unconjugated bile acids (chenodeoxycholate and deoxycholate) suppressed the transcription of 15-PGDH, resulting in reduced amounts of 15-PGDH mRNA, protein, and enzyme activity. Conjugated bile acids were less potent suppressors of 15-PGDH expression than unconjugated bile acids. Treatment with chenodeoxycholate activated protein kinase C (PKC), leading in turn to increased extracellular signal-regulated kinase (ERK) 1/2 activity. Small molecules that inhibited bile acid-mediated activation of PKC and ERK1/2 also blocked the downregulation of 15-PGDH. Bile acids induced early growth response factor-1 (Egr-1) and Snail, a repressive transcription factor that bound to the 15-PGDH promoter. Silencing Egr-1 or Snail blocked chenodeoxycholate-mediated downregulation of 15-PGDH. Together, these data indicate that bile acids activate the signal transduction pathway PKC --> ERK1/2 --> Egr-1 --> Snail and thereby suppress 15-PGDH transcription. Bile acids appear to increase the release of PGs from cells by downregulating catabolism in addition to stimulating synthesis. These results provide new mechanistic insights into the link between bile acids and gastrointestinal carcinogenesis.
Collapse
Affiliation(s)
- Akira Miyaki
- Department of Medicine, Weill Cornell Medical College, New York, New York; Department of General Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas; and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Peiying Yang
- Department of Medicine, Weill Cornell Medical College, New York, New York; Department of General Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas; and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Hsin-Hsiung Tai
- Department of Medicine, Weill Cornell Medical College, New York, New York; Department of General Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas; and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Cornell Medical College, New York, New York; Department of General Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas; and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Cornell Medical College, New York, New York; Department of General Oncology, The University of Texas, M. D. Anderson Cancer Center, Houston, Texas; and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
41
|
Hughes D, Otani T, Yang P, Newman RA, Yantiss RK, Altorki NK, Port JL, Yan M, Markowitz SD, Mazumdar M, Tai HH, Subbaramaiah K, Dannenberg AJ. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase regulates levels of bioactive lipids in non-small cell lung cancer. Cancer Prev Res (Phila) 2009; 1:241-9. [PMID: 19138967 DOI: 10.1158/1940-6207.capr-08-0055] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Elevated levels of procarcinogenic prostaglandins (PG) are found in a variety of human malignancies including non-small cell lung cancer (NSCLC). Overexpression of cyclooxygenase-2 and microsomal prostaglandin synthase 1 occurs in tumors and contributes to increased PG synthesis. NAD+-dependent 15-hydroxyprostaglandin dehydrogenase (15-PGDH), the key enzyme responsible for metabolic inactivation of PGs, is down-regulated in various malignancies. The main objective of this study was to elucidate the effect of loss of 15-PGDH on levels of bioactive lipids in NSCLC. We found that levels of cyclooxygenase-2 and microsomal prostaglandin synthase 1 were commonly increased whereas the amount of 15-PGDH was frequently decreased in NSCLC compared with adjacent normal lung. Reduced expression of 15-PGDH occurred in tumor cells and was paralleled by decreased 15-PGDH activity in tumors. Amounts of PGE1, PGE2, and PGF(2alpha), known substrates of 15-PGDH, were markedly increased whereas levels of 13,14-dihydro-15-keto-PGE2, a catabolic product of PGE2, were markedly reduced in NSCLC compared with normal lung. Complementary in vitro and in vivo experiments were done to determine whether these changes in PG levels were a consequence of down-regulation of 15-PGDH in NSCLC. Similar to NSCLC, amounts of PGE1, PGE2, and PGF(2alpha) were markedly increased whereas levels of 13,14-dihydro-15-keto-PGE2 were decreased in the lungs of 15-PGDH knockout mice compared with wild-type mice or when 15-PGDH was silenced in A549 lung cancer cells. Collectively, these data indicate that 15-PGDH is commonly down-regulated in NSCLC, an effect that contributes to the accumulation of multiple bioactive lipids in NSCLC.
Collapse
Affiliation(s)
- Duncan Hughes
- Department of General Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Victorino RMM, Lucas M, Moura MC. Assays for suppressor cell activity studying the suppression of lymphocyte proliferation in chronic active hepatitis. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/j.1600-0676.1982.tb00207.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Hsieh DS, Mason P, Chien YW. Enhanced Release of Drugs from Silicone Elastomers: (IV) Subcutaneous Controlled Release of Indomethacin and in Vivo/In Vitro Correlations. Drug Dev Ind Pharm 2008. [DOI: 10.3109/03639048509059873] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Using dendritic cell maturation and IL-12 producing capacity as markers of function: a cautionary tale. J Immunother 2008; 31:359-69. [PMID: 18391760 DOI: 10.1097/cji.0b013e318165f5d2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Effective dendritic cell (DC) function depends on sufficient expression of antigen and costimulatory molecules, and secretion of interleukin (IL)-12. We sought to augment DC stimulatory capacity by optimizing DC phenotype and IL-12 production. DCs, obtained by CD14-selection, were matured using 8 different cytokine cocktails, and expression of costimulatory/major histocompatibility complex molecules and IL-12 production at the end of maturation was assessed. DC stimulatory capacity was determined after pulsing with immunogenic adenoviral CD8 peptide epitopes or after transduction with an Ad5f35-null vector. Resultant T-cell cultures were analyzed using pentamer and interferon-gamma enzyme-linked immunosorbent spot assays. On the basis of DC expression of maturation markers and IL-12 production, we defined prototype "minimal" [tumor necrosis factor-alpha (TNF-alpha), prostaglandin E2], "standard" (IL-1, IL-6, TNF-alpha, prostaglandin E2), and "optimal" (IL-1, IL-6, TNF-alpha, interferon-alpha, CD40 ligand) DC cocktails. Optimal DCs were functionally superior when pulsed with CD8 peptides, but when transduced with Ad5f35, functioned poorly as antigen-presenting cells. We investigated the mechanisms underlying this discrepancy and suggest that prolonged stimulation with potent cytokines (optimal cocktail) in combination with adenoviral transduction alters the kinetics of DC maturation such that the DCs are functionally exhausted by the traditional 48-hour maturation time point. Shortening the DC maturation period posttransduction restored optimal DC stimulatory capacity. Thus, maturation stimuli and viral transduction affects DC phenotype, IL-12 producing capacity, and kinetics of maturation, and all must be considered before designing protocols to generate the optimal DC for cytotoxic T lymphocyte generation.
Collapse
|
45
|
WIEDERKEHR JULIOC, DUMBLE LYNETTE, POLLAK RAYMOND, MORAN MARK. IMMUNOSUPPRESSIVE EFFECT OF MISOPROSTOL: A NEW SYNTHETIC PROSTAGLANDIN E1ANALOGUE. ACTA ACUST UNITED AC 2008. [DOI: 10.1111/ans.1990.60.2.121] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- JULIO C. WIEDERKEHR
- Division of Transplantation, Department of Surgery, University of Illinois, Chicago, Illinois, USA
| | - LYNETTE DUMBLE
- Department of Surgery, University of Melbourne, Parkville, Victoria
| | - RAYMOND POLLAK
- Division of Transplantation, Department of Surgery, University of Illinois, Chicago, Illinois, USA
| | - MARK MORAN
- Research and Development, GD Searle and Company, Skokie, Illinois, USA
| |
Collapse
|
46
|
Lapteva N, Seethammagari MR, Hanks BA, Jiang J, Levitt JM, Slawin KM, Spencer DM. Enhanced Activation of Human Dendritic Cells by Inducible CD40 and Toll-like Receptor-4 Ligation. Cancer Res 2007; 67:10528-37. [DOI: 10.1158/0008-5472.can-07-0833] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
47
|
Abstract
Historically, anti-inflammatory drugs had their origins in the serendipitous discovery of certain plants and their extracts being applied for the relief of pain, fever and inflammation. When salicylates were discovered in the mid-19th century to be the active components of Willow Spp., this enabled these compounds to be synthesized and from this, acetyl-salicylic acid or Aspirin was developed. Likewise, the chemical advances of the 19th-20th centuries lead to development of the non-steroidal anti-inflammatory drugs (NSAIDs), most of which were initially organic acids, but later non-acidic compounds were discovered. There were two periods of NSAID drug discovery post-World War 2, the period up to the 1970's which was the pre-prostaglandin period and thereafter up to the latter part of the last century in which their effects on prostaglandin production formed part of the screening in the drug-discovery process. Those drugs developed up to the 1980-late 90's were largely discovered empirically following screening for anti-inflammatory, analgesic and antipyretic activities in laboratory animal models. Some were successfully developed that showed low incidence of gastro-intestinal (GI) side effects (the principal adverse reaction seen with NSAIDs) than seen with their predecessors (e.g. aspirin, indomethacin, phenylbutazone); the GI reactions being detected and screened out in animal assays. In the 1990's an important discovery was made from elegant molecular and cellular biological studies that there are two cyclo-oxygenase (COX) enzyme systems controlling the production of prostanoids [prostaglandins (PGs) and thromboxane (TxA2)]; COX-1 that produces PGs and TxA2 that regulate gastrointestinal, renal, vascular and other physiological functions, and COX-2 that regulates production of PGs involved in inflammation, pain and fever. The stage was set in the 1990's for the discovery and development of drugs to selectively control COX-2 and spare the COX-1 that is central to physiological processes whose inhibition was considered a major factor in development of adverse reactions, including those in the GI tract. At the turn of this century, there was enormous commercial development following the introduction of two new highly selective COX-2 inhibitors, known as coxibs (celecoxib and rofecoxib) which were claimed to have low GI side effects. While found to have fulfilled these aims in part, an alarming turn of events took place in the late 2004 period when rofecoxib was withdrawn worldwide because of serious cardiovascular events and other coxibs were subsequently suspected to have this adverse reaction, although to a varying degree. Major efforts are currently underway to discover why cardiovascular reactions took place with coxibs, identify safer coxibs, as well as elucidate the roles of COX-2 and COX-1 in cardiovascular diseases and stroke in the hope that there may be some basis for developing newer agents (e.g. nitric oxide-donating NSAIDs) to control these conditions. The discovery of the COX isoforms led to establishing their importance in many non-arthritic or non-pain states where there is an inflammatory component to pathogenesis, including cancer, Alzheimer's and other neurodegenerative diseases. The applications of NSAIDs and the coxibs in the prevention and treatment of these conditions as well as aspirin and other analogues in the prevention of thrombo-embolic diseases now constitute one of the major therapeutic developments of the this century. Moreover, new anti-inflammatory drugs are being discovered and developed based on their effects on signal transduction and as anti-cytokine agents and these drugs are now being heralded as the new therapies to control those diseases where cytokines and other nonprostaglandin components of chronic inflammatory and neurodegenerative diseases are manifest. To a lesser extent safer application of corticosteroids and the applications of novel drug delivery systems for use with these drugs as well as with NSAIDs also represent newer technological developments of the 21st century. What started out as drugs to control inflammation, pain and fever in the last two centuries now has exploded to reveal an enormous range and type of anti-inflammatory agents and discovery of new therapeutic targets to treat a whole range of conditions that were never hitherto envisaged.
Collapse
Affiliation(s)
- K D Rainsford
- Biomedical Research Centre, Faculty of Health & Wellbeing, Sheffield Hallam University, Howard Street, Sheffield, SI 1WB, UK.
| |
Collapse
|
48
|
Eisinger AL, Prescott SM, Jones DA, Stafforini DM. The role of cyclooxygenase-2 and prostaglandins in colon cancer. Prostaglandins Other Lipid Mediat 2006; 82:147-54. [PMID: 17164142 DOI: 10.1016/j.prostaglandins.2006.05.026] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2006] [Accepted: 05/12/2006] [Indexed: 11/30/2022]
Abstract
The temporal association between loss of function of the tumor suppressor adenomatous polyposis coli (APC) and overexpression of cyclooxygenase 2 (COX-2) has been demonstrated in vivo and has led to the hypothesis that APC regulates COX-2 expression. This could potentially occur through a variety of mechanisms including the well-characterized ability of APC to negatively regulate Wnt signaling and decrease expression of target genes. However, recent findings suggest that the products of COX-2 elicit effects that occur upstream of the beta-catenin/TCF/LEF pathway. This review will focus on the regulation of COX-2 by APC and the interplay between COX-2 and the Wnt signaling pathway.
Collapse
Affiliation(s)
- Annie L Eisinger
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, United States.
| | | | | | | |
Collapse
|
49
|
Mahic M, Yaqub S, Johansson CC, Taskén K, Aandahl EM. FOXP3+CD4+CD25+ adaptive regulatory T cells express cyclooxygenase-2 and suppress effector T cells by a prostaglandin E2-dependent mechanism. THE JOURNAL OF IMMUNOLOGY 2006; 177:246-54. [PMID: 16785520 DOI: 10.4049/jimmunol.177.1.246] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD4+CD25+ regulatory T (T(R)) cells suppress effector T cells by partly unknown mechanisms. In this study, we describe a population of human suppressive CD4+CD25+ adaptive T(R) (T(R)(adapt)) cells induced in vitro that express cyclooxygenase 2 (COX-2) and the transcription factor FOXP3. T(R)(adapt) cells produce PGE(2) and suppress effector T cell responses in a manner that is reversed by COX inhibitors and PGE(2) receptor-specific antagonists. In resting CD4+CD25- T cells, treatment with PGE(2) induced FOXP3 expression. Thus, autocrine and paracrine effects of PGE(2) produced by COX-2-positive T(R)(adapt) cells may be responsible for both the FOXP3+ phenotype and the mechanism used by these cells to suppress effector T cells.
Collapse
Affiliation(s)
- Milada Mahic
- The Biotechnology Centre, Ullevaal University Hospital, University of Oslo, N-0317 Oslo, Norway
| | | | | | | | | |
Collapse
|
50
|
BRUSERUD Ø, SOLLID L, GAUDERNACK G, THORSBY E. The Role of the CD8-Positive Subset of T Cells in Proliferative Responses to Soluble Antigens. Scand J Immunol 2006. [DOI: 10.1111/j.1365-3083.1986.tb03078.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|