1
|
Ha B, Kang JH, Kim DH, Lee MY. Lipopolysaccharide-Induced Inflammatory Response and Its Prominent Suppression by Paspalum thunbergii Extract. Int J Mol Sci 2025; 26:1611. [PMID: 40004077 PMCID: PMC11855676 DOI: 10.3390/ijms26041611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/09/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
The extract of Paspalum thunbergii, a native perennial herb in Korea belonging to the rice family, was investigated for its anti-inflammatory activity and the underlying mechanisms driving its effects. Fifteen chemical components of the P. thunbergii extract, including rosmarinic acid and isoquercitrin, were identified using LC-MS. The extract showed antioxidative activity through DPPH and ABTS cation radical scavenging activity. The P. thunbergii extract significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in macrophage RAW 264.7 cells. The extract inhibited the expression of lipopolysaccharide-induced iNOS and COX-2, which are inflammation-related enzymes. To explore the underlying anti-inflammatory mechanism, the expression levels of signal proteins related to MAPK, NF-κB, JAK/STAT, and Wnt/β-catenin signaling were measured. As a result, the P. thunbergii extract inhibited the expression of p-p38, and p-JNK increased by LPS in RAW 264.7 cells. Additionally, it decreased the expression of LPS-induced p-IKKβ and p-NF-κB p65 and prevented the migration of p-NF-κB into the nucleus caused by LPS. Notably, p-JAK1, p-STAT3, Wnt 3α, β-catenin, and p-GSK-3β protein expressions were also inhibited. Therefore, the prominent anti-inflammatory activity of the P. thunbergii extract may be via the MAPK, NF-κB, JAK/STAT, Wnt/β-catenin signal pathway.
Collapse
Affiliation(s)
- Bin Ha
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Ji-Hye Kang
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Do Hyun Kim
- Department of Research and Development, Eshel Biopharm Co., Ltd., Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| | - Mi-Young Lee
- Department of Medical Science, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Medical Biotechnology, College of Medical Science, Soonchunhyang University, Asan-si 31538, Chungcheongnam-do, Republic of Korea;
- Department of Research and Development, Eshel Biopharm Co., Ltd., Asan-si 31538, Chungcheongnam-do, Republic of Korea;
| |
Collapse
|
2
|
Forden CA. Phagolysosomal resistance hypothesized to be a danger signal. Scand J Immunol 2024; 100:e13400. [PMID: 39138895 DOI: 10.1111/sji.13400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/09/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Antigen presenting cells sometimes require T cell "help" to kill and decompose microbes they capture, especially when those microbes resist effector molecules including nitric oxide and reactive oxygen species. Pathogens are more likely to resist those effectors, shared by the innate and adaptive immune systems, than are commensals. Does such resistance alert the immune system to the danger posed by those pathogens? Several lines of evidence suggest this occurs. Mouse studies showed a surprising exacerbation, not alleviation of experimental autoimmune encephalomyelitis, by suppression of nitric oxide production, but only when the suppression was applied to animals undergoing vaccination with myelin. In contrast, animals receiving T cells activated by vaccination without suppression of nitric oxide benefitted from reduced autoimmune cytotoxicity when nitric oxide production was suppressed after adoptive transfer. Vaccinia and adenovirus suppress nitric oxide production and have been successful vaccine platforms, also consistent with the above phagolysosomal resistance hypothesis. The hypothesis solves a long-standing quandary-how can nitric oxide protect against both infection and autoimmunity, especially autoimmune diseases for which it seems a major effector? The importance of physical linkage between epitopes, first proposed in Bretscher's Two-Step, Two-Signal theory dependent on B cells, is extended to include phagolysosomal resistance in general, plus a corollary proposition that the immune system detects resistance to dissociation of high-affinity pathogenic ligands from host binding sites to make neutralizing antibodies.
Collapse
|
3
|
Kim SJ, Shin MS, Choi YK. Ameliorative Effects of Zingiber officinale Rosc on Antibiotic-Associated Diarrhea and Improvement in Intestinal Function. Molecules 2024; 29:732. [PMID: 38338475 PMCID: PMC10856109 DOI: 10.3390/molecules29030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/03/2024] [Indexed: 02/12/2024] Open
Abstract
The global increase in antibiotic consumption is related to increased adverse effects, such as antibiotic-associated diarrhea (AAD). This study investigated the chemical properties of Zingiber officinale Rosc (ZO) extract and its ameliorative effects using a lincomycin-induced AAD mouse model. Intestinal tissues were evaluated for the expression of lysozyme, claudin-1, and α-defensin-1, which are associated with intestinal homeostasis. The cecum was analyzed to assess the concentration of short-chain fatty acids (SCFAs). The chemical properties analysis of ZO extracts revealed the levels of total neutral sugars, acidic sugars, proteins, and polyphenols to be 86.4%, 8.8%, 4.0%, and 0.8%, respectively. Furthermore, the monosaccharide composition of ZO was determined to include glucose (97.3%) and galactose (2.7%). ZO extract administration ameliorated the impact of AAD and associated weight loss, and water intake also returned to normal. Moreover, treatment with ZO extract restored the expression levels of lysozyme, α-defensin-1, and claudin-1 to normal levels. The decreased SCFA levels due to induced AAD showed a return to normal levels. The results indicate that ZO extract improved AAD, strengthened the intestinal barrier, and normalized SCFA levels, showing that ZO extract possesses intestinal-function strengthening effects.
Collapse
Affiliation(s)
| | | | - You-Kyung Choi
- College of Korean Medicine, Gachon University, Seongnam 13120, Republic of Korea; (S.J.K.)
| |
Collapse
|
4
|
Zhou S, Zhao G, Chen R, Li Y, Huang J, Kuang L, Zhang D, Li Z, Xu H, Xiang W, Xie Y, Chen L, Ni Z. Lymphatic vessels: roles and potential therapeutic intervention in rheumatoid arthritis and osteoarthritis. Theranostics 2024; 14:265-282. [PMID: 38164153 PMCID: PMC10750203 DOI: 10.7150/thno.90940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Lymphatic vessel networks are a main part of the vertebrate cardiovascular system, which participate in various physiological and pathological processes via regulation of fluid transport and immunosurveillance. Targeting lymphatic vessels has become a potent strategy for treating various human diseases. The presence of varying degrees of inflammation in joints of rheumatoid arthritis (RA) and osteoarthritis (OA), characterized by heightened infiltration of inflammatory cells, increased levels of inflammatory factors, and activation of inflammatory signaling pathways, significantly contributes to the disruption of cartilage and bone homeostasis in arthritic conditions. Increasing evidence has demonstrated the pivotal role of lymphatic vessels in maintaining joint homeostasis, with their pathological alterations closely associated with the initiation and progression of inflammatory joint diseases. In this review, we provide a comprehensive overview of the evolving knowledge regarding the structural and functional aspects of lymphatic vessels in the pathogenesis of RA and OA. In addition, we summarized the potential regulatory mechanisms underlying the modulation of lymphatic function in maintaining joint homeostasis during inflammatory conditions, and further discuss the distinctions between RA and OA. Moreover, we describe therapeutic strategies for inflammatory arthritis based on lymphatic vessels, including the promotion of lymphangiogenesis, restoration of proper lymphatic vessel function through anti-inflammatory approaches, enhancement of lymphatic contractility and drainage, and alleviation of congestion within the lymphatic system through the elimination of inflammatory cells. At last, we envisage potential research perspectives and strategies to target lymphatic vessels in treating these inflammatory joint diseases.
Collapse
Affiliation(s)
- Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Guangyu Zhao
- Department of Emergency Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People's Republic of China
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Yang Li
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Junlan Huang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Liang Kuang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Dali Zhang
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
- The Department of Cardiology, General Hospital of Northern Theater Command, Shenyang 110015, People's Republic of China
| | - Zhijun Li
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Haofeng Xu
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Wei Xiang
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| | - Yangli Xie
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Lin Chen
- Department of Wound Repair and Rehabilitation Medicine, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, People's Republic of China
| | - Zhenhong Ni
- Rehabilitation Medicine Department, Army Medical Center, Daping Hospital, Army Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
5
|
Regulation of pleiotropic physiological roles of nitric oxide signaling. Cell Signal 2023; 101:110496. [PMID: 36252791 DOI: 10.1016/j.cellsig.2022.110496] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022]
Abstract
Nitric Oxide (NO) is a highly diffusible, ubiquitous signaling molecule and a free radical that is naturally synthesized by our body. The pleiotropic effects of NO in biological systems are due to its reactivity with different molecules, such as molecular oxygen (O2), superoxide anion, DNA, lipids, and proteins. There are several contradictory findings in the literature pertaining to its role in oncology. NO is a Janus-faced molecule shown to have both tumor promoting and tumoricidal effects, which depend on its concentration, duration of exposure, and location. A high concentration is shown to have cytotoxic effects by triggering apoptosis, and at a low concentration, NO promotes angiogenesis, metastasis, and tumor progression. Upregulated NO synthesis has been implicated as a causal factor in several pathophysiological conditions including cancer. This dichotomous effect makes it highly challenging to discover its true potential in cancer biology. Understanding the mechanisms by which NO acts in different cancers helps to develop NO based therapeutic strategies for cancer treatment. This review addresses the physiological role of this molecule, with a focus on its bimodal action in various types of cancers.
Collapse
|
6
|
Anti-Inflammatory Effects of Ang-(1-7) Bone-Targeting Conjugate in an Adjuvant-Induced Arthritis Rat Model. Pharmaceuticals (Basel) 2022; 15:ph15091157. [PMID: 36145378 PMCID: PMC9502795 DOI: 10.3390/ph15091157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory condition of synovial joints that causes disability and systemic complications. Ang-(1-7), one of the main peptides in the renin-angiotensin (Ang) system (RAS), imposes its protective effects through Mas receptor (MasR) signaling. It has a short half-life, limiting its feasibility as a therapeutic agent. In this study, we evaluated the anti-inflammatory effects of Ang-(1-7)’s novel and stable conjugate (Ang. Conj.) by utilizing its affinity for bone through bisphosphonate (BP) moiety in an adjuvant-induced arthritis (AIA) rat model. The rats received subcutaneous injections of vehicle, plain Ang-(1-7), or an equivalent dose of Ang. Conj. The rats’ body weights, paws, and joints’ diameters were measured thrice weekly. After 14 days, the rats were euthanized, and the blood and tissue samples were harvested for further analysis of nitric oxide (NO) and RAS components’ gene and protein expression. The administration of Ang. Conj. reduced body weight loss, joint edema, and serum NO. Moreover, the Ang. Conj. treatment significantly reduced the classical arm components at peptide, enzyme, and receptor levels while augmenting them for the protective arm. The results of this study introduce a novel class of bone-targeting natural peptides for RA caused by an inflammation-induced imbalance in the activated RAS. Our results indicate that extending the half-life of Ang-(1-7) augments the RAS protective arm and exerts enhanced therapeutic effects in the AIA model in rats.
Collapse
|
7
|
Kim T, Nah Y, Kim J, Lee S, Kim WJ. Nitric-Oxide-Modulatory Materials for Biomedical Applications. Acc Chem Res 2022; 55:2384-2396. [PMID: 35786846 DOI: 10.1021/acs.accounts.2c00159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Nitric oxide (NO) is an endogenous signaling molecule that participates in various physiological and biological pathways associated with vasodilation, immune response, and cell apoptosis. Interestingly, NO has versatile and distinct functions in vivo depending on its concentration and the duration of exposure; it aids cellular proliferation at nanomolar concentrations but causes cellular death at micromolar concentrations. Therefore, achieving the precise and on-demand modulation of microenvironmental NO concentrations has become a major research target in biomedical fields. To this end, many studies have investigated feasible means for developing functional moieties that can either exogenously donate or selectively scavenge NO. However, these advances are limited by poor stability and a lack of target specificity, which represent two significant obstacles regarding the spatiotemporal adjustment of NO in vivo. Our group has addressed this issue by contributing to the development of next-generation NO-modulatory materials over the past decade. Over this period, we utilized various polymeric, inorganic, and hybrid systems to enhance the bioavailability of traditional NO donors or scavengers in an attempt to maximize their clinical usage while also minimizing their unwanted side effects. In this Account, strategies regarding the rational design of NO-modulatory materials are first summarized and discussed, depending on their specific purposes. These strategies include chemical approaches for encapsulating traditional NO donors inside specific vehicles; this prevents spontaneous NO release and allows said donors to be exposed on-demand, under a certain stimulus. The current status of these approaches and the recent contributions of other groups are also comprehensively discussed here to ensure an objective understanding of the topic. Moreover, in this paper, we discuss strategies for the selective depletion of NO from local inflammatory sites, where the overproduction of NO is problematic. Finally, the major challenges for current NO-modulatory systems are discussed, and requirements are outlined that need to be tackled to achieve their future therapeutic development. Starting from this current, relatively early stage of development, we propose that, through continuous efforts to surmount existing challenges, it will be possible in the future to achieve clinical translations regarding NO-modulatory systems. This Account provides insightful guidelines regarding the rational design of NO-modulatory systems for various biomedical applications. Moreover, it can facilitate the achievement of previously unattainable goals while revolutionizing future therapeutics.
Collapse
Affiliation(s)
- Taejeong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Yunyoung Nah
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Jeonghyun Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Sangmin Lee
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Won Jong Kim
- Department of Chemistry, POSTECH-CATHOLIC Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Jigok-ro 64, Nam-gu, Pohang 37666, Republic of Korea.,OmniaMed Co., Ltd, Pohang 37666, Republic of Korea
| |
Collapse
|
8
|
Lee EH, Park HJ, Jung HY, Kang IK, Kim BO, Cho YJ. Isoquercitrin isolated from newly bred Green ball apple peel in lipopolysaccharide-stimulated macrophage regulates NF-κB inflammatory pathways and cytokines. 3 Biotech 2022; 12:100. [PMID: 35463046 PMCID: PMC8938568 DOI: 10.1007/s13205-022-03118-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 01/14/2022] [Indexed: 11/01/2022] Open
Abstract
Apple peel has several bioactive properties. The fruit is grown worldwide, and its ingredients are used medicinally. However, its anti-inflammatory activities are poorly characterized. In this study, isoquercitrin isolated from newly bred Green ball apple peel from Korea showed anti-inflammatory effects. To confirm its anti-inflammatory effects, isoquercitrin was treated with lipopolysaccharide, which induces proinflammatory factors in Raw 264.7 macrophage cells. Proinflammatory effects were measured by real-time polymerase chain reaction and Western blotting as well as enzyme-linked immunosorbent assay. Cell viability was measured using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay to define the isoquercitrin concentration nontoxic to cells. Nitric oxide (NO) production, prostaglandin E2, inducible NO synthase, cyclooxygenase-2 (COX-2), and nuclear factor-κB p65 protein expression decreased in a concentration-dependent manner by isoquercitrin. mRNA expression of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, monocyte chemoattractant protein-1, and prostaglandin E synthase 2 (PTGES2) as proinflammatory factors significantly decreased. PTGES2, which was stimulated by COX-2 and involved in PGE2 expression, was inhibited. Therefore, this study rendered isoquercitrin isolated from the newly bred Green ball apple peel as a potential pharmacological alternative to treat inflammation-related diseases.
Collapse
|
9
|
Lee JA, Shin JY, Hong SS, Cho YR, Park JH, Seo DW, Oh JS, Kang JS, Lee JH, Ahn EK. Tetracera loureiri Extract Regulates Lipopolysaccharide-Induced Inflammatory Response Via Nuclear Factor-κB and Mitogen Activated Protein Kinase Signaling Pathways. PLANTS (BASEL, SWITZERLAND) 2022; 11:284. [PMID: 35161266 PMCID: PMC8839383 DOI: 10.3390/plants11030284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/16/2022] [Accepted: 01/19/2022] [Indexed: 06/14/2023]
Abstract
Tetracera loureiri (T. loureiri) is a woody climber inhabiting open deciduous or evergreen forests in Southeast Asia. A decoction comprising its stem and other herbs is a traditional Thai remedy for fatigue and jaundice, as well as to promote overall health. Anti-inflammatory effects induced by T. loureiri extract have not been reported. In this study, we investigated the anti-inflammatory effect of an ethanol extract of T. loureiri (ETL) on lipopolysaccharide (LPS)-induced inflammatory response in RAW264.7 macrophages. We found that ETL treatment inhibited the production of nitric oxide (NO) in LPS-stimulated RAW264.7 cells, without affecting cell viability. The effect of ETL on the expression of various pro-inflammatory mediators was analyzed using reverse transcription-polymerase chain reaction (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). We observed that ETL inhibited the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) at the mRNA and protein levels and decreased the production of prostaglandin E2 (PGE2) by COX-2 in RAW264.7 macrophages. ETL dose-dependently reduced the production of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) in LPS-induced RAW264.7 cells, in a dose-dependent manner. Furthermore, ETL suppressed the LPS-induced nuclear translocation of the nuclear factor, NF-κB. Additionally, ETL was found to inhibit the activation of mitogen-activated protein kinases (MAPK), such as extracellular signal-regulated kinase, c-Jun-N-terminal kinase, and p38 MAPK. In conclusion, our findings demonstrate that ETL inhibits the expression of pro-inflammatory mediators and cytokines, thereby downregulating NF-κB and MAPK signaling pathways in LPS-stimulated macrophages, Consequently, ETL is a potential therapeutic agent for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jung A Lee
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju Young Shin
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Seong Su Hong
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Young-Rak Cho
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| | - Ju-Hyoung Park
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Dong-Wan Seo
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Joa Sub Oh
- College of Pharmacy, Dankook University, Cheonan 31116, Korea; (J.Y.S.); (J.-H.P.); (D.-W.S.); (J.S.O.)
| | - Jae-Shin Kang
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Jae Ho Lee
- Biological Genetic Resources Utilization Division, National Institute of Biological Resources, Incheon 22689, Korea; (J.-S.K.); (J.H.L.)
| | - Eun-Kyung Ahn
- Bio-Center, Gyeonggido Business and Science Accelerator (GBSA), Suwon 16229, Korea; (J.A.L.); (S.S.H.); (Y.-R.C.)
| |
Collapse
|
10
|
Feldman M, Ginsburg I. A Novel Hypothetical Approach to Explain the Mechanisms of Pathogenicity of Rheumatic Arthritis. Mediterr J Rheumatol 2021; 32:112-117. [PMID: 34447906 PMCID: PMC8369279 DOI: 10.31138/mjr.32.2.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 12/29/2022] Open
Abstract
The autoimmune disorder rheumatoid arthritis (RA) is a relapsing and chronic inflammatory disease that affects the synovial cells, cartilage, bone, and muscle. It is characterised by the accumulation of huge numbers of polymorphonuclear neutrophils (PMNs) and macrophages in the synovia. Auto-antibodies are deposited in the joint via the activity of highly cationic histones released from neutrophil extracellular traps (NETs) in a phenomenon termed NETosis. The cationic histones function as opsonic agents that bind to negatively charged domains in autoantibodies and complement compounds via strong electrostatic forces, facilitating their deposition and endocytosis by synovial cells. However, eventually the main cause of tissue damage is the plethora of toxic pro-inflammatory substances released by activated neutrophils recruited by cytokines. Tissue damage in RA can also be accompanied by infections which, upon bacteriolysis, release cell-wall components that are toxic to tissues. Some amelioration of the damaged cells and tissues in RA may be achieved by the use of highly anionic heparins, which can neutralize cationic histone activity, provided that these polyanions are co-administrated with anti-inflammatory drugs such as steroids, colchicine, or methotrexate, low molecular weight antioxidants, proteinase inhibitors, and phospholipase A2 inhibitors.
Collapse
Affiliation(s)
- Mark Feldman
- Institute for Dental Sciences, the Hebrew University - Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| | - Isaac Ginsburg
- Institute for Dental Sciences, the Hebrew University - Hadassah Faculty of Dental Medicine, Ein Kerem Campus, Jerusalem, Israel
| |
Collapse
|
11
|
Min SY, Park CH, Yu HW, Park YJ. Anti-Inflammatory and Anti-Allergic Effects of Saponarin and Its Impact on Signaling Pathways of RAW 264.7, RBL-2H3, and HaCaT Cells. Int J Mol Sci 2021; 22:ijms22168431. [PMID: 34445132 PMCID: PMC8395081 DOI: 10.3390/ijms22168431] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/27/2022] Open
Abstract
Saponarin{5-hydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-7-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxychromen-4-one}, a flavone found in young green barley leaves, is known to possess antioxidant, antidiabetic, and hepatoprotective effects. In the present study, the anti-inflammatory, anti-allergic, and skin-protective effects of saponarin were investigated to evaluate its usefulness as a functional ingredient in cosmetics. In lipopolysaccharide-induced RAW264.7 (murine macrophage) cells, saponarin (80 μM) significantly inhibited cytokine expression, including tumor necrosis factor (TNF)-α, interleukin (IL)-1β, inducible nitric oxide synthase, and cyclooxygenase (COX)-2. Saponarin (80 μM) also inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) and p38 involved in the mitogen-activated protein kinase signaling pathway in RAW264.7 cells. Saponarin (40 μM) significantly inhibited β-hexosaminidase degranulation as well as the phosphorylation of signaling effectors (Syk, phospholipase Cγ1, ERK, JNK, and p38) and the expression of inflammatory mediators (tumor necrosis factor [TNF]-α, IL-4, IL-5, IL-6, IL-13, COX-2, and FcεRIα/γ) in DNP-IgE- and DNP-BSA-stimulated RBL-2H3 (rat basophilic leukemia) cells. In addition, saponarin (100 μM) significantly inhibited the expression of macrophage-derived chemokine, thymus and activation-regulated chemokine, IL-33, thymic stromal lymphopoietin, and the phosphorylation of signaling molecules (ERK, p38 and signal transducer and activator of transcription 1 [STAT1]) in TNF-α- and interferon (IFN)-γ-stimulated HaCaT (human immortalized keratinocyte) cells. Saponarin (100 μM) also significantly induced the expression of hyaluronan synthase-3, aquaporin 3, and cathelicidin antimicrobial peptide (LL-37) in HaCaT cells, which play an important role as skin barriers. Saponarin remarkably inhibited the essential factors involved in the inflammatory and allergic responses of RAW264.7, RBL-2H3, and HaCaT cells, and induced the expression of factors that function as physical and chemical skin barriers in HaCaT cells. Therefore, saponarin could potentially be used to prevent and relieve immune-related skin diseases, including atopic dermatitis.
Collapse
|
12
|
Roy HS, Singh R, Ghosh D. Recent advances in nanotherapeutic strategies that target nitric oxide pathway for preventing cartilage degeneration. Nitric Oxide 2021; 109-110:1-11. [PMID: 33571602 DOI: 10.1016/j.niox.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/30/2021] [Accepted: 01/30/2021] [Indexed: 12/14/2022]
Abstract
Nitric oxide (NO) is an important inflammatory mediator involved in the development and progression of osteoarthritis (OA). Increased production of NO in the affected joints promote cartilage damage. As NO synthesis is catalysed by the inducible NO synthase (iNOS) enzyme, iNOS inhibition serves as an attractive therapeutic target to prevent NO release. Despite a number of direct and indirect iNOS inhibitor molecules demonstrating chondro-protective effect, none have reached the clinic. Its limited bioavailability and adverse side effects served as a deterrent for pursuing clinical trials in OA patients. With the advent of nanotechnology, interest in targeting NO for preventing cartilage degeneration has revived. In this article, we discuss the limitations of the existing molecules and provide an insight on recent nanotechnology-based strategies that have been explored for the diagnosis and inhibition of NO in OA. These approaches hold promise in reviving the hitherto under explored potential of targeting NO to address OA.
Collapse
Affiliation(s)
- Himadri Shekhar Roy
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Rupali Singh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India
| | - Deepa Ghosh
- Chemical Biology Unit, Institute of Nanoscience and Technology (INST), Sector-81, Knowledge City, Mohali, Punjab 140306, India.
| |
Collapse
|
13
|
Lee SJ, Lee YJ, Eom JS, Kim HS, Choi YY, Jo SU, Kang SN, Park HY, Kim DH, Lee SS. Effects of the Appropriate Addition of Antioxidants from Pinus densiflora and Mentha canadensis Extracts on Methane Emission and Rumen Fermentation. Animals (Basel) 2020; 10:E1888. [PMID: 33076543 PMCID: PMC7602798 DOI: 10.3390/ani10101888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 01/08/2023] Open
Abstract
This study aimed to investigate the optimal addition of terpene-based Pinus densiflora and Mentha canadensis extracts, with antioxidant and methane reduction effects, as feed supplements to ruminants. Two cannulated steers (450 ± 30 kg), consuming Timothy Hay and a commercial concentrate (60:40, w/w) twice daily (at 09:00 and 17:30) at 2% of body weight, with free access to water and a mineral block, were used as rumen fluid donors. In vitro fermentation experiments, with Timothy Hay as the substrate, were conducted with P. densiflora and M. canadensis extracts as supplements to achieve concentrations of 30, 50, and 70 mg/L on a Timothy Hay basis. Fibrobacter succinogenes decreased in proportion upon P. densiflora and M. canadensis extract supplementation at 50 mg/L, while the dry matter degradability of the feed was not significantly different (p < 0.05). Methane emission was significantly lower in the 50 and 70 mg/L treatment groups, for both extracts, at 12 h (p < 0.05). Based on methane production and antioxidant activity, our study suggests that 30 mg/L addition is the most appropriate level of supplementation.
Collapse
Affiliation(s)
- Shin Ja Lee
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea;
| | - Ye Jun Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (Y.J.L.); (J.S.E.); (H.S.K.); (Y.Y.C.); (S.U.J.)
| | - Jun Sik Eom
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (Y.J.L.); (J.S.E.); (H.S.K.); (Y.Y.C.); (S.U.J.)
| | - Hyun Sang Kim
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (Y.J.L.); (J.S.E.); (H.S.K.); (Y.Y.C.); (S.U.J.)
| | - You Young Choi
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (Y.J.L.); (J.S.E.); (H.S.K.); (Y.Y.C.); (S.U.J.)
| | - Seong Uk Jo
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (Y.J.L.); (J.S.E.); (H.S.K.); (Y.Y.C.); (S.U.J.)
| | - Suk Nam Kang
- Department of Animal Resource, Daegu University, Gyeongbuk 38453, Korea;
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Korea;
| | - Do Hyung Kim
- Department of Animal Science, Gyeongbuk Provincial College, Yecheon 36830, Korea;
| | - Sung Sill Lee
- Institute of Agriculture and Life Science & University-Centered Labs, Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea;
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Gyeongsangnam-do, Jinju-si 52828, Korea; (Y.J.L.); (J.S.E.); (H.S.K.); (Y.Y.C.); (S.U.J.)
| |
Collapse
|
14
|
Evaluation of serum nitric oxide level and its relationship with disease activity parameters in patients with rheumatoid arthritis. JOURNAL OF CONTEMPORARY MEDICINE 2020. [DOI: 10.16899/jcm.769098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Li X, Zhang W, Li P, Lu G. The protective effect and mechanism of lentinan on acute kidney injury in septic rats. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:883. [PMID: 32793727 DOI: 10.21037/atm-20-5158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND This study aimed to investigate the protective effect and mechanism of lentinan (LNT) on acute kidney injury (AKI) in septic rats. METHODS A total 72 male SD rats were randomly divided into 6 groups with 12 rats in each group. Except for the sham group, all groups, including the burn sepsis group (BS group), the positive drug control group (dexamethasone, 5 mg/kg, PC group), the LNT low-concentration group (LNT-L group) (50 mg/kg), the LNT medium-concentration group (LNT-M group) (100 mg/kg), and the LNT high-concentration group (LNT-H group) (200 mg/kg), were intraperitoneally injected with the same amount of normal saline 30 min before injury. The levels of serum interleukin (IL)-4, IL-6, IL-10, and tumor necrosis factor alpha (TNF-α); the indexes of blood urea nitrogen (BUN) and creatinine (Cr); and the protein expression levels of inducible nitric oxide synthase (iNOS), intercellular adhesion molecule 1 (ICAM-1), and nuclear factor-κB (NF-κB) in renal tissue were detected 24 hours after the model was established. RESULTS Compared with the sham group, the BUN and Cr of the other groups were significantly higher, while those of the LNT group with different concentrations were significantly lower than those of the BS group (P<0.05). Compared with the sham group, the protein expression levels of NF-κB, iNOS, and ICAM-1 along with the levels of pro-inflammatory factors TNF-α and IL-6 in serum were significantly increased, while the levels of anti-inflammatory factors IL-4 and IL-10 were obviously lower in the BS group. Compared with the BS group, the protein expression levels of NF-κB, iNOS, and ICAM-1 along with the levels of pro-inflammatory factors TNF-α and IL-6 in serum were significantly decreased, while the levels of anti-inflammatory factors IL-4 and IL-10 were obviously increased in the LNT group with different concentrations.. CONCLUSIONS LNT has a certain protective effect on AKI in septic rats, and its mechanism may involve inhibiting the activation of NF-κB, which suppresses the expression of proinflammatory factors in turn, thus promoting the release of anti-inflammatory factors.
Collapse
Affiliation(s)
- Xiaoping Li
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Wanfen Zhang
- Department of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Ping Li
- Department of Nephrology, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Guoyuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Park CH, Min SY, Yu HW, Kim K, Kim S, Lee HJ, Kim JH, Park YJ. Effects of Apigenin on RBL-2H3, RAW264.7, and HaCaT Cells: Anti-Allergic, Anti-Inflammatory, and Skin-Protective Activities. Int J Mol Sci 2020; 21:ijms21134620. [PMID: 32610574 PMCID: PMC7370139 DOI: 10.3390/ijms21134620] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/28/2020] [Indexed: 12/31/2022] Open
Abstract
Apigenin (4',5,7-trihydroxyflavone, flavonoid) is a phenolic compound that is known to reduce the risk of chronic disease owing to its low toxicity. The first study on apigenin analyzed its effect on histamine release in the 1950s. Since then, anti-mutation and antitumor properties of apigenin have been widely reported. In the present study, we evaluated the apigenin-mediated amelioration of skin disease and investigated its applicability as a functional ingredient, especially in cosmetics. The effect of apigenin on RAW264.7 (murine macrophage), RBL-2H3 (rat basophilic leukemia), and HaCaT (human immortalized keratinocyte) cells were analyzed. Apigenin (100 μM) significantly inhibited nitric oxide (NO) production, cytokine expression (interleukin (IL)-1β, IL6, cyclooxygenase (COX)-2, and inducible nitric oxide synthase [iNOS]), and phosphorylation of mitogen-activated protein kinase (MAPK) signal molecules, including extracellular signal-regulated kinase (ERK) and c-Jun N-terminal protein kinase (JNK) in RAW264.7 cells. Apigenin (30 M) also inhibited the phosphorylation of signaling molecules (Lyn, Syk, phospholipase Cγ1, ERK, and JNK) and the expression of high-affinity IgE receptor FcεRIα and cytokines (tumor necrosis factor (TNF)-α, IL-4, IL-5, IL-6, IL-13, and COX-2) that are known to induce inflammation and allergic responses in RBL-2H3 cells. Further, apigenin (20 μM) significantly induced the expression of filaggrin, loricrin, aquaporin-3, hyaluronic acid, hyaluronic acid synthase (HAS)-1, HAS-2, and HAS-3 in HaCaT cells that are the main components of the physical barrier of the skin. Moreover, it promoted the expression of human β-defensin (HBD)-1, HBD-2, HBD-3, and cathelicidin (LL-37) in HaCaT cells. These antimicrobial peptides are known to play an important role in the skin as chemical barriers. Apigenin significantly suppressed the inflammatory and allergic responses of RAW264.7 and RBL cells, respectively, and would, therefore, serve as a potential prophylactic and therapeutic agent for immune-related diseases. Apigenin could also be used to improve the functions of the physical and chemical skin barriers and to alleviate psoriasis, acne, and atopic dermatitis.
Collapse
Affiliation(s)
- Che-Hwon Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Seon-Young Min
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Hye-Won Yu
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
| | - Kyungmin Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Suyeong Kim
- Jeju R&D Center, AMI Cosmetics Co., Ltd., 16, Sancheondandong-gil, Jeju-si 63359, Korea; (K.K.); (S.K.)
| | - Hye-Ja Lee
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Ji-Hye Kim
- Natural Products Laboratory, DAEBONG Life Science Co., Ltd., 213-4, Chumdan-Ro, Jeju-si 63309, Korea; (H.-J.L.); (J.-H.K.)
| | - Young-Jin Park
- Department of Medicinal Biosciences, Research Institute for Biomedical & Health Science, College of Biomedical and Health Science, Konkuk University, 268 Chungwon-daero, Chungju-si 27478, Korea; (C.-H.P.); (S.-Y.M.); (H.-W.Y.)
- Correspondence: ; Tel.: +82-43-840-3601
| |
Collapse
|
17
|
Pinto D, Delerue-Matos C, Rodrigues F. Bioactivity, phytochemical profile and pro-healthy properties of Actinidia arguta: A review. Food Res Int 2020; 136:109449. [PMID: 32846546 DOI: 10.1016/j.foodres.2020.109449] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/03/2020] [Accepted: 06/14/2020] [Indexed: 12/18/2022]
Abstract
Hardy kiwi (Actinidia arguta) is a climbing, perennial and dioecious vine from Actinidiaceae family, native from Asia and valued as ornamental and traditional medicine. In the last decade, the growing interest as fruit-bearing plant encourage the expanding cultivation of A. arguta mainly to fruits production, particularly in Europe and North America. A. arguta plants have an extensive range ofbioactive compoundsthat can be obtained from different botanical structures, such as fruits, leaves, flowers and stems. These bioactive molecules, with well-recognized health-promoting properties, include phenolic compounds, minerals, carbohydrates or even volatile substances, with a great potential to be used in several formulations of food products. Phytochemical studies on this plant reported hypoglycemic effects as well as antioxidant and anti-inflammatory activities, among others. The traditional uses ofA. arguta have been experimentally proved byin vitroandin vivostudies, in which its bioactivities were associated to its phytochemical composition. This review aims to assess and summarize the phytochemical and healthy properties ofthe different botanical parts of A. arguta, describing their bioactive composition and exploring it potential functional properties on foodstuffs.
Collapse
Affiliation(s)
- Diana Pinto
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal
| | - Francisca Rodrigues
- REQUIMTE/LAQV, Polytechnic of Porto - School of Engineering, Rua Dr. António Bernardino de Almeida, 4249-015 Porto, Portugal.
| |
Collapse
|
18
|
Bakheet SA, Alrwashied BS, Ansari MA, Nadeem A, Attia SM, Alanazi MM, Aldossari AA, Assiri MA, Mahmood HM, Al-Mazroua HA, Ahmad SF. CXC chemokine receptor 3 antagonist AMG487 shows potent anti-arthritic effects on collagen-induced arthritis by modifying B cell inflammatory profile. Immunol Lett 2020; 225:74-81. [PMID: 32590119 DOI: 10.1016/j.imlet.2020.06.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/05/2020] [Accepted: 06/11/2020] [Indexed: 02/04/2023]
Abstract
Several studies have suggested that chemokine receptors are important mediators of inflammatory response in rheumatoid arthritis (RA). B cells are also known to play an important role in RA pathology. C-X-C chemokine receptor type 3 (CXCR3) is considered a potential therapeutic target in different inflammatory diseases; however, the mechanism remains unclear. Here, we evaluated the potentially protective effect of AMG487, a selective CXCR3 antagonist, in collagen-induced arthritis (CIA) mouse model. CIA mice were treated with AMG487 (5 mg/kg) every 48 h, from day 21 until day 41. We then investigated the effect of AMG487 on NF-κB p65-, NOS2-, MCP-1-, TNF-α-, IFN-γ, IL-4-, and IL-27-producing CD19+ B cells in the spleen through flow cytometry. We also evaluated the mRNA and protein expression levels of these molecules using RT-PCR and western blotting in the knee tissues. Our results revealed that AMG487-treated mice showed decreased NF-κB p65-, NOS2-, MCP-1-, and TNF-α-, and increased IL-4-, and IL-27-producing CD19+ B cells compared with the control mice. Additionally, AMG487 treatment significantly down regulated NF-κB p65, NOS2, TNF-α, and IFN-γ, and upregulated IL-4 and IL-27 mRNA and protein expression levels compared with the control. Thus, our study shows that AMG487 exerts its anti-arthritic effect by potently downregulating inflammatory B cell signaling. Based on our observations, we propose that AMG487 could serve as a potential novel therapeutic agent for inflammatory and autoimmune diseases, including RA.
Collapse
Affiliation(s)
- Saleh A Bakheet
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Bader S Alrwashied
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mushtaq A Ansari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sabry M Attia
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A Aldossari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hafiz M Mahmood
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Haneen A Al-Mazroua
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
| |
Collapse
|
19
|
Optimizing extraction conditions for functional compounds from ginger ( Zingiber officinale Roscoe) using response surface methodology. Food Sci Biotechnol 2020; 29:379-385. [PMID: 32257521 DOI: 10.1007/s10068-019-00667-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/23/2019] [Accepted: 08/06/2019] [Indexed: 10/26/2022] Open
Abstract
Extraction process was optimized for maximizing the contents of functional compounds from ginger using response surface methodology which applied Box-Behnken design. Ginger extracts were obtained at 3 levels of ethanol concentration (0-70%) of solvent, extraction time (30-90 min), and extraction temperature (50-70 °C) as independent variables. The 6-shogaol and 6-gingerol of the extracts were analyzed through HPLC. The significance of each term in polynomial regression equations was evaluated on functional compound contents and extraction yield in extraction process. It was verified that the regression equations were accurate with high determination coefficients over 0.892. The optimum ethanol concentration, extraction time, and extraction temperature for extraction yield were determined as 41.38%, 78.16 min, and 70 °C, respectively. The functional compound contents predicted at optimal conditions were as follows: 39.55 mg/g at 70%, 70 min, and 70 °C for 6-gingerol, 2.44 mg/g at 70%, 51.90 min, and 62.29 °C for 6-shogaol.
Collapse
|
20
|
Hong YH, Kim JH, Cho JY. Ranunculus bulumei Methanol Extract Exerts Anti-Inflammatory Activity by Targeting Src/Syk in NF-κB Signaling. Biomolecules 2020; 10:biom10040546. [PMID: 32260181 PMCID: PMC7226355 DOI: 10.3390/biom10040546] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 02/07/2023] Open
Abstract
(1) Background: Ranunculus bulumei is a flowering plant that belongs to the Ranunculus species. Several Ranunculus species, such as R. aquatilis and R. muricatus, have traditionally been used to treat fever and rheumatism throughout Asia, suggesting that plants belonging to the Ranunculus species may have anti-inflammatory effects. To our knowledge, the pharmacological activity of R. bulumei has not been reported. Therefore, in this study, we aim to assess the anti-inflammatory activity of a methanol extract that was derived from R. bulumei (Rb-ME) in macrophage-mediated inflammatory responses and to identify the molecular mechanism that underlies any anti-inflammatory action. (2) Methods: The anti-inflammatory efficacy of Rb-ME was evaluated while using in vitro and in vivo experiments. The RAW264.7 cells and peritoneal macrophages were stimulated by lipopolysaccharide (LPS). In addition, LPS-induced peritonitis and HCl/EtOH-triggered gastritis models were produced. A nitric oxide (NO) assay, real-time PCR, luciferase reporter gene assay, western blot analysis, plasmid overexpression strategy, and in vitro kinase assay were used to determine the molecular mechanisms and target molecules of Rb-ME. The phytochemical active ingredients of Rb-ME were also identified by high performance liquid chromatograph (HPLC). (3) Results: Rb-ME reduced the production of NO and mRNA expression of iNOS, COX-2, IL-1β, and IL-6 without cytotoxicity. The protein secretion of TNF-α and IL-6 was also decreased by Rb-ME. HPLC analysis indicates that quercetin, luteolin, and kaempferol are the main active ingredients in the anti-inflammatory efficacy of Rb-ME. Rb-ME also blocked MyD88-induced NF-κB promoter activity and nuclear translocation of NF-κB subunits (p65 and p50). Moreover, Rb-ME reduced the phosphorylation of IκBα, Akt, p85, Src, and Syk, which are NF-κB upstream signaling molecules in LPS-activated RAW264.7 cells. According to the in vitro kinase assay, Rb-ME directly inhibits Syk kinase activity. The oral administration of Rb-ME alleviated inflammatory responses and the levels of p-IκBα in mice with LPS-induced peritonitis and HCl/EtOH-induced gastritis. (4) Conclusions Rb-ME has anti-inflammatory capacity by suppressing NF-κB signaling and it has been found to target Src and Syk in the NF-κB pathway. Based on this efficacy, Rb-ME could be developed as an anti-inflammatory herbal medicine.
Collapse
|
21
|
Kaneguchi A, Ozawa J, Minamimoto K, Yamaoka K. Nitric oxide synthase inhibitor L-NG-nitroarginine methyl ester (L-NAME) attenuates remobilization-induced joint inflammation. Nitric Oxide 2020; 96:13-19. [PMID: 31926320 DOI: 10.1016/j.niox.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 12/19/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022]
Abstract
Shortly after joint remobilization, inflammation is induced in the joint and aggravates joint contracture via subsequent fibrosis. However, the mechanisms involved in remobilization-induced inflammation are not yet fully understood. We hypothesized that joint immobilization followed by remobilization induces hypoxia/reoxygenation, initiating inflammatory reactions through nitric oxide (NO) production via NO synthase 2 (NOS2). This study aimed to investigate whether: 1) administration of the NOS inhibitor L-NG-nitroarginine methyl ester (l-NAME) can attenuate remobilization-induced joint inflammation; and 2) hypoxia/reoxygenation is induced by joint immobilization and followed by remobilization. Unilateral knee joints of rats were immobilized using external fixators for three weeks. After removal of the fixation device, knees were allowed to move freely for one day (remobilization) with or without l-NAME administration. Without l-NAME administration, inflammatory reactions including joint swelling and inflammatory cell infiltration, edema, and upregulation of inflammatory mediator genes in the joint capsule were detected following upregulation of the NOS2 gene after remobilization. These remobilization-induced inflammatory reactions were partially attenuated by administration of l-NAME. Therefore, NOS2/NO elevation has potential as a novel treatment for remobilization-induced joint inflammation. Gene expression of the hypoxia marker hypoxia inducible factor-1α was upregulated after one day of remobilization, rather than after immobilization. These results suggest that upregulation of NOS2 by remobilization might be not due to hypoxia/reoxygenation.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan.
| | - Kengo Minamimoto
- Major in Medical Engineering and Technology, Graduate School of Medical Technology and Health Welfare Sciences, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
22
|
Pinto-Cardoso R, Pereira-Costa F, Pedro Faria J, Bandarrinha P, Bessa-Andrês C, Correia-de-Sá P, Bernardo Noronha-Matos J. Adenosinergic signalling in chondrogenesis and cartilage homeostasis: Friend or foe? Biochem Pharmacol 2019; 174:113784. [PMID: 31884043 DOI: 10.1016/j.bcp.2019.113784] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Chondrocytes and their mesenchymal cell progenitors secrete a variety of bioactive molecules, including adenine nucleotides and nucleosides, but these molecules are not usually highlighted in review papers about the secretome of these cells. Ageing and inflammatory insults compromise chondrocytes ability to keep ATP/adenosine synthesis, release and turnover. Cartilage homeostasis depends on extracellular adenosine levels, which acting via four P1 purinoceptor subtypes modulates the release of pro-inflammatory mediators, including NO, PGE2 and several cytokines. Native articular cartilage is challenged by synovial fluid flow during normal joint motion transiently increasing ATP release and adenosine formation in the joint microenvironment. Excessive joint motion and shockwave trauma are deleterious to cartilage homeostasis due to HIF-1α overexpression, resulting in disproportionate ecto-5'-nucleotidase/CD73 production, adenosine accumulation and superfluous A2B receptors activation. Scarcity of data however exists on the putative interplay between coexistent high affinity (A2A and A3) and low affinity (A2B) adenosine receptors activation affecting stem cells fate towards preferential chondrogenic or osteogenic lineages in the human cartilage. Hints gathered in this commentary result mainly from studies using human immortalized cell lines and animal (e.g. rodent, equine, bovine) tissue samples. The available data point towards adenosine A2A and A3 receptors having cartilage protective roles, while excessive adenosine accumulation may be detrimental via low affinity A2B receptors activation, with little reference to the putative role of the adenosine forming enzyme ecto-5'-nucleotidase/CD73. Thus, emphasizing the multiple pathways responsible for controlling adenosine signalling in cartilage will certainly impact on the search for novel therapeutic targets for highly disabling articular disorders.
Collapse
Affiliation(s)
- Rui Pinto-Cardoso
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Flávio Pereira-Costa
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - João Pedro Faria
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Patrícia Bandarrinha
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Catarina Bessa-Andrês
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| | - José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia, Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), Departamento de Imuno-Fisiologia e Farmacologia, Instituto de Ciências Biomédicas Abel Salazar - Universidade do Porto (ICBAS-UP), Portugal.
| |
Collapse
|
23
|
Bell RD, Slattery PN, Wu EK, Xing L, Ritchlin CT, Schwarz EM. iNOS dependent and independent phases of lymph node expansion in mice with TNF-induced inflammatory-erosive arthritis. Arthritis Res Ther 2019; 21:240. [PMID: 31727153 PMCID: PMC6854801 DOI: 10.1186/s13075-019-2039-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 10/23/2019] [Indexed: 01/15/2023] Open
Abstract
Introduction A pivotal effect of lymphatic vessel (LV) function in joint homeostasis was identified in the tumor necrosis factor-transgenic (TNF-Tg) mouse model of rheumatoid arthritis (RA). Specifically, loss of LV contractions is associated with progressive synovitis and erosions. Furthermore, draining lymph node expansion is a biomarker of arthritic progression, and both macrophages and lymphatic endothelial cells express inducible nitric oxide synthase (iNOS), which disrupts LV contraction and transport of immune cells to the draining lymph nodes. Therefore, to directly assess these relationships, we tested the hypothesis that TNF-Tg mice with global genetic ablation of iNOS (iNOS−/−) will show delayed draining lymph node expansion, maintained LV contractions, and decreased synovitis and erosions. Method iNOS−/−× TNF-Tg female and male mice, and control littermates (iNOS−/−, TNF-Tg, and WT), were examined with (1) ultrasound to determine popliteal lymph node (PLN) volume and (2) near-infrared imaging (NIR) to assess popliteal LV contraction frequency, and differences between genotypes were assessed at 3, 4, 5, and 6 months of age. Knees and PLN were harvested at 4 months in females and 6 months in males, to assess synovitis, bone erosions, and cellular accumulation in PLN sinuses via histology. Results Initially, an increase in PLN volume was observed for both female and male iNOS−/−× TNF-Tg and TNF-Tg compared to their WT and iNOS−/− counterparts at 2 and 3 months, respectively. Subsequently, TNF-Tg PLNs continue to increase in volume, while iNOS−/−× TNF-Tg did not increase in volume from the initial timepoints. WT and iNOS−/− PLN volume was unchanged throughout the experiment. LV contraction frequency was increased at 4 months in females and 5 months in males, in the iNOS−/−× TNF-Tg mice compared to the TNF-Tg. Synovitis and erosions were moderately reduced in iNOS−/−× TNF-Tg versus TNF-Tg knees in females, while no differences in knee pathology were observed in males. Conclusions Genetic iNOS ablation maintains draining lymph node volume and LV function during TNF-induced inflammatory arthritis and is associated with moderately decreased joint inflammation and damage.
Collapse
Affiliation(s)
- Richard D Bell
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Pamelia N Slattery
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Emily K Wu
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Lianping Xing
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Christopher T Ritchlin
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA.,Division of Allergy, Immunology, Rheumatology, Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Edward M Schwarz
- Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Box 665, Rochester, NY, 14642, USA. .,Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Microbiology & Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA. .,Department of Orthopaedics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA.
| |
Collapse
|
24
|
Wang J, Jin Z, Zhang W, Xie X, Song N, Lv T, Wu D, Cao Y. The preventable efficacy of β-glucan against leptospirosis. PLoS Negl Trop Dis 2019; 13:e0007789. [PMID: 31675378 PMCID: PMC6860453 DOI: 10.1371/journal.pntd.0007789] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/18/2019] [Accepted: 09/17/2019] [Indexed: 12/11/2022] Open
Abstract
Leptospirosis, caused by pathogenic Leptospira species, has emerged as an important neglected zoonotic disease. Few studies have reported the preventable effects of immunoregulators, except for antibiotics, against leptospirosis. Generally, immunostimulatory agents are considered effective for enhancing innate immune responses. Many studies have found that beta-glucan (β-glucan) could be a potent and valuable immunostimulant for improving immune responses and controlling diseases. In this study, we investigated the preventable role of β-glucan against Leptospira infection in hamsters. First, β-glucan was administered 24 h prior to, during and after infection. The results showed that β-glucan increased the survival rate to 100%, alleviated tissue injury, and decreased leptospire loads in target organs. Additionally, we found using quantitative real-time PCR that application of β-glucan significantly enhanced the expression of Toll-like receptor (TLR) 2, interleukin (IL)-1β and iNOS at 2 dpi (days post infection) and reduced the increase of TLR2, IL-1β and iNOS induced by Leptospira at 5 dpi. Furthermore, to induce memory immunity, β-glucan was administered 5 days prior to infection. β-Glucan also significantly increased the survival rates and ameliorated pathological damage to organs. Moreover, we demonstrated that β-glucan-trained macrophages exhibited elevated expression of proinflammatory cytokines (IL-1β and IL-6) in vitro, indicating that β-glucan induces an enhanced inflammatory response against Leptospira infection. These results indicate that administration of β-glucan and other immunostimulants could be potential valuable options for the control of Leptospira infection.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Zhao Jin
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Wenlong Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Xufeng Xie
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Ning Song
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Tianbao Lv
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Dianjun Wu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| | - Yongguo Cao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
- Key Laboratory for Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
25
|
Yeo J, Lee YM, Lee J, Park D, Kim K, Kim J, Park J, Kim WJ. Nitric Oxide-Scavenging Nanogel for Treating Rheumatoid Arthritis. NANO LETTERS 2019; 19:6716-6724. [PMID: 31082252 DOI: 10.1021/acs.nanolett.9b00496] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nitric oxide (NO), a radical gas molecule produced by nitric oxide synthase, plays a key role in the human body. However, when endogenous NO is overproduced by physiological disorders, severe inflammatory diseases such as rheumatoid arthritis (RA) can occur. Therefore, scavenging NO may be an alternative strategy for treating inflammatory disorders. In our previous study, we developed a NO-responsive macrosized hydrogel by incorporating a NO-cleavable cross-linker (NOCCL); here, we further evaluate the effectiveness of the NO-scavenging nanosized hydrogel (NO-Scv gel) for treating RA. NO-Scv gel is simply prepared by solution polymerization between acrylamide and NOCCL. When the NO-Scv gel is exposed to NO, NOCCL is readily cleaved by consuming the NO molecule, as demonstrated in a Griess assay. As expected, the NO-Scv gel reduces inflammation levels by scavenging NO in vitro and shows excellent biocompatibility. Furthermore, the more promising therapeutic effect of the NO-Scv gel in suppressing the onset of RA is observed in vivo in a mouse RA model when compared to the effects of dexamethasone, a commercial drug. Therefore, our findings suggest the potential of the NO-Scv gel for biomedical applications and further clinical translation.
Collapse
Affiliation(s)
- Jiwon Yeo
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Yeong Mi Lee
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Junseok Lee
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Dongsik Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Kunho Kim
- School of Interdisciplinary Bioscience and Bioengineering , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
| | - Jihoon Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Junghong Park
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
| | - Won Jong Kim
- Department of Chemistry , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro , Nam-gu, Pohang , 37673 , Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering , Pohang University of Science and Technology (POSTECH) , Jigok-ro 64 , Nam-gu, Pohang 37666 , Republic of Korea
| |
Collapse
|
26
|
Spiller F, Oliveira Formiga R, Fernandes da Silva Coimbra J, Alves-Filho JC, Cunha TM, Cunha FQ. Targeting nitric oxide as a key modulator of sepsis, arthritis and pain. Nitric Oxide 2019; 89:32-40. [PMID: 31051258 DOI: 10.1016/j.niox.2019.04.011] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 03/22/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]
Abstract
Nitric oxide (NO) is produced by enzymatic activity of neuronal (nNOS), endothelial (eNOS), and inducible nitric oxide synthase (iNOS) and modulates a broad spectrum of physiological and pathophysiological conditions. The iNOS isoform is positively regulated at transcriptional level and produces high levels of NO in response to inflammatory mediators and/or to pattern recognition receptor signaling, such as Toll-like receptors. In this review, we compiled the main contributions of our group for understanding of the role of NO in sepsis and arthritis outcome and the peripheral contributions of NO to inflammatory pain development. Although neutrophil iNOS-derived NO is necessary for bacterial killing, systemic production of high levels of NO impairs neutrophil migration to infections through inhibiting neutrophil adhesion on microcirculation and their locomotion. Moreover, neutrophil-derived NO contributes to multiple organ dysfunction in sepsis. In arthritis, NO is chief for bacterial clearance in staphylococcal-induced arthritis; however, it contributes to articular damage and bone mass degradation. NO produced in inflammatory sites also downmodulates pain. The mechanism involved in analgesic effect and inhibition of neutrophil migration is dependent on the activation of the classical sGC/cGMP/PKG pathway. Despite the increasing number of studies performed after the identification of NO as an endothelium-derived relaxing factor, the underlying mechanisms of NO in inflammatory diseases remain unclear.
Collapse
Affiliation(s)
- Fernando Spiller
- Department of Pharmacology, Federal University of Santa Catarina (UFSC), Florianopolis, Brazil.
| | | | | | | | - Thiago Mattar Cunha
- Department of Pharmacology, Ribeiro Preto Medical School, University of Sao Paulo, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, Ribeiro Preto Medical School, University of Sao Paulo, Brazil.
| |
Collapse
|
27
|
Lee YG, Lee H, Ryuk JA, Hwang JT, Kim HG, Lee DS, Kim YJ, Yang DC, Ko BS, Baek NI. 6-Methoxyflavonols from the aerial parts of Tetragonia tetragonoides (Pall.) Kuntze and their anti-inflammatory activity. Bioorg Chem 2019; 88:102922. [PMID: 31003077 DOI: 10.1016/j.bioorg.2019.102922] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/09/2019] [Accepted: 04/09/2019] [Indexed: 12/12/2022]
Abstract
Dried aerial parts of Tetragonia tetragonoides were extracted with 70% EtOH, and the evaporated residue was successively separated into EtOAc, n-BuOH, and H2O fractions. As a result of repeated SiO2, ODS, and Sephadex LH-20 column chromatography, four new 6-methoxyflavonol glycosides (2-4, 8) along with four known ones (1, 5-7) were isolated. Several spectroscopic data led to determination of chemical structures for four new 6-methoxyflavonol glycosides (2-4, 8) and four known ones, 6-methoxykaempferol 3-O-β-d-glucopyranosyl-(1 → 2)-β-d-glucopyranosyl-7-O-(6‴'-(E)-caffeoyl)-β-d-glucopyranoside (1), 6-methoxyquercetin (5), 6-methoxykaempferol (6), and 6-methoxykaempferol 7-O-β-d-glucopyranoside (7). Methoxyflavonol glycosides 2-8 also have never been reported from T. tetragonoides in this study. 6-Methoxyflavonols 5 and 6 showed high radical scavenging potential in DPPH and ABTS test. Also, all compounds showed significant anti-inflammatory activities such as reduction of NO and PGE2 formation and suppression of TNF-α, IL-6, IL-1β, iNOS, and COX-2 expression in LPS-stimulated RAW 264.7 macrophages. In general, the aglycones exhibited higher activity than the glycosides. In addition, quantitative analysis of 6-methoxyflavonols in the T. tetragonoides aerial parts extract was conducted through HPLC.
Collapse
Affiliation(s)
- Yeong-Geun Lee
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Hwan Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin Ah Ryuk
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Joo Tae Hwang
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Hyoung-Geun Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea.
| | - Yeon-Ju Kim
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Deok-Chun Yang
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| | - Byoung Seob Ko
- Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Nam-In Baek
- Graduate School of Biotechnology and Department of Oriental Medicinal Biotechnology, Kyung Hee University, Yongin 17104, Republic of Korea.
| |
Collapse
|
28
|
Hwang KA, Hwang YJ, Kim HS, Hwang HJ, Song J, Kim YJ. Anti-inflammatory effect of aerial bulblets of Dioscorea japonica Thunb extract through inhibition of NF-κB and MAPK signalling pathway in RAW 264.7. J Chin Med Assoc 2019; 82:251-255. [PMID: 30946705 DOI: 10.1097/jcma.0000000000000051] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Yam (Dioscorea japonica Thunb) is a well-known health food in Korea and is widely distributed in the temperate and tropical regions. Although various medical effects of yam have been demonstrated, there is little current knowledge on the efficacy of Youngyeoja (YYJ; the aerial bulblets of the yam plant), their physiological effects, and their mechanism of action. METHODS To investigate the anti-inflammatory effects of YYJ, we examined the level of inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells treated with YYJ extract. Nitric oxide (NO) and prostaglandin E2 (PGE2) levels were determined using enzyme-linked immunosorbent assays. Expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) were evaluated using real-time polymerase chain reaction and western blotting. In addition, activation of nuclear factor-kappaB (NF-κB) and mitogen-activated protein kinase (MAPK) was detected using western blotting. RESULTS Treatment of macrophages with LPS markedly induced the production of NO and PGE2. YYJ treatment inhibited the induction of inflammatory mediators and the expression of iNOS and COX-2. More importantly, LPS-induced phosphorylation of nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor (IκB) was suppressed by treatment with YYJ, suggesting YYJ inhibited NF-κB activation. Furthermore, YYJ inhibited the LPS-induced phosphorylation of MAPKs. CONCLUSION YYJ was shown to have a potent anti-inflammatory effect in LPS-stimulated RAW 264.7 cells, which may be attributed to its inhibitory effect on NF-κB and MAPK activation, consequently blocking the production of inflammatory factors. Therefore, these results suggest that the YYJ extracts could be used as anti-inflammatory agents.
Collapse
Affiliation(s)
- Kyung-A Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, Korea
| | - Yu-Jin Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, Korea
| | - Hoi Seok Kim
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, Korea
| | - Hye Jeong Hwang
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, Korea
| | - Jin Song
- Department of Agrofood Resources, National Institute of Agricultural Sciences, RDA, Wanju-gun, Jeollabuk-do, Korea
| | - Young Jun Kim
- Department of Food and Biotechnology, Korea University, Sejong, Korea
| |
Collapse
|
29
|
Mateen S, Rehman MT, Shahzad S, Naeem SS, Faizy AF, Khan AQ, Khan MS, Husain FM, Moin S. Anti-oxidant and anti-inflammatory effects of cinnamaldehyde and eugenol on mononuclear cells of rheumatoid arthritis patients. Eur J Pharmacol 2019; 852:14-24. [PMID: 30796902 DOI: 10.1016/j.ejphar.2019.02.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/16/2019] [Accepted: 02/20/2019] [Indexed: 11/26/2022]
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder affecting joints and frequently characterized by initial local and later systemic inflammation. The present study was conducted with the aim to determine the anti-inflammatory and antioxidant effects of cinnamaldehyde and eugenol in the peripheral blood mononuclear cells (PBMC) of RA patients. PBMCs obtained from RA patients were treated with varying concentrations of cinnamaldehyde and eugenol. The levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) were monitored in the 24-h culture supernatant of PBMCs. Reactive oxygen species formation, biomolecular oxidation and the activities of antioxidant enzymes were also determined. FTIR analysis was done to determine structural alterations in the PBMCs. Molecular docking was performed to gain an insight into the binding mechanism of eugenol and cinnamaldehyde with pro-inflammatory cytokines. The levels of pro-inflammatory cytokines and markers of oxidative stress were found to be elevated in the PBMC culture of RA patients as compared to the healthy controls. Cinnamaldehyde and eugenol have significantly reduced the levels of cytokines. Reactive oxygen species formation, biomolecular oxidation and antioxidant defense response were also ameliorated by treating PBMCs with both the compounds. FTIR results further confirms cinnamaldehyde and eugenol mediated protection to biomolecules of PBMCs of RA patients. Molecular docking results indicates interaction of cinnamaldehyde and eugenol with key residues of TNF-α and IL-6. Cinnamaldehyde and eugenol were found to exert potent anti-inflammatory and anti-oxidant effects on the PBMC culture of RA patients. So, these compounds may be used as an adjunct in the management of RA.
Collapse
Affiliation(s)
- Somaiya Mateen
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Sumayya Shahzad
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Syed Shariq Naeem
- Department of Pharmacology, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abul Faiz Faizy
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Abdul Qayyum Khan
- Department of Orthopaedic Surgery, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Mohd Shahnawaz Khan
- Protein Research Chair, Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Fohad Mabood Husain
- Department of Food Science and Nutrition, College of Food and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Shagufta Moin
- Department of Biochemistry, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
30
|
Li R, Hong P, Zheng X. β-carotene attenuates lipopolysaccharide-induced inflammation via inhibition of the NF-κB, JAK2/STAT3 and JNK/p38 MAPK signaling pathways in macrophages. Anim Sci J 2018; 90:140-148. [DOI: 10.1111/asj.13108] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 08/02/2018] [Accepted: 08/19/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Ruonan Li
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| | - Pan Hong
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| | - Xin Zheng
- College of Animal Science and Technology; Jilin Agricultural University; Changchun China
| |
Collapse
|
31
|
Leonidou A, Lepetsos P, Mintzas M, Kenanidis E, Macheras G, Tzetis M, Potoupnis M, Tsiridis E. Inducible nitric oxide synthase as a target for osteoarthritis treatment. Expert Opin Ther Targets 2018; 22:299-318. [PMID: 29504411 DOI: 10.1080/14728222.2018.1448062] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Inducible nitric oxide synthase (iNOS) is the enzyme responsible for the production of nitric oxide (NO), a major proinflammatory and destructive mediator in osteoarthritis (OA). Areas covered: This is a comprehensive review of the recent literature on the involvement of iNOS in osteoarthritis and its potential to be used as a target for OA treatment. Evidence from in vitro, in vivo and human studies was systematically collected using medical search engines. Preclinical studies have focused on the effect of direct and indirect iNOS inhibitors in both animal and human tissues. Apart from direct inhibitors, common pharmacological agents, herbal and dietary medicines as well as hyperbaric oxygen, low level laser and low intensity pulsed ultrasound have been shown to exhibit a chondroprotective effect by inhibiting the expression of iNOS. Expert opinion: Data support the further investigation of iNOS inhibitors for the treatment of OA in human studies and clinical trials. Indirect iNOS inhibitors such as interleukin 1 inhibitors also need to be studied in greater detail. Finally, human studies need to be conducted on the herbal and dietary medicines and on the non-invasive, non-pharmacological treatments.
Collapse
Affiliation(s)
- Andreas Leonidou
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Panagiotis Lepetsos
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Michalis Mintzas
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - Eustathios Kenanidis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece
| | - George Macheras
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Maria Tzetis
- b Department of Medical Genetics , National and Kapodistrian University of Athens, Medical School , Athens , Greece
| | - Michael Potoupnis
- c 4th Department of Trauma and Orthopaedics , KAT Hospital , Athens , Greece
| | - Eleftherios Tsiridis
- a Academic Department of Orthopaedics and Trauma, Division of Surgery , Aristotle University Medical School , Thessaloniki , Greece.,d Department of Surgery and Cancer, Division of Surgery , Imperial College London , London , UK
| |
Collapse
|
32
|
Farahmand L, Darvishi B, Majidzadeh-A K. Suppression of chronic inflammation with engineered nanomaterials delivering nuclear factor κB transcription factor decoy oligodeoxynucleotides. Drug Deliv 2017; 24:1249-1261. [PMID: 28870118 PMCID: PMC8240980 DOI: 10.1080/10717544.2017.1370511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
As a prototypical pro-inflammatory transcription factor, constitutive activation of NF-κB signaling pathway has been reported in several chronic inflammatory disorders including inflammatory bowel disease, cystic fibrosis, rheumatoid arthritis and cancer. Application of decoy oligodeoxynucleotides (ODNs) against NF-κB, as an effective molecular therapy approach, has brought about several promising outcomes in treatment of chronic inflammatory disorders. However, systematic administration of these genetic constructs is mostly hampered due to their instability, rapid degradation by nucleases and poor cellular uptake. Both chemical modification and application of delivery systems have shown to effectively overcome some of these limitations. Among different administered delivery systems, nanomaterials have gained much attention for delivering NF-κB decoy ODNs owing to their high loading capacity, targeted delivery and ease of synthesis. In this review, we highlight some of the most recently developed nanomaterial-based delivery systems for overcoming limitations associated with clinical application of these genetic constructs.
Collapse
Affiliation(s)
- Leila Farahmand
- a Recombinant Proteins Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Behrad Darvishi
- a Recombinant Proteins Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Keivan Majidzadeh-A
- b Genetics Department , Motamed Breast Cancer Research Center, ACECR , Tehran , Iran.,c Tasnim Biotechnology Research Center, Faculty of Medicine , AJA University of Medical Sciences , Tehran , Iran
| |
Collapse
|
33
|
Jakubowska MA, Ferdek PE, Gerasimenko OV, Gerasimenko JV, Petersen OH. Nitric oxide signals are interlinked with calcium signals in normal pancreatic stellate cells upon oxidative stress and inflammation. Open Biol 2017; 6:rsob.160149. [PMID: 27488376 PMCID: PMC5008014 DOI: 10.1098/rsob.160149] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 07/05/2016] [Indexed: 12/19/2022] Open
Abstract
The mammalian diffuse stellate cell system comprises retinoid-storing cells capable of remarkable transformations from a quiescent to an activated myofibroblast-like phenotype. Activated pancreatic stellate cells (PSCs) attract attention owing to the pivotal role they play in development of tissue fibrosis in chronic pancreatitis and pancreatic cancer. However, little is known about the actual role of PSCs in the normal pancreas. These enigmatic cells have recently been shown to respond to physiological stimuli in a manner that is markedly different from their neighbouring pancreatic acinar cells (PACs). Here, we demonstrate the capacity of PSCs to generate nitric oxide (NO), a free radical messenger mediating, for example, inflammation and vasodilatation. We show that production of cytosolic NO in PSCs is unambiguously related to cytosolic Ca2+ signals. Only stimuli that evoke Ca2+ signals in the PSCs elicit consequent NO generation. We provide fresh evidence for the striking difference between signalling pathways in PSCs and adjacent PACs, because PSCs, in contrast to PACs, generate substantial Ca2+-mediated and NOS-dependent NO signals. We also show that inhibition of NO generation protects both PSCs and PACs from necrosis. Our results highlight the interplay between Ca2+ and NO signalling pathways in cell–cell communication, and also identify a potential therapeutic target for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Monika A Jakubowska
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Pawel E Ferdek
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Oleg V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Julia V Gerasimenko
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - Ole H Petersen
- Medical Research Council Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK Systems Immunity Research Institute, Cardiff University, Cardiff CF14 4XN, Wales, UK
| |
Collapse
|
34
|
MCL Plays an Anti-Inflammatory Role in Mycobacterium tuberculosis-Induced Immune Response by Inhibiting NF- κB and NLRP3 Inflammasome Activation. Mediators Inflamm 2017. [PMID: 28642632 PMCID: PMC5470027 DOI: 10.1155/2017/2432904] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mycobacterium tuberculosis (Mtb) remains a significant menace to global health as it induces granulomatous lung lesions and systemic inflammatory responses during active tuberculosis (TB). Micheliolide (MCL), a sesquiterpene lactone, was recently reported to have a function of relieving LPS-induced inflammatory response, but the regulative role of MCL on the immunopathology of TB still remains unknown. In this experiment, we examined the inhibitory effect of MCL on Mtb-induced inflammatory response in mouse macrophage-like cell line Raw264.7 by downregulating the activation of nuclear factor kappa B (NF-κB) and NLRP3 inflammasome. Evidences showed that MCL decreased the secretion of Mtb-induced inflammatory cytokines (IL-1β and TNF-α) in a dose-dependent manner. Meanwhile, MCL dramatically suppressed Mtb-induced activation of iNOS and COX2 as well as subsequent production of NO. Furthermore, MCL inhibited Mtb-induced phosphorylation of Akt (Ser 473) in Raw264.7. According to our results, MCL plays an important role in modulating Mtb-induced inflammatory response through PI3K/Akt/NF-κB pathway and subsequently downregulating the activation of NLRP3 inflammasome. Therefore, MCL may represent as a potential drug candidate in the adjuvant treatment of TB by regulating host immune response.
Collapse
|
35
|
Pentosan polysulfate inhibits IL-1β-induced iNOS, c-Jun and HIF-1α upregulation in canine articular chondrocytes. PLoS One 2017; 12:e0177144. [PMID: 28472120 PMCID: PMC5417682 DOI: 10.1371/journal.pone.0177144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/21/2017] [Indexed: 01/01/2023] Open
Abstract
Osteoarthritic (OA) chondrocytes are shown to express inducible nitric oxide synthase (iNOS) which produces high concentrations of nitric oxide (NO), particularly when stimulated with proinflammatory cytokines. NO is involved in OA cartilage degradation. On the other hand, c-Jun N-terminal Kinase (JNK) pathway mediates the activation and transcription of c-Jun, which is required for interleukin-1 (IL-1)-induction of matrix metalloproteinases-13 (MMP-13) in OA pathogenesis. Therefore, the selective inhibition of iNOS and c-Jun is a promising target for treatment and prevention of OA. The purpose of the study was to investigate the inhibitory effects of pentosan polysulfate (PPS) on IL-1β-induced iNOS, c-Jun and HIF-α isoforms upregulation in canine articular chondrocytes (CACs). Primary (P0) chondrocytes were isolated and cultured from femoral head cartilages of three (3) dogs. First passage (P1) chondrocytes were preincubated with 0, 1, 5, 15 and 40 μg/mL of PPS for 4 hr before treatment with 10 ng/mL rhIL-1β for a further 8 hr. In addition, we evaluated the effects of single and multiple cytokine with or without LPS on iNOS protein induction. PPS significantly inhibited (P < 0.05) IL-1β-induced iNOS, c-Jun and HIF-1α mRNA upregulation in a dose-dependent pattern. iNOS mRNA was significantly inhibited at 15 and 40 μg/mL whereas c-Jun and HIF-1α were significantly downregulated at 5, 15 and 40 μg/mL of PPS compared to chondrocytes treated with only rhIL-1β. Intriguingly, CACs were recalcitrant to single IL-1β, TNF-α or LPS-induction of iNOS protein including to a combination of IL-1β+TNF-α, IL-1β+LPS except to TNF-α+LPS and IL-1β+TNF-α+LPS suggestive of a protective mechanism from iNOS detrimental effects on perpetuating OA. IL-1β+TNF-α+LPS-induced iNOS protein expression was significantly abrogated by PPS. We demonstrate for the first time that PPS is a novel inhibitor of IL-1β-induced iNOS, c-Jun, and HIF-1α mRNA upregulation and iNOS protein induction which may be beneficial for prevention and treatment OA.
Collapse
|
36
|
Liu Q, Jo YH, Kim SB, Jin Q, Hwang BY, Lee MK. Sesquiterpenes from the roots of Lindera strychnifolia with inhibitory effects on nitric oxide production in RAW 264.7 cells. Bioorg Med Chem Lett 2016; 26:4950-4954. [PMID: 27634197 DOI: 10.1016/j.bmcl.2016.09.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/18/2016] [Accepted: 09/05/2016] [Indexed: 12/14/2022]
Abstract
Seven new sesquiterpenes, linderolides N-T (1-7), along with nine known compounds, were isolated from roots of Lindera strychnifolia (Lauraceae). Their structures were established by extensive spectroscopic analysis. The relative and absolute configurations were determined by NOESY and CD analysis, respectively. Among the isolated compounds, two new compounds, linderolide O (2) and linderolide P (3) inhibited lipopolysaccharide-stimulated nitric oxide production in murine RAW 264.7 macrophage cells, with IC50 values of 6.3 and 9.6μM, respectively.
Collapse
Affiliation(s)
- Qing Liu
- College of Pharmacy, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Yang Hee Jo
- College of Pharmacy, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Seon Beom Kim
- College of Pharmacy, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Qinghao Jin
- College of Pharmacy, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Bang Yeon Hwang
- College of Pharmacy, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Chungdae-ro, Seowon-gu, Cheongju 28644, Republic of Korea.
| |
Collapse
|
37
|
Kang BM, An BK, Jung WS, Jung HK, Cho JH, Cho HW, Jang SJ, Yun YB, Kuk YI. Anti-inflammatory effect of tricin isolated from Alopecurus aequalis Sobol. on the LPS-induced inflammatory response in RAW 264.7 cells. Int J Mol Med 2016; 38:1614-1620. [PMID: 28025993 DOI: 10.3892/ijmm.2016.2765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 09/23/2016] [Indexed: 11/06/2022] Open
Abstract
The aim of this study was to identify major anti-inflammatory compounds in Alopecurus aequalis Sobol. (A. aequalis). The ethanol extract and the hexane-, dichloromethane-, ethyl acetate- and n-butanol-soluble fractions derived from A. aequalis were evaluated in order to determine their inhibitory effects on nitric oxide (NO) production in RAW 264.7 cells stimulated with lipopolysaccharide (LPS). The ethanol extract decreased NO production in a dose-dependent manner without any evidence of cytotoxicity at a concentration range of 0-200 µg/ml. The ethyl acetate soluble fraction was the most potent among the four soluble fractions. A compound was isolated by reversed-phase high-performance liquid chromatography from the ethyl acetate soluble fraction and this was identified to be tricin. Tricin inhibited the LPS-induced NO production in a dose-dependent manner without any evidence of cytotoxity at a concentration range of 1-100 µg/ml. Tricin also inhibited the LPS-induced production of prostaglandin E2. Western blot analysis indicated that tricin decreased the LPS-induced increase in the protein levels of inducible NO synthase and cyclooxygenase. In addition, tricin suppressed the production of intracellular reactive oxygen species in the LPS-stimulated RAW 264.7 cells, as measured by flow cytometry. Taken together, our results clearly indicate that tricin is a major functional anti-inflammatory compound which can be isolated from A. aequalis extracts.
Collapse
Affiliation(s)
- Byoung-Man Kang
- Division of Traditional Korean Medicine Resource, National Development Institute of Korean Medicine, Jangheung 59338, Republic of Korea
| | - Byoung-Kwan An
- Division of Traditional Korean Medicine Resource, National Development Institute of Korean Medicine, Jangheung 59338, Republic of Korea
| | - Won-Seok Jung
- Division of Traditional Korean Medicine Resource, National Development Institute of Korean Medicine, Jangheung 59338, Republic of Korea
| | - Ho-Kyung Jung
- Division of Traditional Korean Medicine Resource, National Development Institute of Korean Medicine, Jangheung 59338, Republic of Korea
| | - Jung-Hee Cho
- Division of Traditional Korean Medicine Resource, National Development Institute of Korean Medicine, Jangheung 59338, Republic of Korea
| | - Hyun-Woo Cho
- Division of Traditional Korean Medicine Resource, National Development Institute of Korean Medicine, Jangheung 59338, Republic of Korea
| | - Se Ji Jang
- Department of Development in Oriental Medicine Resources, College of Life Science and Natural Resources, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Young Beom Yun
- Department of Development in Oriental Medicine Resources, College of Life Science and Natural Resources, Sunchon National University, Sunchon 57922, Republic of Korea
| | - Yong In Kuk
- Department of Development in Oriental Medicine Resources, College of Life Science and Natural Resources, Sunchon National University, Sunchon 57922, Republic of Korea
| |
Collapse
|
38
|
Kim KS, Lee DS, Kim DC, Yoon CS, Ko W, Oh H, Kim YC. Anti-Inflammatory Effects and Mechanisms of Action of Coussaric and Betulinic Acids Isolated from Diospyros kaki in Lipopolysaccharide-Stimulated RAW 264.7 Macrophages. Molecules 2016; 21:molecules21091206. [PMID: 27618005 PMCID: PMC6272871 DOI: 10.3390/molecules21091206] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/06/2016] [Accepted: 09/07/2016] [Indexed: 12/30/2022] Open
Abstract
Diospyros kaki Thunb. is widely distributed in East Asian countries, its leaves being mainly used for making tea. In this study, coussaric acid (CA) and betulinic acid (BA), both triterpenoid compounds, were obtained from D. kaki leaf extracts through bioassay-guided isolation. CA and BA showed anti-inflammatory effects via inhibition of the nuclear factor-κB (NF-κB) pathway, providing important information on their anti-inflammatory mechanism. Furthermore, they markedly inhibited nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages, and suppressed tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β) levels. Furthermore, they decreased protein expression of inducible nitric oxide synthase and cyclooxygenase-2. Pre-treatment with CA and BA inhibited LPS-induced NF-κB. We further examined the effects of CA and BA on heme oxygenase (HO)-1 expression in RAW 264.7 macrophages: BA induced HO-1 protein expression in a dose-dependent manner, while CA had no effect. We also investigated whether BA treatment induced nuclear translocation of Nrf2. BA inhibited LPS-induced NF-κB-binding activity, as well as pro-inflammatory mediator and cytokine production (e.g., NO, PGE2, TNF-α, IL-1β, IL-6), by partial reversal of this effect by SnPP, an inhibitor of HO-1. These findings further elucidate the anti-inflammatory mechanism of CA and BA isolated from D. kaki.
Collapse
Affiliation(s)
- Kyoung-Su Kim
- Research Institute of Pharmaceutical Sciences, Keimyung University, 1095 Dalgubeol-Daero, Daegu 42601, Korea.
| | - Dong-Sung Lee
- College of Pharmacy, Chosun University, Dong-Gu, Gwangju 61452, Korea.
| | - Dong-Cheol Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Chi-Su Yoon
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Wonmin Ko
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Hyuncheol Oh
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| | - Youn-Chul Kim
- Institute of Pharmaceutical Research and Development, College of Pharmacy, Wonkwang University, Iksan 54538, Korea.
| |
Collapse
|
39
|
Robinson WH, Lepus CM, Wang Q, Raghu H, Mao R, Lindstrom TM, Sokolove J. Low-grade inflammation as a key mediator of the pathogenesis of osteoarthritis. Nat Rev Rheumatol 2016; 12:580-92. [PMID: 27539668 DOI: 10.1038/nrrheum.2016.136] [Citation(s) in RCA: 988] [Impact Index Per Article: 109.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Osteoarthritis (OA) has long been viewed as a degenerative disease of cartilage, but accumulating evidence indicates that inflammation has a critical role in its pathogenesis. Furthermore, we now appreciate that OA pathogenesis involves not only breakdown of cartilage, but also remodelling of the underlying bone, formation of ectopic bone, hypertrophy of the joint capsule, and inflammation of the synovial lining. That is, OA is a disorder of the joint as a whole, with inflammation driving many pathologic changes. The inflammation in OA is distinct from that in rheumatoid arthritis and other autoimmune diseases: it is chronic, comparatively low-grade, and mediated primarily by the innate immune system. Current treatments for OA only control the symptoms, and none has been FDA-approved for the prevention or slowing of disease progression. However, increasing insight into the inflammatory underpinnings of OA holds promise for the development of new, disease-modifying therapies. Indeed, several anti-inflammatory therapies have shown promise in animal models of OA. Further work is needed to identify effective inhibitors of the low-grade inflammation in OA, and to determine whether therapies that target this inflammation can prevent or slow the development and progression of the disease.
Collapse
Affiliation(s)
- William H Robinson
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Christin M Lepus
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Qian Wang
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Harini Raghu
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Rong Mao
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Tamsin M Lindstrom
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| | - Jeremy Sokolove
- Geriatric Research Education and Clinical Centers, Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, California 94304, USA.,Division of Immunology and Rheumatology, Stanford University School of Medicine, Center for Clinical Sciences Research (CCSR) 4135, 269 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
40
|
Choi EY, Lee SS, Hyeon JY, Choe SH, Keum BR, Lim JM, Park DC, Choi IS, Cho KK. Effects of β-Glucan on the Release of Nitric Oxide by Macrophages Stimulated with Lipopolysaccharide. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:1664-1674. [PMID: 27488844 PMCID: PMC5088388 DOI: 10.5713/ajas.16.0418] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/20/2016] [Accepted: 07/19/2016] [Indexed: 01/14/2023]
Abstract
This research analyzed the effect of β-glucan that is expected to alleviate the production of the inflammatory mediator in macrophagocytes, which are processed by the lipopolysaccharide (LPS) of Escherichia. The incubated layer was used for a nitric oxide (NO) analysis. The DNA-binding activation of the small unit of nuclear factor-κB was measured using the enzyme-linked immunosorbent assay-based kit. In the RAW264.7 cells that were vitalized by Escherichia coli (E. coli) LPS, the β-glucan inhibited both the combatant and rendering phases of the inducible NO synthase (iNOS)-derived NO. β-Glucan increased the expression of the heme oxygenase-1 (HO-1) in the cells that were stimulated by E. coli LPS, and the HO-1 activation was inhibited by the tin protoporphyrin IX (SnPP). This shows that the NO production induced by LPS is related to the inhibition effect of β-glucan. The phosphorylation of c-Jun N-terminal kinases (JNK) and the p38 induced by the LPS were not influenced by the β-glucan, and the inhibitory κB-α (IκB-α) decomposition was not influenced either. Instead, β-glucan remarkably inhibited the phosphorylation of the signal transducer and activator of transcription-1 (STAT1) that was induced by the E. coli LPS. Overall, the β-glucan inhibited the production of NO in macrophagocytes that was vitalized by the E .coli LPS through the HO-1 induction and the STAT1 pathways inhibition in this research. As the host immune response control by β-glucan weakens the progress of the inflammatory disease, β-glucan can be used as an effective immunomodulator.
Collapse
Affiliation(s)
- E Y Choi
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - S S Lee
- Division of Applied Life Science, Graduate School of Gyeongsang National University, IALS, Jinju 660-701, Korea
| | - J Y Hyeon
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - S H Choe
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - B R Keum
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - J M Lim
- Glucan Corporation, Gijang-gun, Busan 46048, Korea
| | - D C Park
- Glucan Corporation, Gijang-gun, Busan 46048, Korea
| | - I S Choi
- Department of Life Science, Silla University, Busan 617-736, Korea
| | - K K Cho
- Department of Animal Resources Technology, Gyeongnam National University of Science and Technology, Jinju 52725, Korea
| |
Collapse
|
41
|
Xu J, Qi Y, Xu WH, Liu Y, Qiu L, Wang KQ, Hu HG, He ZG, Zhang JP. Matrine derivate MASM suppresses LPS-induced phenotypic and functional maturation of murine bone marrow-derived dendritic cells. Int Immunopharmacol 2016; 36:59-66. [DOI: 10.1016/j.intimp.2016.04.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/29/2016] [Accepted: 04/14/2016] [Indexed: 02/08/2023]
|
42
|
Mula RVR, Machiah D, Holland L, Wang X, Parihar H, Sharma AC, Selvaraj P, Shashidharamurthy R. Immune Complex-Induced, Nitric Oxide-Mediated Vascular Endothelial Cell Death by Phagocytes Is Prevented with Decoy FcγReceptors. PLoS One 2016; 11:e0153620. [PMID: 27101012 PMCID: PMC4839578 DOI: 10.1371/journal.pone.0153620] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/31/2016] [Indexed: 01/05/2023] Open
Abstract
Autoimmune vasculitis is an endothelial inflammatory disease that results from the deposition of immune-complexes (ICs) in blood vessels. The interaction between Fcgamma receptors (FcγRs) expressed on inflammatory cells with ICs is known to cause blood vessel damage. Hence, blocking the interaction of ICs and inflammatory cells is essential to prevent the IC-mediated blood vessel damage. Thus we tested if uncoupling the interaction of FcγRs and ICs prevents endothelium damage. Herein, we demonstrate that dimeric FcγR-Igs prevented nitric oxide (NO) mediated apoptosis of human umbilical vein endothelial cells (HUVECs) in an in vitro vasculitis model. Dimeric FcγR-Igs significantly inhibited the IC-induced upregulation of inducible nitric oxide synthase (iNOS) and nitric oxide (NO) release by murine monocytic cell line. However, FcγR-Igs did not affect the exogenously added NO-induced upregulation of pro-apoptotic genes such as Bax (15 fold), Bak (35 fold), cytochrome-C (11 fold) and caspase-3 (30 fold) in HUVECs. In conclusion, these data suggest that IC-induced NO could be one of the major inflammatory mediator promoting blood vessel inflammation and endothelial cell death during IC-mediated vasculitis which can be effectively blocked by dimeric decoy FcγRs.
Collapse
Affiliation(s)
- Ramanjaneya V. R. Mula
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Deepa Machiah
- Department of Molecular Pathology Laboratory, Yerkes National Primate Research Centre, Atlanta, Georgia, United States of America
| | - Lauren Holland
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Xinyu Wang
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Harish Parihar
- Department of Pharmacy Practice, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Avadhesh C. Sharma
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
| | - Periasamy Selvaraj
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, Georgia, United States of America
| | - Rangaiah Shashidharamurthy
- Department of Pharmaceutical Sciences, Philadelphia College of Osteopathic Medicine - School of Pharmacy, Suwanee, Georgia, United States of America
- * E-mail:
| |
Collapse
|
43
|
Lepetsos P, Papavassiliou AG. ROS/oxidative stress signaling in osteoarthritis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1862:576-591. [PMID: 26769361 DOI: 10.1016/j.bbadis.2016.01.003] [Citation(s) in RCA: 534] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 12/07/2015] [Accepted: 01/04/2016] [Indexed: 12/11/2022]
Abstract
Osteoarthritis is the most common joint disorder with increasing prevalence due to aging of the population. Its multi-factorial etiology includes oxidative stress and the overproduction of reactive oxygen species, which regulate intracellular signaling processes, chondrocyte senescence and apoptosis, extracellular matrix synthesis and degradation along with synovial inflammation and dysfunction of the subchondral bone. As disease-modifying drugs for osteoarthritis are rare, targeting the complex oxidative stress signaling pathways would offer a valuable perspective for exploration of potential therapeutic strategies in the treatment of this devastating disease.
Collapse
Affiliation(s)
- Panagiotis Lepetsos
- Fourth Department of Trauma and Orthopaedics, Medical School, National and Kapodistrian University of Athens, 'KAT' Hospital, 14561, Kifissia, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
44
|
Liang Q, Ju Y, Chen Y, Wang W, Li J, Zhang L, Xu H, Wood RW, Schwarz EM, Boyce BF, Wang Y, Xing L. Lymphatic endothelial cells efferent to inflamed joints produce iNOS and inhibit lymphatic vessel contraction and drainage in TNF-induced arthritis in mice. Arthritis Res Ther 2016; 18:62. [PMID: 26970913 PMCID: PMC4789262 DOI: 10.1186/s13075-016-0963-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 02/26/2016] [Indexed: 12/11/2022] Open
Abstract
Background In this study, we sought to determine the cellular source of inducible nitric oxide synthase (iNOS) induced in lymphatic endothelial cells (LECs) in response to tumor necrosis factor (TNF), the effects of iNOS on lymphatic smooth muscle cell (LSMC) function and on the development of arthritis in TNF-transgenic (TNF-Tg) mice, and whether iNOS inhibitors improve lymphatic function and reduce joint destruction in inflammatory erosive arthritis. Methods We used quantitative polymerase chain reactions, immunohistochemistry, histology, and near-infrared imaging to examine (1) iNOS expression in podoplanin + LECs and lymphatic vessels from wild-type (WT) and TNF-Tg mice, (2) iNOS induction by TNF in WT LECs, (3) the effects of iNOS inhibitors on expression of functional muscle genes in LSMCs, and (4) the effects of iNOS inhibitors on lymphatic vessel contraction and drainage, as well as the severity of arthritis, in TNF-Tg mice. Results LECs from TNF-Tg mice had eight fold higher iNOS messenger RNA levels than WT cells, and iNOS expression was confirmed immunohistochemically in podoplanin + LECs in lymphatic vessels from inflamed joints. TNF (0.1 ng/ml) increased iNOS levels 40-fold in LECs. LSMCs cocultured with LECs pretreated with TNF had reduced expression of functional muscle genes. This reduction was prevented by ferulic acid, which blocked nitric oxide production. Local injection of L-N6-(1-iminoethyl)lysine 5-tetrazole-amide into inflamed paws of TNF-Tg mice resulted in recovery of lymphatic vessel contractions and drainage. Treatment of TNF-Tg mice with ferulic acid reduced synovial inflammation as well as cartilage and bone erosion, and it also restored lymphatic contraction and drainage. Conclusions iNOS is produced primarily by LECs in lymphatic vessel efferent from inflamed joints of TNF-Tg mice in response to TNF and inhibits LSMC contraction and lymph drainage. Ferulic acid represents a potential new therapy to restore lymphatic function and thus improve inflammatory arthritis by inhibiting local production of nitric oxide by LSMCs. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0963-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Qianqian Liang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yawen Ju
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yan Chen
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Wensheng Wang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Jinlong Li
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Li Zhang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China
| | - Hao Xu
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China.,Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Ronald W Wood
- Departments of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Edward M Schwarz
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA
| | - Yongjun Wang
- Department of Orthopaedics, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, 725 South Wanping Road, Shanghai, 200032, China. .,Institute of Spine, Shanghai University of Traditional Chinese Medicine, 725 Wan-Ping South Road, Shanghai, 200032, China.
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA. .,Center for Musculoskeletal Research, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA. .,Departments of Obstetrics and Gynecology, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY, 14642, USA.
| |
Collapse
|
45
|
Liu Q, Wang Z, Liu LL, Li P, Liu EH. Discovery of anti-inflammatory components from Guge Fengtong tablet based on inflammatory markers and exploration of its molecular mechanism. RSC Adv 2016. [DOI: 10.1039/c6ra17737a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In this work, we discovered GGFTT and its bioactive combinatorial components (10C) could significantly decrease the production of TNF-α, IL-1β, IL-6. 10C exert comparable anti-inflammatory effect through NF-κB and MAPKs signaling pathways as GGFTT.
Collapse
Affiliation(s)
- Qun Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Zhen Wang
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Le-Le Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Ping Li
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| | - E-Hu Liu
- State Key Laboratory of Natural Medicines
- China Pharmaceutical University
- Nanjing 210009
- China
| |
Collapse
|
46
|
Kim HY, Hwang KW, Park SY. Extracts of Actinidia arguta stems inhibited LPS-induced inflammatory responses through nuclear factor-κB pathway in Raw 264.7 cells. Nutr Res 2015; 34:1008-16. [PMID: 25441150 DOI: 10.1016/j.nutres.2014.08.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 08/28/2014] [Accepted: 08/29/2014] [Indexed: 12/30/2022]
Abstract
The inflammatory response protects our body from bacteria and tumors, but chronic inflammation driven by the persistent activation of macrophages can lead to serious adverse effects including gastrointestinal problems, cardiac disorders, and a sore throat. Part of the ongoing research is focused on searching for antiinflammatory compounds from natural sources, so we investigated the effects of hardy kiwis (Actinidia arguta, Lauraceae) stems on inflammation induced by lipopolysaccharide (LPS) in Raw 264.7 cells to test the hypothesis that antiinflammatory effects of A. arguta stems were exerted through the inhibition of the nuclear factor (NF)-κB pathway. The methanol extract of A. arguta (20 μg/mL) stems lowered nitric oxide production in LPS-stimulated Raw 264.7 cells by 40%. It was then partitioned with hexane, chloroform, ethyl acetate, butanol, and water based on the polarity of each compound. Among the 5 layers, the chloroform layer had the greatest inhibitory effect on LPS-stimulated nitric oxide production and inducible nitric oxide synthase mRNA expression in Raw 264.7 cells. However, the levels of prostaglandin E2 and cyclooxygease 2 were not altered. On the other hand, treatment of cells with the chloroform layer of A. arguta before LPS stimulation also reduced them RNA expression of proinflammatory cytokines including tumor necrosis factor α and interleukin 1β. Nuclear translocation of NF-κB p50 and p65 subunits induced by LPS was also inhibited by treatment with the chloroform layer of A. arguta. This was accompanied with the reduced phosphorylation of mitogen-activated protein kinases including extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal protein kinase, and p38. Taken together, these results suggest that chloroform layer of A. arguta exerted antiinflammatory effects by the inhibition of mitogen-activated protein kinase phosphorylation and nuclear translocation of NF-κB.
Collapse
Affiliation(s)
- Hae-Young Kim
- World Class University, Department of Nanobiomedicine, Dankook University, Cheonan 330-714, Korea
| | | | | |
Collapse
|
47
|
Jarazo Dietrich S, Fass MI, Jacobo PV, Sobarzo CMA, Lustig L, Theas MS. Inhibition of NOS-NO System Prevents Autoimmune Orchitis Development in Rats: Relevance of NO Released by Testicular Macrophages in Germ Cell Apoptosis and Testosterone Secretion. PLoS One 2015; 10:e0128709. [PMID: 26046347 PMCID: PMC4457887 DOI: 10.1371/journal.pone.0128709] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 11/19/2022] Open
Abstract
Background Although the testis is considered an immunoprivileged organ it can orchestrate immune responses against pathological insults such as infection and trauma. Experimental autoimmune orchitis (EAO) is a model of chronic inflammation whose main histopathological features it shares with human orchitis. In EAO an increased number of macrophages infiltrate the interstitium concomitantly with progressive germ cell degeneration and impaired steroidogenesis. Up-regulation of nitric oxide (NO)-NO synthase (NOS) system occurs, macrophages being the main producers of NO. Objective The aim of our study was to evaluate the role of NO-NOS system in orchitis development and determine the involvement of NO released by testicular macrophages on germ cell apoptosis and testosterone secretion. Method and Results EAO was induced in rats by immunization with testicular homogenate and adjuvants (E group) and a group of untreated normal rats (N) was also studied. Blockage of NOS by i.p. injection of E rats with a competitive inhibitor of NOS, L-NAME (8mg/kg), significantly reduced the incidence and severity of orchitis and lowered testicular nitrite content. L-NAME reduced germ cell apoptosis and restored intratesticular testosterone levels, without variations in serum LH. Co-culture of N testicular fragments with testicular macrophages obtained from EAO rats significantly increased germ cell apoptosis and testosterone secretion, whereas addition of L-NAME lowered both effects and reduced nitrite content. Incubation of testicular fragments from N rats with a NO donor DETA-NOnoate (DETA-NO) induced germ cell apoptosis through external and internal apoptotic pathways, an effect prevented by N-acetyl-L-cysteine (NAC). DETA-NO inhibited testosterone released from Leydig cells, whereas NAC (from 2.5 to 15 mM) did not prevent this effect. Conclusions We demonstrated that NO-NOS system is involved in the impairment of testicular function in orchitis. NO secreted mainly by testicular macrophages could promote oxidative stress inducing ST damage and interfering in Leydig cell function.
Collapse
Affiliation(s)
- Sabrina Jarazo Dietrich
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mónica Irina Fass
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Patricia Verónica Jacobo
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Livia Lustig
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Susana Theas
- Instituto de Investigaciones Biomédicas (UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
48
|
Sultana F, Rasool M. A novel therapeutic approach targeting rheumatoid arthritis by combined administration of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin with reference to pro-inflammatory cytokines, inflammatory enzymes, RANKL and transcription factors. Chem Biol Interact 2015; 230:58-70. [PMID: 25698669 DOI: 10.1016/j.cbi.2015.02.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/22/2015] [Accepted: 02/10/2015] [Indexed: 10/24/2022]
Abstract
The present study was designed to assess the combined efficacy of morin, a dietary flavanol and non-steroidal anti-inflammatory drug indomethacin against adjuvant-induced arthritis in rats, an experimental model for rheumatoid arthritis. Arthritis was induced by intradermal injection of complete freund's adjuvant (0.1 ml) into the right hind paw of the Wistar albino rats. Morin (30 mg/kg b.wt), indomethacin (3 mg/kg b.wt) and combination of morin and indomethacin were administered intraperitoneally (from 11th to 20th day) after adjuvant injection. We have found that the activities/levels of lysosomal acid hydrolases (acid phosphatase, β-galactosidase, N-acetyl glucosaminidase and cathepsin-D), glycoproteins (hexose and hexosamine), urinary constituents (hydroxyproline and glycosaminoglycans), reactive oxygen species (LPO and NO), elastase, inflammatory mediators (TNF-α, IL-1β, MCP-1, VEGF and PGE2) and paw edema were significantly increased in arthritic rats compared to controls. Whereas, the anti-oxidant status (SOD, CAT, GPx, glutathione, and ceruloplasmin), body weight and bone collagen was found to be decreased. The mRNA expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-17, IL-6 and MCP-1), inflammatory enzymes (iNOS and COX-2), RANKL, and transcription factors (NF-kB p65 and AP-1) was found upregulated in the ankle joints of arthritic rats in qRT-PCR analysis. In addition, the increased protein expression of NF-kB p65 and COX-2 was also detected by immunohistochemical analysis. On the other hand, the above said imbalances were regulated back effectively to near normal as evidenced by the histopathological and radiological analysis on combined treatment with morin and indomethacin. Our study indicates that the combination therapy was more effective than either single drug alone in suppressing the pathogenesis of RA.
Collapse
Affiliation(s)
- Farhath Sultana
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India
| | - MahaboobKhan Rasool
- Immunopathology Lab, School of Bio Sciences and Technology, VIT University, Vellore 632 014, Tamil Nadu, India.
| |
Collapse
|
49
|
Yang H, Oh KH, Yoo YC. Anti-Inflammatory Effect of Hot Water Extract of Aronia Fruits in LPS-Stimulated RAW 264.7 Macrophages. ACTA ACUST UNITED AC 2015. [DOI: 10.3746/jkfn.2015.44.1.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
50
|
|