1
|
Amamura TA, Courrol DDS, Barbosa AS, Silva-Junior IA, da Silva TF, Midon LM, Cruz MC, Heinemann MB, Chura-Chambi RM, Morganti L, Isaac L. Proteolytic activity of secreted proteases from pathogenic leptospires and effects on phagocytosis by murine macrophages. Microbes Infect 2025:105469. [PMID: 39761846 DOI: 10.1016/j.micinf.2025.105469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/18/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Leptospirosis is a zoonosis caused by spirochete Leptospira. Pathogenic leptospires evade the Complement System, enabling their survival upon contact with normal human serum in vitro. In a previous study, we demonstrated that proteases secreted by pathogenic leptospires cleave several Complement proteins, including C3 and the opsonins C3b and iC3b. We hypothesize that these Leptospira proteases, such as thermolysin and leptolysin, may decrease the phagocytic activity of murine peritoneal macrophages. We observed decreased amounts of CR3 and CR4 using flow cytometry when these cells were treated with supernatant from the culture of pathogenic leptospires (SPL) for 24 h. Through confocal microscopy, we observed a reduction in TLR2, CD11b, and CD206 (mannose receptor) levels when these cells were treated with SPL or recombinant thermolysin for 24 h. Furthermore, opsonins such as C3b/iC3b deposited on the surface of pathogenic leptospires were clearly degraded in the presence of recombinant thermolysin or recombinant leptolysin. Consequently, when opsonized bacteria and macrophages were previously incubated with these proteases, phagocytic activity was diminished. These observations lead us to suggest that proteases secreted by pathogenic leptospires could degrade opsonins present in normal serum or deposited on the bacterial membrane, as well as cleave or inhibit macrophage surface molecules. Therefore, these proteases could interfere with the recognition and internalization by murine macrophages, favoring the spread of leptospires in the host.
Collapse
Affiliation(s)
- Thais A Amamura
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Angela S Barbosa
- Laboratory of Bacteriology, Butantan Institute, São Paulo, SP, Brazil
| | - Ildefonso A Silva-Junior
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Tiago F da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Leonardo M Midon
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Mario C Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Marcos B Heinemann
- Faculty of Veterinary Medicine, University of São Paulo, São Paulo, SP, Brazil
| | - Rosa M Chura-Chambi
- Institute for Energy and Nuclear Research IPEN-CNEN/SP, Biotechnology Center, University of São Paulo, São Paulo, SP, Brazil
| | - Ligia Morganti
- Institute for Energy and Nuclear Research IPEN-CNEN/SP, Biotechnology Center, University of São Paulo, São Paulo, SP, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
2
|
Hoo R, Ruiz-Morales ER, Kelava I, Rawat M, Mazzeo CI, Tuck E, Sancho-Serra C, Chelaghma S, Predeus AV, Murray S, Fernandez-Antoran D, Waller RF, Álvarez-Errico D, Lee MCS, Vento-Tormo R. Acute response to pathogens in the early human placenta at single-cell resolution. Cell Syst 2024; 15:425-444.e9. [PMID: 38703772 DOI: 10.1016/j.cels.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 04/16/2024] [Indexed: 05/06/2024]
Abstract
The placenta is a selective maternal-fetal barrier that provides nourishment and protection from infections. However, certain pathogens can attach to and even cross the placenta, causing pregnancy complications with potential lifelong impacts on the child's health. Here, we profiled at the single-cell level the placental responses to three pathogens associated with intrauterine complications-Plasmodium falciparum, Listeria monocytogenes, and Toxoplasma gondii. We found that upon exposure to the pathogens, all placental lineages trigger inflammatory responses that may compromise placental function. Additionally, we characterized the responses of fetal macrophages known as Hofbauer cells (HBCs) to each pathogen and propose that they are the probable niche for T. gondii. Finally, we revealed how P. falciparum adapts to the placental microenvironment by modulating protein export into the host erythrocyte and nutrient uptake pathways. Altogether, we have defined the cellular networks and signaling pathways mediating acute placental inflammatory responses that could contribute to pregnancy complications.
Collapse
Affiliation(s)
- Regina Hoo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Iva Kelava
- Wellcome Sanger Institute, Cambridge, UK
| | - Mukul Rawat
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | | | | | | | - Sara Chelaghma
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | | - David Fernandez-Antoran
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK; Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ross F Waller
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Marcus C S Lee
- Wellcome Sanger Institute, Cambridge, UK; Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK.
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Cambridge, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
3
|
Sun KH, Lee MY, Jeon YJ. Inhibition of Phagocytosis by Silibinin in Mouse Macrophages. Curr Issues Mol Biol 2023; 45:8126-8137. [PMID: 37886956 PMCID: PMC10605117 DOI: 10.3390/cimb45100513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/28/2023] Open
Abstract
This study investigated the effects of silibinin, derived from milk thistle (Silybum marianum), on lipopolysaccharide (LPS)-induced morphological changes in mouse macrophages. Silibinin was treated at various doses and time points to assess its effects on macrophage activation, including morphological changes and phagocytosis. Silibinin effectively inhibited LPS-induced pseudopodia formation and size increase, while unstimulated cells remained round. Silibinin's impact on phagocytosis was dose- and time-dependent, showing a decrease. We explored its mechanism of action on kinases using a MAPK array. Among the three MAPK family members tested, silibinin had a limited effect on JNK and p38 but significantly inhibited ERK1/2 and related RSK1/2. Silibinin also inhibited MKK6, AKT3, MSK2, p70S6K, and GSK-3β. These findings highlight silibinin's potent inhibitory effects on phagocytosis and morphological changes in macrophages. We suggest its potential as an anti-inflammatory agent due to its ability to target key inflammatory pathways involving ERK1/2 and related kinases. Overall, this study demonstrates the promising therapeutic properties of silibinin in modulating macrophage function and inflammation.
Collapse
Affiliation(s)
- Kyung-Hoon Sun
- Department of Emergency Medicine, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Min-Young Lee
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| | - Young-Jin Jeon
- Department of Pharmacology, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea;
| |
Collapse
|
4
|
de Queiroz NMGP, de Oliveira LS, Gomes MTR, Carneiro MBH, Vieira LQ, Oliveira SC, Horta MF. Requirement of scavenger receptors for activation of the IRF-3/IFN-β/STAT-1 pathway in TLR4-mediated production of NO by LPS-activated macrophages. Nitric Oxide 2023; 134-135:61-71. [PMID: 37059259 DOI: 10.1016/j.niox.2023.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 04/02/2023] [Accepted: 04/12/2023] [Indexed: 04/16/2023]
Abstract
Production of nitric oxide (NO) by LPS-activated macrophages is due to a complex cellular signaling initiated by TLR4 that leads to the transcription of IFN-β, which activates IRF-1 and STAT-1, as well as to the activation of NF-κB, required for iNOS transcription. High concentrations of LPS can also be uptaken by scavenger receptors (SRs), which, in concert with TLR4, leads to inflammatory responses. The mechanisms by which TLR4 and SRs interact, and the pathways activated by this interaction in macrophages are not elucidated. Therefore, our main goal was to evaluate the role of SRs, particularly SR-A, in LPS-stimulated macrophages for NO production. We first showed that, surprisingly, LPS can induce the expression of iNOS and the production of NO in TLR4-/- mice, provided exogenous IFN-β is supplied. These results indicate that LPS stimulate receptors other than TLR4. The inhibition of SR-A using DSS or neutralizing antibody to SR-AI showed that SR-A is essential for the expression of iNOS and NO production in stimulation of TLR4 by LPS. The restoration of the ability to express iNOS and produce NO by addition of rIFN-β to inhibited SR-A cells indicated that the role of SR-AI in LPS-induced NO production is to provide IFN-β, probably by mediating the internalization of LPS/TLR4, and the differential inhibition by DSS and neutralizing antibody to SR-AI suggested that other SRs are also involved. Our results reinforce that TLR4 and SR-A act in concert in LPS activation and demonstrated that, for the production of NO, it does mainly by synthesizing IRF-3 and also by activating the TRIF/IRF-3 pathway for IFN-β production, essential for LPS-mediated transcription of iNOS. Consequently STAT-1 is activated, and IRF-1 is expressed, which together with NF-κB from TLR4/MyD88/TIRAP, induce iNOS synthesis and NO production. SUMMARY SENTENCE: TLR4 and SRs act in concert activating IRF-3 to transcribe IFN-β and activate STAT-1 to produce NO by LPS-activated macrophages.
Collapse
Affiliation(s)
- Nina Marí Gual Pimenta de Queiroz
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Luciana Souza de Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Marco Tulio Ribeiro Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Matheus Batista Heitor Carneiro
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Leda Quercia Vieira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil
| | - Sergio Costa Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil; Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), CNPq MCT, Salvador, BA, Brazil
| | - Maria Fátima Horta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, MG, Brazil.
| |
Collapse
|
5
|
Di Vincenzo S, Ferraro M, Taverna S, Malizia V, Buscetta M, Cipollina C, Lazzara V, Pinto P, Bassano M, La Grutta S, Pace E. Tyndallized Bacteria Preferentially Induce Human Macrophage M1 Polarization: An Effect Useful to Balance Allergic Immune Responses and to Control Infections. Antibiotics (Basel) 2023; 12:antibiotics12030571. [PMID: 36978438 PMCID: PMC10044585 DOI: 10.3390/antibiotics12030571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Macrophage polarization is a dynamic process through which macrophages acquire specific features whose extremes are represented by M1 and M2 polarization. Interleukin (IL)-6, IL-1β, IL-12 and IL-8 belong to M1 macrophages while transforming growth factor-beta (TGF-β belongs to M2 cytokines. M2 polarization prevalence is observed in allergic diseases. Tyndallization is a thermal process able to inactivate microorganisms and to allow their use for chronic respiratory disease treatment via immune response modulation. The present study explores the effects of a blend of tyndallized bacteria (TB) on macrophage polarization. THP-1-derived macrophages were exposed to different concentrations of TB (106, 5 × 106, 107, 5 × 107, 108 CFU/mL) and then cell viability and TB phagocytosis, and IL-8, IL-1β, IL-6, IL-12 and TGF-β1 gene expression and release were assessed. TB were tolerated, phagocyted and able to increase IL-8, IL-1β and IL-6 gene expression and release IL-12 gene expression, as well as decrease TGF-β1 gene expression and release. The effects on IL-8, IL-6 and TGF-β1 release were confirmed in human monocyte-derived macrophages (hMDMs) exposed to TB. In conclusion, TB promote M1 polarization, and this mechanism might have valuable potential in controlling allergic diseases and infections, possibly preventing disease exacerbations.
Collapse
Affiliation(s)
- Serena Di Vincenzo
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Correspondence: (S.D.V.); (S.L.G.); Tel.: +39-091-680-9148 (S.D.V.)
| | - Maria Ferraro
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | - Simona Taverna
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | - Velia Malizia
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| | | | - Chiara Cipollina
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Rimed Foundation, 90100 Palermo, Italy
- NBFC—National Biodiversity Future Center, 90100 Palermo, Italy
| | - Valentina Lazzara
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Paola Pinto
- Dipartimento Promozione della Salute, Materno-Infantile, di Medicina Interna e Specialistica di Eccellenza “G. D’Alessandro” (PROMISE), Università degli Studi di Palermo, 90100 Palermo, Italy
| | - Marco Bassano
- Dipartimento di Farmacia, Università degli Studi-Federico II, 80100 Napoli, Italy
| | - Stefania La Grutta
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
- Correspondence: (S.D.V.); (S.L.G.); Tel.: +39-091-680-9148 (S.D.V.)
| | - Elisabetta Pace
- Institute of Translational Pharmacology (IFT)—National Research Council (CNR), 90100 Palermo, Italy (E.P.)
| |
Collapse
|
6
|
Gudgeon J, Marín-Rubio JL, Trost M. The role of macrophage scavenger receptor 1 (MSR1) in inflammatory disorders and cancer. Front Immunol 2022; 13:1012002. [PMID: 36325338 PMCID: PMC9618966 DOI: 10.3389/fimmu.2022.1012002] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/28/2022] [Indexed: 08/27/2023] Open
Abstract
Macrophage scavenger receptor 1 (MSR1), also named CD204, holds key inflammatory roles in multiple pathophysiologic processes. Present primarily on the surface of various types of macrophage, this receptor variably affects processes such as atherosclerosis, innate and adaptive immunity, lung and liver disease, and more recently, cancer. As highlighted throughout this review, the role of MSR1 is often dichotomous, being either host protective or detrimental to the pathogenesis of disease. We will discuss the role of MSR1 in health and disease with a focus on the molecular mechanisms influencing MSR1 expression, how altered expression affects disease process and macrophage function, the limited cell signalling pathways discovered thus far, the emerging role of MSR1 in tumour associated macrophages as well as the therapeutic potential of targeting MSR1.
Collapse
Affiliation(s)
| | - José Luis Marín-Rubio
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Matthias Trost
- Laboratory for Biological Mass Spectrometry, Biosciences Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
7
|
Guo X, Liu Y, Liu J, Xu D, Chi C, Lv Z, Liu H. Sequence and functional features of a novel scavenger receptor homolog, SCARA5 from Yellow drum (Nibea albiflora). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 135:104463. [PMID: 35690228 DOI: 10.1016/j.dci.2022.104463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
As an important member in SR-As, member 5 (SCARA5) can swallow apoptotic cells and foreign bodies, and participate multiple signaling pathways to inhibit tumor occurrence, development growth and metastasis. To explore its immune function, SCARA5 was identified from the yellow drum (Nibea albiflora) according to its transcriptome data, and its full-length cDNA was 6968 bp (named as NaSCARA5, GenBank accession no: MW070211) encoding 497 amino acids with a calculated molecular weight of 55.12 kDa, which had the typical motifs of SR family, such as transmembrane helix region, coil region, Pfam collagens region and SR region. BLASTp and the phylogenetic relationship analysis illustrated that the sequences shared high similarity with known SCARA5 of teleosts. Quantitative real time RT-PCR analysis showed that NaSCARA5 was expressed in intestine, stomach, liver, kidney, gill, heart and spleen, with the highest in the spleen (24.42-fold compared with that in heart). After being infected with Polyinosinic:polycytidylic acid (PolyI:C), Vibrio alginolyticus and Vibrio parahaemolyticus, NaSCARA5 mRNA were up-regulated with time dependent mode in spleen, which suggested that NaSCARA5 might play an important role in the immune process of fish. The extracellular domain of NaSCARA5 was successfully expressed in BL21 (DE3), and yielded the target protein of the expected size with many active sites for their conferring protein-protein interaction functions. After being purified by Ni-NAT Superflow resin and renatured, it was found to bind all the tested bacteria (V.parahaemolyticus,V.alginolyticus and Vibrio harveyi). The eukaryotic expression vector of the NaSCARA5-EGFP fusion protein was constructed and transferred into epithelioma papulosum cyprini (EPC) cells, and it was mainly expressed on the cell membrane indicating that NaSCARA5 was a typical transmembrane protein. The aforementioned results indicated that NaSCARA5 played a significant role in the defense against pathogenic bacteria infection as PRRs, which may provide some further understandings of the regulatory mechanisms in the fish innate immune system for SR family.
Collapse
Affiliation(s)
- Xiaoxian Guo
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Yue Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Jiaxin Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Dongdong Xu
- Marine Fishery Institute of Zhejiang Province, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan, 316100, China
| | - Changfeng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhenming Lv
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Huihui Liu
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| |
Collapse
|
8
|
Zheng Y, Guan J, Wang L, Luo X, Zhang X. Comparative proteomic analysis of spleen reveals key immune-related proteins in the yak (Bos grunniens) at different growth stages. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100968. [PMID: 35150973 DOI: 10.1016/j.cbd.2022.100968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022]
Abstract
Spleen plays an indispensable role in the immune system as the largest lymphatic organ in the body. The spleens of yaks at three developmental stages (1 day fetal yak, 15 months juvenile yak and 5 years old adult yak) were sampled and the Tandem mass tag (TMT) quantification method was employed in spleen proteomic analysis. The results showed that 6576 proteins and 529 differentially expressed proteins (DEPs) were identified in the yak spleens at three growth stages. Gene ontology (GO) analysis of DEPs indicated that DEPs were enriched in Oxygen transport, Actin filament movement, DNA replication, Cell cycle process, and Cell macromolecule biosynthesis process, which was conducive to high altitude breathing, protein synthesis and organ growth in yaks. These were indispensable for yak spleen growth and cell metabolism, high altitude adaptation. Those DEPs were further analyzed based on Kyoto encyclopedia of genes and genomes (KEGG) pathways, which principally participated in Th1 and Th2 cell differentiation, NF-kappa B signaling pathway, Phagosome, and Glutathione metabolism. Those pathways were associated with some animal life activities in defense against microbial antigens, indicating that with age, the immune function of the yak's spleen continued to increase. Hemoglobin, Tumor necrosis factor receptor associated factor 1 (TRAF1), T cell receptor (TCR), Macrophage receptor, Fc receptors (FcR), and Gamma-glutamyl transferase (GGT) of DEPs played roles in immune function in yak spleen directly or indirectly. The dynamic changes of Toll like receptor 2 (TLR2), TRAF1 and Heat shock protein 27 (HSP27 or HSPB1) detected by Immunohistochemistry were consistent with those obtained from TMT proteomic. In conclusion, this study provides extensive and functional analyses of the spleen proteome at three developmental stages and will offer a new insight into key proteins involved in the immune function of yak spleen.
Collapse
Affiliation(s)
- Yao Zheng
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China
| | - Jiuqiang Guan
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| | - Li Wang
- Key Laboratory of Qinghai-Tibetan Plateau Animal Genetic Resource Reservation and Utilization, Ministry of Education and Sichuan Province, Southwest Minzu University, Chengdu 610041, China.
| | - Xiaolin Luo
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China.
| | - Xiangfei Zhang
- Sichuan Academy of Grassland Sciences, Chengdu 611731, China
| |
Collapse
|
9
|
Xie Y, Jia Y, Li Z, Hu F. Scavenger receptor A in immunity and autoimmune diseases: Compelling evidence for targeted therapy. Expert Opin Ther Targets 2022; 26:461-477. [PMID: 35510370 DOI: 10.1080/14728222.2022.2072729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Scavenger receptor A (SR-A) is reported to be involved in innate and adaptive immunity and in recent years, the soluble form of SR-A has also been identified. Intriguingly, SR-A displays double-edged sword features in different diseases. Moreover, targeted therapy on SR-A, including genetic modulation, small molecule inhibitor, inhibitory peptides, fucoidan, and blocking antibodies, provides potential strategies for treatment. Currently, therapeutics targeting SR-A are in preclinical studies and clinical trials, revealing great perspectives in future immunotherapy. AREAS COVERED Through searching PubMed (January 1979-March 2022) and clinicaltrials.gov, we review most of the research and clinical trials involving SR-A. This review briefly summarizes recent study advances on SR-A, with particular concern on its role in immunity and autoimmune diseases. EXPERT OPINION Given the emerging evidence of SR-A in immunity, its targeted therapy has been studied in various diseases, especially autoimmune diseases. However, many challenges still remain to be overcome, such as the double-sworded effects and the specific isoform targeting. For further clinical success of SR-A targeted therapy, the crystal structure illustration and the dual function discrimination of SR-A should be further investigated. Nevertheless, although challenging, targeting SR-A would be a potential effective strategy in the treatment of autoimmune diseases and other immune-related diseases.
Collapse
Affiliation(s)
- Yang Xie
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Yuan Jia
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, Peking, China
| | - Fanlei Hu
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing, Peking, China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, Peking, China.,Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, Peking, China
| |
Collapse
|
10
|
Peruń A, Gębicka M, Biedroń R, Skalska P, Józefowski S. The CD36 and SR-A/CD204 scavenger receptors fine-tune Staphylococcus aureus-stimulated cytokine production in mouse macrophages. Cell Immunol 2022; 372:104483. [DOI: 10.1016/j.cellimm.2022.104483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/20/2021] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
11
|
Taban Q, Mumtaz PT, Masoodi KZ, Haq E, Ahmad SM. Scavenger receptors in host defense: from functional aspects to mode of action. Cell Commun Signal 2022; 20:2. [PMID: 34980167 PMCID: PMC8721182 DOI: 10.1186/s12964-021-00812-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/27/2021] [Indexed: 12/17/2022] Open
Abstract
Scavenger receptors belong to a superfamily of proteins that are structurally heterogeneous and encompass the miscellaneous group of transmembrane proteins and soluble secretory extracellular domain. They are functionally diverse as they are involved in various disorders and biological pathways and their major function in innate immunity and homeostasis. Numerous scavenger receptors have been discovered so far and are apportioned in various classes (A-L). Scavenger receptors are documented as pattern recognition receptors and known to act in coordination with other co-receptors such as Toll-like receptors in generating the immune responses against a repertoire of ligands such as microbial pathogens, non-self, intracellular and modified self-molecules through various diverse mechanisms like adhesion, endocytosis and phagocytosis etc. Unlike, most of the scavenger receptors discussed below have both membrane and soluble forms that participate in scavenging; the role of a potential scavenging receptor Angiotensin-Converting Enzyme-2 has also been discussed whereby only its soluble form might participate in preventing the pathogen entry and replication, unlike its membrane-bound form. This review majorly gives an insight on the functional aspect of scavenger receptors in host defence and describes their mode of action extensively in various immune pathways involved with each receptor type. Video abstract.
Collapse
Affiliation(s)
- Qamar Taban
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Shuhama, 190006, India.,Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Kashmir, India
| | | | - Khalid Z Masoodi
- Division of Plant Biotechnology, Transcriptomics Laboratory, SKUAST-K, Shalimar, India
| | - Ehtishamul Haq
- Department of Biotechnology, University of Kashmir, Hazratbal Srinagar, Kashmir, India
| | - Syed Mudasir Ahmad
- Division of Animal Biotechnology, Faculty of Veterinary Sciences and Animal Husbandry, Sher-e- Kashmir University of Agricultural Sciences and Technology - Kashmir, Shuhama, 190006, India.
| |
Collapse
|
12
|
Uddin MB, Sajib EH, Hoque SF, Hassan MM, Ahmed SSU. Macrophages in respiratory system. RECENT ADVANCEMENTS IN MICROBIAL DIVERSITY 2022:299-333. [DOI: 10.1016/b978-0-12-822368-0.00014-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
13
|
Paul R, Banerjee S, Sen S, Dubey P, Maji S, Bachhawat AK, Datta R, Gupta A. A novel leishmanial copper P-type ATPase plays a vital role in parasite infection and intracellular survival. J Biol Chem 2021; 298:101539. [PMID: 34958799 PMCID: PMC8800121 DOI: 10.1016/j.jbc.2021.101539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/15/2021] [Accepted: 12/19/2021] [Indexed: 12/14/2022] Open
Abstract
Copper (Cu) is essential for all life forms; however, in excess, it becomes toxic. Toxic properties of Cu are known to be utilized by host species against various pathogenic invasions. Leishmania, in both free-living and intracellular forms, exhibits appreciable tolerance toward Cu stress. While determining the mechanism of Cu-stress evasion employed by Leishmania, we identified and characterized a hitherto unknown Cu-ATPase in Leishmania major and established its role in parasite survival in host macrophages. This novel L. major Cu-ATPase, LmATP7, exhibits homology with its orthologs at multiple motifs. In promastigotes, LmATP7 primarily localized at the plasma membrane. We also show that LmATP7 exhibits Cu-dependent expression patterns and complements Cu transport in a Cu-ATPase-deficient yeast strain. Promastigotes overexpressing LmATP7 exhibited higher survival upon Cu stress, indicating efficacious Cu export compared with Wt and heterozygous LmATP7 knockout parasites. We further explored macrophage–Leishmania interactions with respect to Cu stress. We found that Leishmania infection triggers upregulation of major mammalian Cu exporter, ATP7A, in macrophages, and trafficking of ATP7A from the trans-Golgi network to endolysosomes in macrophages harboring amastigotes. Simultaneously, in Leishmania, we observed a multifold increase in LmATP7 transcripts as the promastigote becomes established in macrophages and morphs to the amastigote form. Finally, overexpressing LmATP7 in parasites increases amastigote survivability within macrophages, whereas knocking it down reduces survivability drastically. Mice injected in their footpads with an LmATP7-overexpressing strain showed significantly larger lesions and higher amastigote loads as compared with controls and knockouts. These data establish the role of LmATP7 in parasite infectivity and intramacrophagic survivability.
Collapse
Affiliation(s)
- Rupam Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Sourav Banerjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Samarpita Sen
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Pratiksha Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India
| | - Saptarshi Maji
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India
| | - Anand K Bachhawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Knowledge city, Sector 81, Manauli, PO, Sahibzada Ajit Singh Nagar, Punjab-140306, India
| | - Rupak Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India.
| | - Arnab Gupta
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal -741246, India.
| |
Collapse
|
14
|
Hussain K, Cragg MS, Beers SA. Remodeling the Tumor Myeloid Landscape to Enhance Antitumor Antibody Immunotherapies. Cancers (Basel) 2021; 13:4904. [PMID: 34638388 PMCID: PMC8507767 DOI: 10.3390/cancers13194904] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/16/2021] [Accepted: 09/26/2021] [Indexed: 12/30/2022] Open
Abstract
Among the diverse tumor resident immune cell types, tumor-associated macrophages (TAMs) are often the most abundant, possess an anti-inflammatory phenotype, orchestrate tumor immune evasion and are frequently associated with poor prognosis. However, TAMs can also be harnessed to destroy antibody-opsonized tumor cells through the process of antibody-dependent cellular phagocytosis (ADCP). Clinically important tumor-targeting monoclonal antibodies (mAb) such as Rituximab, Herceptin and Cetuximab, function, at least in part, by inducing macrophages to eliminate tumor cells via ADCP. For IgG mAb, this is mediated by antibody-binding activating Fc gamma receptors (FcγR), with resultant phagocytic activity impacted by the level of co-engagement with the single inhibitory FcγRIIb. Approaches to enhance ADCP in the tumor microenvironment include the repolarization of TAMs to proinflammatory phenotypes or the direct augmentation of ADCP by targeting so-called 'phagocytosis checkpoints'. Here we review the most promising new strategies targeting the cell surface molecules present on TAMs, which include the inhibition of 'don't eat me signals' or targeting immunostimulatory pathways with agonistic mAb and small molecules to augment tumor-targeting mAb immunotherapies and overcome therapeutic resistance.
Collapse
Affiliation(s)
| | | | - Stephen A. Beers
- Centre for Cancer Immunology, School of Cancer Sciences, Faculty of Medicine, University of Southampton, Tremona Road, Southampton SO16 6YD, UK; (K.H.); (M.S.C.)
| |
Collapse
|
15
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
16
|
Pidwill GR, Gibson JF, Cole J, Renshaw SA, Foster SJ. The Role of Macrophages in Staphylococcus aureus Infection. Front Immunol 2021; 11:620339. [PMID: 33542723 PMCID: PMC7850989 DOI: 10.3389/fimmu.2020.620339] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/02/2020] [Indexed: 12/23/2022] Open
Abstract
Staphylococcus aureus is a member of the human commensal microflora that exists, apparently benignly, at multiple sites on the host. However, as an opportunist pathogen it can also cause a range of serious diseases. This requires an ability to circumvent the innate immune system to establish an infection. Professional phagocytes, primarily macrophages and neutrophils, are key innate immune cells which interact with S. aureus, acting as gatekeepers to contain and resolve infection. Recent studies have highlighted the important roles of macrophages during S. aureus infections, using a wide array of killing mechanisms. In defense, S. aureus has evolved multiple strategies to survive within, manipulate and escape from macrophages, allowing them to not only subvert but also exploit this key element of our immune system. Macrophage-S. aureus interactions are multifaceted and have direct roles in infection outcome. In depth understanding of these host-pathogen interactions may be useful for future therapeutic developments. This review examines macrophage interactions with S. aureus throughout all stages of infection, with special emphasis on mechanisms that determine infection outcome.
Collapse
Affiliation(s)
- Grace R. Pidwill
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| | - Josie F. Gibson
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Joby Cole
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Stephen A. Renshaw
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
- The Bateson Centre, University of Sheffield, Sheffield, United Kingdom
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Sheffield, United Kingdom
| | - Simon J. Foster
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, United Kingdom
- Florey Institute, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
17
|
Ween MP, Moshensky A, Thredgold L, Bastian NA, Hamon R, Badiei A, Nguyen PT, Herewane K, Jersmann H, Bojanowski CM, Shin J, Reynolds PN, Crotty Alexander LE, Hodge SJ. E-cigarettes and health risks: more to the flavor than just the name. Am J Physiol Lung Cell Mol Physiol 2020; 320:L600-L614. [PMID: 33295836 DOI: 10.1152/ajplung.00370.2020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The growing interest in regulating flavored E-liquids must incorporate understanding of the "flavoring profile" of each E-liquid-which flavorings (flavoring chemicals) are present and at what concentrations not just focusing on the flavor on the label. We investigated the flavoring profile of 10 different flavored E-liquids. We assessed bronchial epithelial cell viability and apoptosis, phagocytosis of bacteria and apoptotic cells by macrophages after exposure to E-cigarette vapor extract (EVE). We validated our data in normal human bronchial epithelial cells (NHBE) and alveolar macrophages (AM) from healthy donors. We also assessed cytokine release and validated in the saliva from E-cigarette users. Increased necrosis/apoptosis (16.1-64.5% apoptosis) in 16HBE cells was flavor dependent, and NHBEs showed an increased susceptibility to flavors. In THP-1 differentiated macrophages phagocytosis was also flavor dependent, with AM also showing increased susceptibility to flavors. Further, Banana and Chocolate were shown to reduce surface expression of phagocytic target recognition receptors on alveolar macrophages. Banana and Chocolate increased IL-8 secretion by NHBE, whereas all 4 flavors reduced AM IL-1β secretion, which was also reduced in the saliva of E-cigarette users compared with healthy controls. Flavorant profiles of E-liquids varied from simple 2 compound mixtures to complex mixtures containing over a dozen flavorants. E-liquids with high benzene content, complex flavoring profiles, high chemical concentration had the greatest impacts. The Flavorant profile of E-liquids is key to disruption of the airway status quo by increasing bronchial epithelial cell apoptosis, causing alveolar macrophage phagocytic dysfunction, and altering airway cytokines.
Collapse
Affiliation(s)
- M P Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - A Moshensky
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - L Thredgold
- Department of Occupational and Environmental Health, School of Public Health, University of Adelaide, Adelaide, South Australia, Australia
| | - N A Bastian
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - R Hamon
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - A Badiei
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - P T Nguyen
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - K Herewane
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - H Jersmann
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - C M Bojanowski
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - J Shin
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - P N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - L E Crotty Alexander
- Pulmonary Critical Care Section, Veterans Affairs San Diego Healthcare System, San Diego, California.,Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, La Jolla, California
| | - S J Hodge
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
18
|
Lin S, Lin M, Ma H, Wang X, Zhang D, Wu W, Lin J, Gao H. Identification of miR-4793-3p as a potential biomarker for bacterial infection in patients with hepatitis B virus-related liver cirrhosis: A pilot study. Exp Ther Med 2020; 21:120. [PMID: 33335583 PMCID: PMC7739867 DOI: 10.3892/etm.2020.9552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Accepted: 10/09/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatitis B virus-related liver cirrhosis (HBV-LC) is susceptible to bacterial infections, which could lead to adverse prognosis in patients. MicroRNAs (miRs/miRNAs) are easily detected in peripheral blood and are involved in multiple liver diseases. The present pilot study aimed to investigate differentially expressed (DE) miRNAs in the serum of patients with HBV-LC and bacterial infection, and to identify potential biomarkers. The first batch of clinical samples was collected, including four patients with HBV-LC and infection, four patients with HBV-LC without infection, four patients with chronic hepatitis B (CHB) and four healthy controls. miRNA expression was analyzed by Affymetrix GeneChip miRNA 4.0 Array. A total of 385 DE miRNAs (upregulated, 160; downregulated, 225) were detected in patients with HBV-LC and infection compared with patients with HBV-LC without infection. miR-4793-3p was significantly upregulated in patients with HBV-LC and infection compared with its levels in the other three groups: HBV-LC without infection [log-transformed fold change (logFC)=7.96; P=0.0458), CHB (logFC=34.53; P=0.0003) and healthy controls (logFC=3.34; P=0.0219)]. Reverse transcription-quantitative PCR (RT-qPCR) was performed to validate miR-4793-3p expression in another batch of clinical samples. RT-qPCR showed that miR-4793-3p was highly expressed in patients with HBV-LC and infection compared with its levels in patients with HBV-LC without infection (P<0.05). The non-parametric random forest regression model was built to access the diagnostic value of miR-4793-3p, and the receiver operating characteristic curve demonstrated that the area under the curve was 92.2%. Target gene analysis with bioinformatics tools and Gene Expression Omnibus data (GSE46955) showed that miR-4793-3p could participate in the TGF-β signaling pathway. Functional experiments revealed that overexpressed miR-4793-3p could impair TGF-β function by downregulating Gremlin-1. The present pilot study suggests that miR-4793-3p could be a feasible indicator for bacterial infection in patients with HBV-LC, and it would be valuable for further research.
Collapse
Affiliation(s)
- Shenglong Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Minghua Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Huaxi Ma
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Xiangmei Wang
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Dongqing Zhang
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Wenjun Wu
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Jiahuang Lin
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| | - Haibing Gao
- Department of Severe Hepatopathy, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Fuzhou Infectious Diseases Hospital, Fuzhou, Fujian 350002, P.R. China.,Department of Hepatology, Infectious Diseases Hospital of Fujian Medical University, Fuzhou, Fujian 350002, P.R. China
| |
Collapse
|
19
|
Wall Teichoic Acid in Staphylococcus aureus Host Interaction. Trends Microbiol 2020; 28:985-998. [DOI: 10.1016/j.tim.2020.05.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
|
20
|
Cathelicidins Mitigate Staphylococcus aureus Mastitis and Reduce Bacterial Invasion in Murine Mammary Epithelium. Infect Immun 2020; 88:IAI.00230-20. [PMID: 32341117 DOI: 10.1128/iai.00230-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 01/27/2023] Open
Abstract
Staphylococcus aureus, an important cause of mastitis in mammals, is becoming increasingly problematic due to the development of resistance to conventional antibiotics. The ability of S. aureus to invade host cells is key to its propensity to evade immune defense and antibiotics. This study focuses on the functions of cathelicidins, small cationic peptides secreted by epithelial cells and leukocytes, in the pathogenesis of S. aureus mastitis in mice. We determined that endogenous murine cathelicidin (CRAMP; Camp) was important in controlling S. aureus infection, as cathelicidin knockout mice (Camp-/- ) intramammarily challenged with S. aureus had higher bacterial burdens and more severe mastitis than did wild-type mice. The exogenous administration of both a synthetic human cathelicidin (LL-37) and a synthetic murine cathelicidin (CRAMP) (8 μM) reduced the invasion of S. aureus into the murine mammary epithelium. Additionally, this exogenous LL-37 was internalized into cultured mammary epithelial cells and impaired S. aureus growth in vitro We conclude that cathelicidins may be potential therapeutic agents against mastitis; both endogenous and exogenous cathelicidins conferred protection against S. aureus infection by reducing bacterial internalization and potentially by directly killing this pathogen.
Collapse
|
21
|
Xiang X, Zhang Y, Li Q, Wei J, Liu K, Shao D, Li B, Olszewski MA, Ma Z, Qiu Y. Expression profile of porcine scavenger receptor A and its role in bacterial phagocytosis by macrophages. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103534. [PMID: 31689452 PMCID: PMC7796722 DOI: 10.1016/j.dci.2019.103534] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 06/10/2023]
Abstract
Expression of scavenger receptor A (SRA) in macrophages plays key role in macrophage mediated uptake of microbes. However, little is known about the role of porcine scavenger receptor A (pSRA) in phagocytic function of macrophages in swine species. In this study, polyclonal antibody against pSRA was generated by using recombinant proteins to study expression and function of pSRA. We report broad expression of pSRA in different tissues. In the lungs, pSRA is mainly expressed by alveolar macrophages. Blockade of class A scavenger receptor by fucoidan treatment demonstrates that pSRA has role in bacterial phagocytosis by macrophages. Furthermore, importance of SRA-mediated bacterial phagocytosis has been shown using CHO cell line expressing pSRA. In summary, these findings reveal that pSRA, which is predominantly expressed in alveolar macrophages is likely to be an important receptor mediating recognition and uptake of bacteria in pig lungs.
Collapse
Affiliation(s)
- Xiao Xiang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Yanbing Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Qianqian Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Jianchao Wei
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Ke Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Donghua Shao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Beibei Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China
| | - Michal A Olszewski
- Division of Pulmonary & Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, USA; Research Service, Ann Arbor VA Health System, Department of Veterans Affairs Health System, USA
| | - Zhiyong Ma
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China.
| | - Yafeng Qiu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, China.
| |
Collapse
|
22
|
Qiao X, Li P, He J, Yu Z, Chen J, He L, Yu X, Lin H, Lu D, Zhang Y. Type F scavenger receptor expressed by endothelial cells (SREC)-II from Epinephelus coioides is a potential pathogen recognition receptor in the immune response to Vibrio parahaemolyticus infection. FISH & SHELLFISH IMMUNOLOGY 2020; 98:262-270. [PMID: 31899357 DOI: 10.1016/j.fsi.2019.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/24/2019] [Accepted: 12/28/2019] [Indexed: 06/10/2023]
Abstract
Scavenger receptors play a central role in defending against infectious diseases in mammals. However, the function of SRECII remains unknown in teleost fish. In this study, type F scavenger receptor expressed by endothelial cells-II (SRECII) cDNA sequence was first identified from Epinephelus coioides, named EcSRECII, which contained an N-terminal signal peptide, eight EGF/EGF-like cysteine-rich motifs and a C-terminal low-complexity region. The gene location maps revealed that EcSRECII has the conservation of synteny among selected species. Subcellular localization showed that EcSRECII was mainly located in the cytoplasm in HEK293T cells and GS cells. In healthy E. coioides, EcSRECII mRNA was highly expressed in spleen, skin, gill, thymus and head kidney. The relative EcSRECII mRNA expression after Vibrio parahaemolyticus infection was significantly up-regulated at 12 h in spleen, head kidney and thymus, but downregulated at 1 d in skin and reduced at 3 d and 1 w in spleen. Furthermore, overexpression of EcSRECII activated NF-κB and IFN-β signaling pathway in vitro. Taken together, these results indicated that EcSRECII could be as the potential pathogen recognition receptor for involving in bacterial infection by regulating innate immunity responses in E. coioides.
Collapse
Affiliation(s)
- Xifeng Qiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Pingchao Li
- Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, 510530, PR China
| | - Jianan He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Zeshu Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Jiaxing Chen
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Liangge He
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Xue Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; College of Ocean, Hainan University, Haikou, 570228, PR China
| | - Danqi Lu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, PR China.
| |
Collapse
|
23
|
Zhang J, Qu C, Li T, Cui W, Wang X, Du J. Phagocytosis mediated by scavenger receptor class BI promotes macrophage transition during skeletal muscle regeneration. J Biol Chem 2019; 294:15672-15685. [PMID: 31462534 PMCID: PMC6816089 DOI: 10.1074/jbc.ra119.008795] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 08/19/2019] [Indexed: 02/05/2023] Open
Abstract
Macrophages play an essential role in skeletal muscle regeneration. The phagocytosis of muscle cell debris induces a switch of pro-inflammatory macrophages into an anti-inflammatory phenotype, but the cellular receptors mediating this phagocytosis are still unclear. In this paper, we report novel roles for SRB1 (scavenger receptor class BI) in regulating macrophage phagocytosis and macrophage phenotypic transitions for skeletal muscle regeneration. In a mouse model of cardiotoxin-induced muscle injury/regeneration, infiltrated macrophages expressed a high level of SRB1. Using SRB1 knockout mice, we observed the impairment of muscle regeneration along with decreased myogenin expression and increased matrix deposit. Bone marrow transplantation experiments indicated that SRB1 deficiency in bone marrow cells was responsible for impaired muscle regeneration. Compared with WT mice, SRB1 deficiency increased pro-inflammatory macrophage number and pro-inflammatory gene expression and decreased anti-inflammatory macrophage number and anti-inflammatory gene expression in injured muscle. In vitro, SRB1 deficiency led to a strong decrease in macrophage phagocytic activity on myoblast debris. SRB1-deficient macrophages easily acquired an M1 phenotype and failed to acquire an M2 phenotype in lipopolysaccharide/myoblast debris activation. Furthermore, SRB1 deficiency promoted activation of ERK1/2 MAPK signaling in macrophages stimulated with lipopolysaccharide/myoblast debris. Taken together, SRB1 in macrophages regulates phagocytosis and promotes M1 switch into M2 macrophages, contributing to muscle regeneration.
Collapse
Affiliation(s)
- Jing Zhang
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Chao Qu
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Taotao Li
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Wei Cui
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China
| | - Xiaonan Wang
- Renal Division, Department of Medicine, Emory University, Atlanta, Georgia 30322, To whom correspondence may be addressed. E-mail:
| | - Jie Du
- Beijing Institute of Heart, Lung, and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China,Key Laboratory of Remodeling-related Cardiovascular Diseases, Ministry of Education, Beijing 100029, China, To whom correspondence may be addressed. E-mail:
| |
Collapse
|
24
|
Mitochondrial Calcium Uptake Is Instrumental to Alternative Macrophage Polarization and Phagocytic Activity. Int J Mol Sci 2019; 20:ijms20194966. [PMID: 31597355 PMCID: PMC6801659 DOI: 10.3390/ijms20194966] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 10/02/2019] [Indexed: 01/10/2023] Open
Abstract
Macrophages are highly plastic and dynamic cells that exert much of their function through phagocytosis. Phagocytosis depends on a coordinated, finely tuned, and compartmentalized regulation of calcium concentrations. We examined the role of mitochondrial calcium uptake and mitochondrial calcium uniporter (MCU) in macrophage polarization and function. In primary cultures of human monocyte-derived macrophages, calcium uptake in mitochondria was instrumental for alternative (M2) macrophage polarization. Mitochondrial calcium uniporter inhibition with KB-R7943 or MCU knockdown, which prevented mitochondrial calcium uptake, reduced M2 polarization, while not affecting classical (M1) polarization. Challenging macrophages with E. coli fragments induced spikes of mitochondrial calcium concentrations, which were prevented by MCU inhibition or silencing. In addition, mitochondria remodelled in M2 macrophages during phagocytosis, especially close to sites of E. coli internalization. Remarkably, inhibition or knockdown of MCU significantly reduced the phagocytic capacity of M2 macrophages. KB-R7943, which also inhibits the membrane sodium/calcium exchanger and Complex I, reduced mitochondria energization and cellular ATP levels, but such effects were not observed with MCU silencing. Therefore, phagocytosis inhibition by MCU knockdown depended on the impaired mitochondrial calcium buffering rather than changes in mitochondrial and cellular energy status. These data uncover a new role for MCU in alternative macrophage polarization and phagocytic activity.
Collapse
|
25
|
Wu J, Liu B, Mao W, Feng S, Yao Y, Bai F, Shen Y, Guleng A, Jirigala B, Cao J. Prostaglandin E2 Regulates Activation of Mouse Peritoneal Macrophages by Staphylococcus aureus through Toll-Like Receptor 2, Toll-Like Receptor 4, and NLRP3 Inflammasome Signaling. J Innate Immun 2019; 12:154-169. [PMID: 31141808 DOI: 10.1159/000499604] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 03/12/2019] [Indexed: 12/16/2022] Open
Abstract
Prostaglandin E2 (PGE2), an essential endogenous lipid mediator for normal physiological functions, can also act as an inflammatory mediator in pathological conditions. We determined whether Staphylococcus aureus lipoproteins are essential for inducing PGE2 secretion by immune cells and whether pattern recognition receptors mediate this process. PGE2 levels secreted by mouse peritoneal macrophages infected with the S. aureus isogenic mutant, lgt::ermB (Δlgt; deficient in lipoprotein maturation), decreased compared with those from macrophages infected with wild-type (WT) S. aureus. Experiments using toll-like receptors 2 (TLR2)-deficient, TLR4-deficient, and NLRP3-deficient mice indicated that these 3 proteins are involved in macrophage PGE2 secretion in response to S. aureus, and lipoproteins were essential for S. aureus invasion and survival within macrophages. Inhibition of endogenous PGE2 synthesis had no effect on bacterial invasion. Exogenous PGE2 inhibited phagocytosis in the WT S. aureus and its isogenic mutant but increased intracellular killing accompanied by enhanced IL-1β secretion. Our data demonstrate that S. aureus can induce macrophage TLR/mitogen-activated protein kinase/NF-κB signaling and that PGE2 treatment upregulates NLRP3/caspase-1 signaling activation. Thus, macrophage PGE2 secretion after S. aureus infection depends on bacterial lipoprotein maturation and macrophage receptors TLR2, TLR4, and NLRP3. Moreover, exogenous PGE2 regulates S. aureus-induced macrophage activation through TLRs and NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Jindi Wu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Bo Liu
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China, .,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China,
| | - Wei Mao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Shuang Feng
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China.,Laboratory of Veterinary Public Health, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuan Yao
- Department of Neurology, Inner Mongolia People's Hospital, Hohhot, China
| | - Fan Bai
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Yuan Shen
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Amu Guleng
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Bayin Jirigala
- Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| | - Jinshan Cao
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.,Key Laboratory of Clinical Diagnosis and Treatment Techniques for Animal Disease, Ministry of Agriculture, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
26
|
Pombinho R, Sousa S, Cabanes D. Scavenger Receptors: Promiscuous Players during Microbial Pathogenesis. Crit Rev Microbiol 2018; 44:685-700. [PMID: 30318962 DOI: 10.1080/1040841x.2018.1493716] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Innate immunity is the most broadly effective host defense, being essential to clear the majority of microbial infections. Scavenger Receptors comprise a family of sensors expressed in a multitude of host cells, whose dual role during microbial pathogenesis gained importance over recent years. SRs regulate the recruitment of immune cells and control both host inflammatory response and bacterial load. In turn, pathogens have evolved different strategies to overcome immune response, avoid recognition by SRs and exploit them to favor infection. Here, we discuss the most relevant findings regarding the interplay between SRs and pathogens, discussing how these multifunctional proteins recognize a panoply of ligands and act as bacterial phagocytic receptors.
Collapse
Affiliation(s)
- Rita Pombinho
- a Instituto de Investigação e Inovação em Saúde (i3S), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal.,b Instituto de Biologia Molecular e Celular (IBMC), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal
| | - Sandra Sousa
- a Instituto de Investigação e Inovação em Saúde (i3S), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal.,b Instituto de Biologia Molecular e Celular (IBMC), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal
| | - Didier Cabanes
- a Instituto de Investigação e Inovação em Saúde (i3S), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal.,b Instituto de Biologia Molecular e Celular (IBMC), Group of Molecular Microbiology , Universidade do Porto , Porto , Portugal
| |
Collapse
|
27
|
Ween MP, Whittall JJ, Hamon R, Reynolds PN, Hodge SJ. Phagocytosis and Inflammation: Exploring the effects of the components of E-cigarette vapor on macrophages. Physiol Rep 2018; 5:5/16/e13370. [PMID: 28867672 PMCID: PMC5582261 DOI: 10.14814/phy2.13370] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 06/26/2017] [Accepted: 06/28/2017] [Indexed: 01/24/2023] Open
Abstract
E‐cigarettes are perceived as harmless; however, evidence of their safety is lacking. New data suggests E‐cigarettes discharge a range of compounds capable of physiological damage to users. We previously established that cigarette smoke caused defective alveolar macrophage phagocytosis. The present study compared the effect E‐cigarette of components; E‐liquid flavors, nicotine, vegetable glycerine, and propylene glycol on phagocytosis, proinflammatory cytokine secretion, and phagocytic recognition molecule expression using differentiated THP‐1 macrophages. Similar to CSE, phagocytosis of NTHi bacteria was significantly decreased by E‐liquid flavoring (11.65–15.75%) versus control (27.01%). Nicotine also decreased phagocytosis (15.26%). E‐liquid, nicotine, and E‐liquid+ nicotine reduced phagocytic recognition molecules; SR‐A1 and TLR‐2. IL‐8 secretion increased with flavor and nicotine, while TNFα, IL‐1β, IL‐6, MIP‐1α, MIP‐1β, and MCP‐1 decreased after exposure to most flavors and nicotine. PG, VG, or PG:VG mix also induced a decrease in MIP‐1α and MIP‐1β. We conclude that E‐cigarettes can cause macrophage phagocytic dysfunction, expression of phagocytic recognition receptors and cytokine secretion pathways. As such, E‐cigarettes should be treated with caution by users, especially those who are nonsmokers.
Collapse
Affiliation(s)
- Miranda P Ween
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia .,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Jonathan J Whittall
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Rhys Hamon
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Paul N Reynolds
- Department of Thoracic Medicine, Royal Adelaide Hospital, Adelaide, Australia.,School of Medicine, University of Adelaide, Adelaide, Australia
| | - Sandra J Hodge
- School of Medicine, University of Adelaide, Adelaide, Australia
| |
Collapse
|
28
|
van Lookeren Campagne M, Verschoor A. Pathogen clearance and immune adherence "revisited": Immuno-regulatory roles for CRIg. Semin Immunol 2018; 37:4-11. [PMID: 29573978 DOI: 10.1016/j.smim.2018.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 01/30/2023]
Abstract
Rapid elimination of microbes from the bloodstream, along with the ability to mount an adaptive immune response, are essential for optimal host-defense. Kupffer cells are strategically positioned in the liver sinusoids and efficiently capture circulating microbes from the hepatic artery and portal vein, thus preventing bacterial dissemination. In vivo and in vitro studies have probed how complement receptor of the immunoglobulin superfamily (CRIg), also referred to as Z39Ig and V-set and Ig domain-containing 4 (VSIG4), acts as a critical player in pathogen recognition and clearance. While recent data suggested that CRIg may bind bacterial cell wall components directly, the single transmembrane receptor is best known for its interaction with complement C3 opsonization products on the microbial surface. On Kupffer cells, CRIg must capture opsonized microbes against the shear forces of the blood flow. In vivo work reveals how immune adherence (IA), a process in which blood platelets or erythrocytes associate with circulating bacteria, plays a critical role in regulating pathogen capture by CRIg under flow conditions. In addition to its typical innate immune functions, CRIg was shown to directly and indirectly influence adaptive immune responses. Here, we review our current understanding of the diverse roles of CRIg in pathogen elimination, anti-microbial immunity and autoimmunity. In particular, we will explore how, through selective capturing by CRIg, an important balance is achieved between the immunological and clearance functions of liver and spleen.
Collapse
Affiliation(s)
| | - Admar Verschoor
- Institute for Systemic Inflammation Research, Universität zu Lübeck, 23538 Lübeck, Germany.
| |
Collapse
|
29
|
Zhang L, Nie L, Cai SY, Chen J, Chen J. Role of a macrophage receptor with collagenous structure (MARCO) in regulating monocyte/macrophage functions in ayu, Plecoglossus altivelis. FISH & SHELLFISH IMMUNOLOGY 2018; 74:141-151. [PMID: 29305330 DOI: 10.1016/j.fsi.2017.12.059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/23/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
Macrophage receptor with collagenous structure (MARCO) plays essential roles in phagocytic cell-mediated innate immune responses. However, studies regarding MARCO, especially its functions, are limited in teleost species. In this study, we identified a MARCO molecule (PaMARCO) from ayu (Plecoglossus altivelis). PaMARCO shared conserved functional domains with its mammalian counterparts. Sequence analysis showed that PaMARCO was most closely related to its rainbow trout (Oncorhynchus mykiss) counterpart. PaMARCO expression was upregulated in all tested immune tissues and monocytes/macrophages (MO/MΦ) upon Vibrio anguillarum infection, and blocking its function significantly decreased the immune responses of MO/MΦ during infection. PaMARCO could bind to the tested gram-positive and -negative bacteria in a Ca2+-dependent manner in vitro. Furthermore, the phagocytosis and bacterial killing activities of MO/MΦ were significantly decreased upon PaMARCO blockade using anti-PaMARCO IgG. PaMARCO was also involved in the polarization processes of ayu MO/MΦ. The upregulated expression of representative cytokines in LPS-induced M1 type (TNF-α, IL-1β) or cAMP-induced M2 type (TGF-β, IL-10) were inhibited in the anti-PaMARCO IgG-treated group, indicating that PaMARCO may be involved in the regulation of both inflammation priming and inflammation resolution of MO/MΦ. In conclusion, our results implicate that PaMARCO has essential regulatory roles for bacterial binding, clearance, and the polarization processes of ayu MO/MΦ.
Collapse
Affiliation(s)
- Le Zhang
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jie Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo 315211, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
30
|
Hirayama D, Iida T, Nakase H. The Phagocytic Function of Macrophage-Enforcing Innate Immunity and Tissue Homeostasis. Int J Mol Sci 2017; 19:E92. [PMID: 29286292 PMCID: PMC5796042 DOI: 10.3390/ijms19010092] [Citation(s) in RCA: 541] [Impact Index Per Article: 67.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/19/2017] [Accepted: 12/27/2017] [Indexed: 12/20/2022] Open
Abstract
Macrophages are effector cells of the innate immune system that phagocytose bacteria and secrete both pro-inflammatory and antimicrobial mediators. In addition, macrophages play an important role in eliminating diseased and damaged cells through their programmed cell death. Generally, macrophages ingest and degrade dead cells, debris, tumor cells, and foreign materials. They promote homeostasis by responding to internal and external changes within the body, not only as phagocytes, but also through trophic, regulatory, and repair functions. Recent studies demonstrated that macrophages differentiate from hematopoietic stem cell-derived monocytes and embryonic yolk sac macrophages. The latter mainly give rise to tissue macrophages. Macrophages exist in all vertebrate tissues and have dual functions in host protection and tissue injury, which are maintained at a fine balance. Tissue macrophages have heterogeneous phenotypes in different tissue environments. In this review, we focused on the phagocytic function of macrophage-enforcing innate immunity and tissue homeostasis for a better understanding of the role of tissue macrophages in several pathological conditions.
Collapse
Affiliation(s)
- Daisuke Hirayama
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| | - Tomoya Iida
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| | - Hiroshi Nakase
- Department of Gastroenterology and Hepatology, Sapporo Medical University School of Medicine, Minami 1-jo Nishi 16-chome, Chuo-ku, Sapporo, Hokkaido 060-8543, Japan.
| |
Collapse
|
31
|
Cline TD, Beck D, Bianchini E. Influenza virus replication in macrophages: balancing protection and pathogenesis. J Gen Virol 2017; 98:2401-2412. [PMID: 28884667 DOI: 10.1099/jgv.0.000922] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Macrophages are essential for protection against influenza A virus infection, but are also implicated in the morbidity and mortality associated with severe influenza disease, particularly during infection with highly pathogenic avian influenza (HPAI) H5N1 virus. While influenza virus infection of macrophages was once thought to be abortive, it is now clear that certain virus strains can replicate productively in macrophages. This may have important consequences for the antiviral functions of macrophages, the course of disease and the outcome of infection for the host. In this article, we review findings related to influenza virus replication in macrophages and the impact of productive replication on macrophage antiviral functions. A clear understanding of the interactions between influenza viruses and macrophages may lead to new antiviral therapies to relieve the burden of severe disease associated with influenza viruses.
Collapse
Affiliation(s)
- Troy D Cline
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Donald Beck
- Department of Biological Sciences, California State University, Chico, California, USA
| | - Elizabeth Bianchini
- Department of Biological Sciences, California State University, Chico, California, USA
| |
Collapse
|
32
|
Yang MC, Yang HT, Li J, Sun JJ, Bi WJ, Niu GJ, Zhang Q, Shi XZ, Zhao XF, Wang JX. Scavenger receptor C promotes bacterial clearance in kuruma shrimp Marsupenaeus japonicus by enhancing hemocyte phagocytosis and AMP expression. FISH & SHELLFISH IMMUNOLOGY 2017; 67:254-262. [PMID: 28602682 DOI: 10.1016/j.fsi.2017.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/23/2017] [Accepted: 06/03/2017] [Indexed: 06/07/2023]
Abstract
Scavenger receptors (SRs) comprise a large family of structurally diverse glycoproteins located on the cell membrane and function as pattern-recognition receptors (PRRs) participating in innate immunity in different species. Class C scavenger receptor (SRC) has been only identified in invertebrates and its biological functions still need to be researched. In this study, we characterized the anti-bacterial function of a SRC from kuruma shrimp Marsupenaeus japonicus (MjSRC). The mRNA level of MjSRC was up-regulated significantly in hemocytes of kuruma shrimp challenged by Vibrio anguillarum or Staphylococcus aureus. The recombinant extracellular domains (MAM and CCP domains) of MjSRC have the ability of binding different bacteria and glycans in vitro. After knockdown of MjSRC, the bacterial clearance ability and phagocytic rate of hemocyte decreased significantly in vivo. Meanwhile, overexpression of MjSRC in shrimp enhanced the clearance ability and phagocytic rate of hemocytes. Further study found that MjSRC could regulate the expression of several antimicrobial peptides (AMPs). All these results indicate that MjSRC plays important roles in antibacterial immunity in kuruma shrimp by enhancing hemocyte phagocytosis and AMP expression.
Collapse
Affiliation(s)
- Ming-Chong Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Hui-Ting Yang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jing Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jie-Jie Sun
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Wen-Jie Bi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Guo-Juan Niu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Qiang Zhang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiu-Zhen Shi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan, Shandong 250100, China.
| |
Collapse
|
33
|
Xu Z, Xu L, Li W, Jin X, Song X, Chen X, Zhu J, Zhou S, Li Y, Zhang W, Dong X, Yang X, Liu F, Bai H, Chen Q, Su C. Innate scavenger receptor-A regulates adaptive T helper cell responses to pathogen infection. Nat Commun 2017; 8:16035. [PMID: 28695899 PMCID: PMC5508227 DOI: 10.1038/ncomms16035] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 05/24/2017] [Indexed: 12/29/2022] Open
Abstract
The pattern recognition receptor (PRR) scavenger receptor class A (SR-A) has an important function in the pathogenesis of non-infectious diseases and in innate immune responses to pathogen infections. However, little is known about the role of SR-A in the host adaptive immune responses to pathogen infection. Here we show with mouse models of helminth Schistosoma japonicum infection and heat-inactivated Mycobacterium tuberculosis stimulation that SR-A is regulated by pathogens and suppresses IRF5 nuclear translocation by direct interaction. Reduced abundance of nuclear IRF5 shifts macrophage polarization from M1 towards M2, which subsequently switches T-helper responses from type 1 to type 2. Our study identifies a role for SR-A as an innate PRR in regulating adaptive immune responses.
Collapse
Affiliation(s)
- Zhipeng Xu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Lei Xu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Li
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xin Jin
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xian Song
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaojun Chen
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jifeng Zhu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Sha Zhou
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yong Li
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Weiwei Zhang
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaoxiao Dong
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Xiaowei Yang
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Feng Liu
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Hui Bai
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Qi Chen
- Atherosclerosis Research Center, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Chuan Su
- Jiangsu Province Key Laboratory of Modern Pathogen Biology, Department of Pathogen Biology and Immunology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| |
Collapse
|
34
|
Abstract
Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed "professional phagocytes": neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.
Collapse
|
35
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
36
|
Peruń A, Biedroń R, Konopiński MK, Białecka A, Marcinkiewicz J, Józefowski S. Phagocytosis of live versus killed or fluorescently labeled bacteria by macrophages differ in both magnitude and receptor specificity. Immunol Cell Biol 2016; 95:424-435. [PMID: 27826145 DOI: 10.1038/icb.2016.112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 11/03/2016] [Accepted: 11/03/2016] [Indexed: 01/23/2023]
Abstract
Scavenger receptor (SR)-mediated opsonin-independent phagocytosis of bacteria by macrophages has been suggested to represent an important, early mechanism of anti-bacterial host defense. However, although the ability to bind bacteria has been demonstrated to be a shared feature of all types of SRs, in many cases the evidence is limited to the demonstration of increased binding of killed, fluorescently labeled bacteria to non-phagocytic cells transfected with these receptors. We sought to verify the ability of SRs to mediate non-opsonic phagocytosis of live Escherichia coli (Ec) and Staphylococcus aureus (Sa), model species of Gram-negative and -positive bacteria, respectively, and to assess the relative contributions of different SRs expressed on murine macrophages in this process. We found that the class A SR SR-A/CD204 was the major receptor mediating phagocytosis of fluorescently labeled Sa, whereas different SRs had highly redundant roles in the phagocytosis of live Sa. Conversely, different SRs contributed to the phagocytosis of fluorescently labeled Ec. In comparison, phagocytosis of live Ec was of much lower magnitude and was selectively mediated by SR-A. These results question the use of fluorescently labeled bacteria as valid replacements for live bacteria. The low magnitude of opsonin-independent phagocytosis of Ec and unimpaired phagocytosis of Sa in SR-A- or CD36-deficient macrophages indicate that the defect in this process might not be responsible for the reported impaired bacteria clearance in mice deficient in these receptors. We postulate that this impairment might result to a larger extent from inhibition of intracellular bacteria killing caused by pro-inflammatory cytokines, produced in excessive amounts by SR-deficient cells in response to bacterial products.
Collapse
Affiliation(s)
- Angelika Peruń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Rafał Biedroń
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Maciej K Konopiński
- Institute of Nature Conservation, Polish Academy of Sciences, Cracow, Poland
| | - Anna Białecka
- Centre of Microbiological Research and Autovaccines, Cracow, Poland
| | - Janusz Marcinkiewicz
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| | - Szczepan Józefowski
- Department of Immunology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
37
|
Schade J, Weidenmaier C. Cell wall glycopolymers of Firmicutes and their role as nonprotein adhesins. FEBS Lett 2016; 590:3758-3771. [PMID: 27396949 DOI: 10.1002/1873-3468.12288] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 06/27/2016] [Accepted: 07/05/2016] [Indexed: 12/12/2022]
Abstract
Cell wall glycopolymers (CWGs) of gram-positive bacteria have gained increasing interest with respect to their role in colonization and infection. In most gram-positive pathogens they constitute a large fraction of the cell wall biomass and represent major cell envelope determinants. Depending on their chemical structure they modulate interaction with complement factors and play roles in immune evasion or serve as nonprotein adhesins that mediate, especially under dynamic conditions, attachment to different host cell types. In particular, covalently peptidoglycan-attached CWGs that extend well above the cell wall seem to interact with glyco-receptors on host cell surfaces. For example, in the case of Staphylococcus aureus, the cell wall-attached teichoic acid (WTA) has been identified as a major CWG adhesin. A recent report indicates that a type-F scavenger receptor, termed SR-F1 (SREC-I), is the predominant WTA receptor in the nasal cavity and that WTA-SREC-I interaction plays an important role in S. aureus nasal colonization. Therefore, understanding the role of CWGs in complex processes that mediate colonization and infection will allow novel insights into the mechanisms of host-microbiota interaction.
Collapse
Affiliation(s)
- Jessica Schade
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany
| | - Christopher Weidenmaier
- Interfaculty Institute for Microbiology and Infection Medicine (IMIT), University of Tübingen, Germany.,German Center for Infection Research (DZIF), Partnersite Tübingen, Germany
| |
Collapse
|
38
|
Feng S, Jiang Y, Zhang S, Dong C, Jiang L, Peng W, Mu X, Sun X, Xu P. Genome wide identification of scavenger receptors class A in common carp (Cyprinus carpio) and their expression following Aeromonas hydrophila infection. FISH & SHELLFISH IMMUNOLOGY 2016; 54:60-67. [PMID: 27041666 DOI: 10.1016/j.fsi.2016.03.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/10/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Scavenger receptors class A (SCARAs) is a subgroup of diverse families of pattern recognition receptors that bind a range of ligands, and play important roles in innate immune processes through pathogens detection, adhesion, endocytosis, and phagocytosis. However, most studies of SCARAs have focused on mammals, and much less is known of SCARAs in fish species. In this study, we identified 7 SCARAs across the common carp genome, which were classified into four subclasses according to comparative genomic analysis including sequence similarities analysis, gene structure and functional domain prediction. Further phylogenetic and syntenic analysis supported their annotation and orthologies. Through examining gene copy number of SCARA genes across several vertebrates, SCARA2, SCARA3 and SCARA4 were found have undergone gene duplication. The expression patterns of SCARAs in common carp were examined during early developmental stages, in healthy tissues, and after Aeromonas hydrophila infection. Most SCARA genes were ubiquitously expressed during common carp early developmental stages, and presented diverse patterns in various healthy tissues, with relatively high expression levels in spleen, liver, intestine, gill and brain, indicating their critical roles likely in maintaining homeostasis and host immune response activities. After A. hydrophila infection, most SCARA genes were up-regulated at 4 h post infection in mucosal tissue intestine, while generally up-regulated at 12 h post infection in spleen, suggesting a tissue-specific pattern of regulation. Taken together, all these results suggested that SCARA genes played important roles in host immune response to A. hydrophila infection in common carp, and provided important genomic resources for future studies on fish disease management.
Collapse
Affiliation(s)
- Shuaisheng Feng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yanliang Jiang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| | - Songhao Zhang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Chuanju Dong
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Likun Jiang
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Wenzhu Peng
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Xidong Mu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, Guangzhou, China
| | - Xiaowen Sun
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China
| | - Peng Xu
- CAFS Key Laboratory of Aquatic Genomics and Beijing Key Laboratory of Fishery Biotechnology, Centre for Applied Aquatic Genomics, Chinese Academy of Fishery Sciences, Beijing, China.
| |
Collapse
|
39
|
The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. Immunobiology 2016; 221:1091-101. [PMID: 27424796 DOI: 10.1016/j.imbio.2016.06.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/22/2022]
Abstract
Staphylococcus aureus is a Gram-positive bacterial pathogen that is decorated by glycopolymers, including wall teichoic acid (WTA), peptidoglycan, lipoteichoic acid, and capsular polysaccharides. These bacterial surface glycopolymers are recognized by serum antibodies and a variety of pattern recognition molecules, including mannose-binding lectin (MBL). Recently, we demonstrated that human serum MBL senses staphylococcal WTA. Whereas MBL in infants who have not yet fully developed adaptive immunity binds to S. aureus WTA and activates complement serum, MBL in adults who have fully developed adaptive immunity cannot bind to WTA because of an inhibitory effect of serum anti-WTA IgG. Furthermore, we showed that human anti-WTA IgGs purified from pooled adult serum IgGs triggered activation of classical complement-dependent opsonophagocytosis against S. aureus. Because the epitopes of WTA that are recognized by anti-WTA IgG and MBL have not been determined, we constructed several S. aureus mutants with altered WTA glycosylation. Our intensive biochemical studies provide evidence that the β-GlcNAc residues of WTA are required for the induction of anti-WTA IgG-mediated opsonophagocytosis and that both β- and α-GlcNAc residues are required for MBL-mediated complement activation. The molecular interactions of other S. aureus cell wall components and host recognition proteins are also discussed. In summary, in this review, we discuss the biological importance of S. aureus cell surface glycopolymers in complement activation and host defense responses.
Collapse
|
40
|
Flannagan RS, Heit B, Heinrichs DE. Intracellular replication of Staphylococcus aureus in mature phagolysosomes in macrophages precedes host cell death, and bacterial escape and dissemination. Cell Microbiol 2015; 18:514-35. [PMID: 26408990 DOI: 10.1111/cmi.12527] [Citation(s) in RCA: 158] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/21/2015] [Accepted: 09/22/2015] [Indexed: 01/12/2023]
Abstract
The success of Staphylococcus aureus as a pathogen is partly attributable to its ability to thwart host innate immune responses, which includes resisting the antimicrobial functions of phagocytes. Here, we have studied the interaction of methicillin-resistant S. aureus (MRSA) strain USA300 with murine RAW 264.7 and primary human macrophages using molecular imaging and single cell analysis to obtain an unprecedented understanding of the interaction between the macrophage and MRSA. Herein we demonstrate that macrophages fail to control intracellular infection by MRSA USA300 despite trafficking the bacteria into mature phagolysosomes. Using fluorescence-based proliferation assays we also show that intracellular staphylococci proliferate and that replication commences while the bacteria are residing in mature phagolysosomes hours after initial phagocytosis. Finally, live-cell fluorescence video microscopy allowed for unprecedented visual insight into the escape of MRSA from macrophages, demonstrating that the macrophages die through a pathway characterized by membrane blebbing and activation of caspase-3 followed by acquisition of the vital dye propidium iodide. Moreover, cell death precedes the emergence of MRSA from infected macrophages, and these events can be ablated by prolonged exposure of infected phagocytes to gentamicin.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - Bryan Heit
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| | - David E Heinrichs
- Department of Microbiology and Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1.,Centre for Human Immunology, The University of Western Ontario, London, Ontario, Canada, N6A 5C1
| |
Collapse
|
41
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
42
|
Licona-Limón I, Garay-Canales CA, Muñoz-Paleta O, Ortega E. CD13 mediates phagocytosis in human monocytic cells. J Leukoc Biol 2015; 98:85-98. [PMID: 25934926 PMCID: PMC7167067 DOI: 10.1189/jlb.2a0914-458r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 04/06/2015] [Indexed: 11/24/2022] Open
Abstract
The myelomonocytic marker aminopeptidase N/CD13 is a novel phagocytic receptor in monocytes and macrophages. CD13 is a membrane‐bound ectopeptidase, highly expressed on monocytes, macrophages, and dendritic cells. CD13 is involved in diverse functions, including degradation of peptide mediators, cellular adhesion, migration, viral endocytosis, signaling, and positive modulation of phagocytosis mediated by FcγRs and other phagocytic receptors. In this work, we explored whether besides acting as an accessory receptor, CD13 by itself is a primary phagocytic receptor. We found that hCD13 mediates efficient phagocytosis of large particles (erythrocytes) modified so as to interact with the cell only through CD13 in human macrophages and THP‐1 monocytic cells. The extent of this phagocytosis is comparable with the phagocytosis mediated through the canonical phagocytic receptor FcγRI. Furthermore, we demonstrated that hCD13 expression in the nonphagocytic cell line HEK293 is sufficient to enable these cells to internalize particles bound through hCD13. CD13‐mediated phagocytosis is independent of other phagocytic receptors, as it occurs in the absence of FcγRs, CR3, and most phagocytic receptors. Phagocytosis through CD13 is independent of its enzymatic activity but is dependent on actin rearrangement and activation of PI3K and is partially dependent on Syk activation. Moreover, the cross‐linking of CD13 with antibodies rapidly induced pSyk in human macrophages. Finally, we observed that antibody‐mediated cross‐linking of hCD13, expressed in the murine macrophage‐like J774 cell line, induces production of ROS. These results demonstrate that CD13 is a fully competent phagocytic receptor capable of mediating internalization of large particles.
Collapse
Affiliation(s)
- Ileana Licona-Limón
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Claudia A Garay-Canales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Ofelia Muñoz-Paleta
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| | - Enrique Ortega
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico D.F., México
| |
Collapse
|
43
|
Kocur M, Schneider R, Pulm AK, Bauer J, Kropp S, Gliem M, Ingwersen J, Goebels N, Alferink J, Prozorovski T, Aktas O, Scheu S. IFNβ secreted by microglia mediates clearance of myelin debris in CNS autoimmunity. Acta Neuropathol Commun 2015; 3:20. [PMID: 25853624 PMCID: PMC4383054 DOI: 10.1186/s40478-015-0192-4] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 02/03/2015] [Indexed: 02/07/2023] Open
Abstract
Introduction Multiple sclerosis (MS) is a chronic demyelinating disorder of the central nervous system (CNS) leading to progressive neurological disability. Interferon β (IFNβ) represents a standard treatment for relapsing-remitting MS and exogenous administration of IFNβ exhibits protective effects in experimentally induced CNS autoimmunity. Also, genetic deletion of IFNβ in mice leads to an aggravation of disease symptoms in the MS model of experimental autoimmune encephalomyelitis (EAE). However, neither the underlying mechanisms mediating the beneficial effects nor the cellular source of IFNβ have been fully elucidated. Results In this report, a subpopulation of activated microglia was identified as the major producers of IFNβ in the CNS at the peak of EAE using an IFNβ-fluorescence reporter mouse model. These IFNβ expressing microglia specifically localized to active CNS lesions and were associated with myelin debris in demyelinated cerebellar organotypic slice cultures (OSCs). In response to IFNβ microglia showed an enhanced capacity to phagocytose myelin in vitro and up-regulated the expression of phagocytosis-associated genes. IFNβ treatment was further sufficient to stimulate association of microglia with myelin debris in OSCs. Moreover, IFNβ-producing microglia mediated an enhanced removal of myelin debris when co-transplanted onto demyelinated OSCs as compared to IFNβ non-producing microglia. Conclusions These data identify activated microglia as the major producers of protective IFNβ at the peak of EAE and as orchestrators of IFNβ-induced clearance of myelin debris. Electronic supplementary material The online version of this article (doi:10.1186/s40478-015-0192-4) contains supplementary material, which is available to authorized users.
Collapse
|
44
|
Kelley JL, Ozment TR, Li C, Schweitzer JB, Williams DL. Scavenger receptor-A (CD204): a two-edged sword in health and disease. Crit Rev Immunol 2015; 34:241-61. [PMID: 24941076 DOI: 10.1615/critrevimmunol.2014010267] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Scavenger receptor A (SR-A), also known as the macrophage scavenger receptor and cluster of differentiation 204 (CD204), plays roles in lipid metabolism, atherogenesis, and a number of metabolic processes. However, recent evidence points to important roles for SR-A in inflammation, innate immunity, host defense, sepsis, and ischemic injury. Herein, we review the role of SR-A in inflammation, innate immunity, host defense, sepsis, cardiac and cerebral ischemic injury, Alzheimer's disease, virus recognition and uptake, bone metabolism, and pulmonary injury. Interestingly, SR-A is reported to be host protective in some disease states, but there is also compelling evidence that SR-A plays a role in the pathophysiology of other diseases. These observations of both harmful and beneficial effects of SR-A are discussed here in the framework of inflammation, innate immunity, and endoplasmic reticulum stress.
Collapse
Affiliation(s)
- Jim L Kelley
- Departments of Internal Medicine, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Tammy R Ozment
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - Chuanfu Li
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - John B Schweitzer
- Departments of Pathology, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| | - David L Williams
- Departments of Surgery, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614
| |
Collapse
|
45
|
He J, Liu H, Wu C. Identification of SCARA3, SCARA5 and MARCO of class A scavenger receptor-like family in Pseudosciaena crocea. FISH & SHELLFISH IMMUNOLOGY 2014; 41:238-249. [PMID: 25218683 DOI: 10.1016/j.fsi.2014.07.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
The class A scavenger receptors are important pattern recognition receptors of the innate immune system in living organisms. According to the whole-genome data of large yellow croaker (Pseudosciaena crocea), three kinds of scavenger receptors, SCARA3, SCARA5 and MARCO were cloned from the spleen, designated severally as TycSA3, TycSA5 and TycMAC. The complete cDNAs open reading frames (ORF) of TycSA3, TycSA5 and TycMAC were 1938 bp, 1677 bp and 1218 bp (GenBank accession no. KJ467772, KJ467773 and KJ467771), encoding 645, 558 and 405 amino acid (aa) residues respectively. The BLASTp analysis strongly suggested that the sequences shared high similarity with known SCARA3, SCARA5 and MARCO. The phylogenetic relationship analysis illustrated that different subtype of SRs formed their own separate branches, TycSA3 and TycSA5 were placed in SCARA3 and SCARA5 branch of Osteichthyes fish respectively with strong bootstrap support. Curiously, the TycMAC was clustered with Alligator sinensis. ClustalW analysis with amino acid sequences revealed that the proportion of identity with other species was 59-71% for TycSA3 and 55-72% for TycSA5, but the scale of TycMAC was considerable lower than those of other two genes (only approximately 38%). The SR family motifs, such as transmembrane helix region, colied coli region and collagens region in the TycSA3, TycSA5 and TycMAC were conserved. There was an optional cysteine-rich (SRCR) domain (from 457 to 557 residues) containing 6 conserved cysteines (C-482, C-495, C-526, C-536, C-546 and C-556) in TycSA5. Likewise, the SRCR domains of TycMAC (from 310 to 405 residues) also contained C-333, C-346, C-374, C-384, C-394 and C-404 cysteines residues. Particularly, there were the major TRAF2-binding consensus motif and two main motifs on internalization of receptor in TycSA3 and TycSA5. The gene structures of different species were analyzed with GeneMaper v2.5, and the number of introns and exons of TycSA3, TycSA5 and TycMAC in DNA sequences were different, for example some corresponding exon regions were divided into several smaller exon portions. Furthermore, quantitative real-time PCR (qRT-PCR) analysis indicated the highest mRNA expression of TycSA3, TycSA5 and TycMAC all appeared in spleen among eight detected tissues, and the expression of them were up-regulated in spleen after Vibrio alginolyticus injection. All these results demonstrated that class A SRs played a significant role in the defense against pathogenic bacteria infection in innate immune of sciaenidae fish.
Collapse
Affiliation(s)
- Jianyu He
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Huihui Liu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Changwen Wu
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan 316022, PR China.
| |
Collapse
|
46
|
Cole J, Aberdein J, Jubrail J, Dockrell DH. The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 2014; 65:125-202. [PMID: 25476766 DOI: 10.1016/bs.ampbs.2014.08.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Macrophages are critical mediators of innate immune responses against bacteria. The Gram-positive bacteria Streptococcus pneumoniae and Staphylococcus aureus express a range of virulence factors, which challenge macrophages' immune competence. We review how macrophages respond to this challenge. Macrophages employ a range of strategies to phagocytose and kill each pathogen. When the macrophages capacity to clear bacteria is overwhelmed macrophages play important roles in orchestrating the inflammatory response through pattern recognition receptor-mediated responses. Macrophages also ensure the inflammatory response is tightly constrained, to avoid tissue damage, and play an important role in downregulating the inflammatory response once initial bacterial replication is controlled.
Collapse
Affiliation(s)
- Joby Cole
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jody Aberdein
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - Jamil Jubrail
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom
| | - David H Dockrell
- Department of Infection and Immunity, University of Sheffield Medical School and Sheffield Teaching Hospitals, Sheffield, United Kingdom.
| |
Collapse
|
47
|
Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer's-like disease progression. Nat Commun 2013; 4:2030. [PMID: 23799536 PMCID: PMC3702268 DOI: 10.1038/ncomms3030] [Citation(s) in RCA: 144] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/17/2013] [Indexed: 12/31/2022] Open
Abstract
In Alzheimer's disease, soluble amyloid-β causes synaptic dysfunction and neuronal loss. Receptors involved in clearance of soluble amyloid-β are not known. Here we use short hairpin RNA screening and identify the scavenger receptor Scara1 as a receptor for soluble amyloid-β expressed on myeloid cells. To determine the role of Scara1 in clearance of soluble amyloid-β in vivo, we cross Scara1 null mice with PS1-APP mice, a mouse model of Alzheimer's disease, and generate PS1-APP-Scara1-deficient mice. Scara1 deficiency markedly accelerates Aβ accumulation, leading to increased mortality. In contrast, pharmacological upregulation of Scara1 expression on mononuclear phagocytes increases Aβ clearance. This approach is a potential treatment strategy for Alzheimer's disease.
Collapse
|
48
|
Jawad S, Liu B, Li Z, Katamay R, Campos M, Wei L, Sen HN, Ling D, Martinez Estrada F, Amaral J, Chan CC, Fariss R, Gordon S, Nussenblatt RB. The role of macrophage class a scavenger receptors in a laser-induced murine choroidal neovascularization model. Invest Ophthalmol Vis Sci 2013; 54:5959-70. [PMID: 23927892 DOI: 10.1167/iovs.12-11380] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE Laser-induced choroidal neovascularization (CNV) is a widely used model to mimic many features of CNV resulting from wet AMD. Macrophages have been implicated in the pathogenesis of AMD. Class A scavenger receptors, scavenger receptor-A (SR-A) and macrophage receptor with collagenous domain (MARCO), are expressed on macrophages and are associated with macrophage function. The goal of this study is to examine the role of macrophage scavenger receptors in immune cell recruitment and the formation of CNV. METHODS Laser photocoagulation was performed in wild-type and knockout mice with deletion of SR-A (SR-A(-/-)), MARCO (MARCO(-/-)), or both SR-A and MARCO double knockout (DKO). Immune cell recruitment at different time points and CNV lesions at 14 days after laser treatment were evaluated through immunostaining and confocal microscopy. Microarray analysis was performed in eyes 1 day after laser injury. RESULTS Wild-type eyes showed higher chemokine/receptor expression compared with knockout eyes after laser injury. Scavenger receptor deficiency markedly impaired the recruitment of neutrophils and macrophages to CNV lesions at 1- and 3-days post laser injury, respectively. Significantly reduced CNV volumes were found in the eyes from scavenger receptor knockout mice compared with wild-type mice. CONCLUSIONS The deficiency of scavenger receptors impairs the formation of CNV and immune cell recruitment. Our findings suggest a potential role for scavenger receptors in contributing to CNV formation and inflammation in AMD.
Collapse
Affiliation(s)
- Shayma Jawad
- Laboratory of Immunology, National Eye Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13:621-34. [PMID: 23928573 DOI: 10.1038/nri3515] [Citation(s) in RCA: 580] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Scavenger receptors were originally identified by their ability to recognize and to remove modified lipoproteins; however, it is now appreciated that they carry out a striking range of functions, including pathogen clearance, lipid transport, the transport of cargo within the cell and even functioning as taste receptors. The large repertoire of ligands recognized by scavenger receptors and their broad range of functions are not only due to the wide range of receptors that constitute this family but also to their ability to partner with various co-receptors. The ability of individual scavenger receptors to associate with different co-receptors makes their responsiveness extremely versatile. This Review highlights recent insights into the structural features that determine the function of scavenger receptors and the emerging role that these receptors have in immune responses, notably in macrophage polarization and in the pathogenesis of diseases such as atherosclerosis and Alzheimer's disease.
Collapse
Affiliation(s)
- Johnathan Canton
- Cell Biology Program, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | |
Collapse
|
50
|
Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer's disease. Mediators Inflamm 2013; 2013:895651. [PMID: 23737655 PMCID: PMC3662199 DOI: 10.1155/2013/895651] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
It is widely accepted that cells serving immune functions in the brain, namely, microglia and astrocytes, are important mediators of pathological phenomena observed in Alzheimer's disease. However, it is unknown how these cells initiate the response that results in cognitive impairment and neuronal degeneration. Here, we review the participation of the immune response mediated by glial cells in Alzheimer's disease and the role played by scavenger receptors in the development of this pathology, focusing on the relevance of class A scavenger receptor (SR-A) for A β clearance and inflammatory activation of glial cell, and as a potential target for Alzheimer's disease therapy.
Collapse
Affiliation(s)
- Francisca Cornejo
- Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta, 391 Santiago, Chile
| | - Rommy von Bernhardi
- Laboratorio de Neurociencias, Departamento de Neurología, Escuela de Medicina, Pontificia Universidad Católica de Chile, Marcoleta, 391 Santiago, Chile
| |
Collapse
|