1
|
Venkatasubramanian D, Senevirathne G, Capellini TD, Craft AM. Leveraging single cell multiomic analyses to identify factors that drive human chondrocyte cell fate. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598666. [PMID: 38915712 PMCID: PMC11195167 DOI: 10.1101/2024.06.12.598666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Cartilage plays a crucial role in skeletal development and function, and abnormal development contributes to genetic and age-related skeletal disease. To better understand how human cartilage develops in vivo , we jointly profiled the transcriptome and open chromatin regions in individual nuclei recovered from distal femurs at 2 fetal timepoints. We used these multiomic data to identify transcription factors expressed in distinct chondrocyte subtypes, link accessible regulatory elements with gene expression, and predict transcription factor-based regulatory networks that are important for growth plate or epiphyseal chondrocyte differentiation. We developed a human pluripotent stem cell platform for interrogating the function of predicted transcription factors during chondrocyte differentiation and used it to test NFATC2 . We expect new regulatory networks we uncovered using multiomic data to be important for promoting cartilage health and treating disease, and our platform to be a useful tool for studying cartilage development in vitro . Statement of Significance The identity and integrity of the articular cartilage lining our joints are crucial to pain-free activities of daily living. Here we identified a gene regulatory landscape of human chondrogenesis at single cell resolution, which is expected to open new avenues of research aimed at mitigating cartilage diseases that affect hundreds of millions of individuals world-wide.
Collapse
|
2
|
Erman B, Bal SK, Aydoğmuş Ç, Ersoy GZ, Boztug K. A Novel Homozygous Six Base Pair Deletion Found in the NFATC2 Gene in a Patient with EBV-Associated Lymphoproliferation. J Clin Immunol 2024; 44:74. [PMID: 38427060 PMCID: PMC10907409 DOI: 10.1007/s10875-024-01675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/23/2024] [Indexed: 03/02/2024]
Affiliation(s)
- Baran Erman
- Institute of Child Health, Hacettepe University, Ankara, Türkiye.
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Türkiye.
| | - Sevgi Köstel Bal
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
| | - Çiğdem Aydoğmuş
- Division of Pediatric Allergy and Immunology, Basaksehir Cam and Sakura City Hospital, University of Health Sciences, Istanbul, Turkey
| | - Gizem Zengin Ersoy
- Department of Pediatric Hematology Oncology and Pediatric Bone Marrow Transplantation, Medical Park Bahçelievler Hospital, Altınbaş University, İstanbul, Turkey
| | - Kaan Boztug
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- St. Anna Children's Hospital, Vienna, Austria
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
3
|
Tortorelli I, Bellan E, Chiusole B, Murtas F, Ruggieri P, Pala E, Cerchiaro M, Buzzaccarini MS, Scarzello G, Krengli M, Bisinella G, Battisti S, Di Maggio A, Zagonel V, Tos APD, Sbaraglia M, Brunello A. Primary vascular tumors of bone: A comprehensive literature review on classification, diagnosis and treatment. Crit Rev Oncol Hematol 2024; 195:104268. [PMID: 38237880 DOI: 10.1016/j.critrevonc.2024.104268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/23/2023] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Primary vascular tumors of bone are a heterogeneous group of neoplasms, ranging from benign hemangiomas to frankly malignant epithelioid hemangioendotheliomas and angiosarcomas. Over the years, their classification has been a matter of discussion, due to morphologic similarities and uncertainty regarding biologic behavior. Over the past decade, with the development of next-generation sequencing, there has been a significant improvement in the molecular characterization of these lesions. The integration of their morphologic, immunohistochemical and molecular features has led to a better stratification, with important prognostic and therapeutic implications. Nevertheless, primary vascular bone tumors still represent a challenge for medical oncologists. Given their rarity and heterogeneity, in the last few years, there has been no significant progress in medical treatment options, so further research is needed. Here we present a review of the current knowledge regarding primary vascular tumors of the bone, correlating clinicopathologic features with tumor behavior and therapeutic approaches.
Collapse
Affiliation(s)
- Ilaria Tortorelli
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy; Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Elena Bellan
- Department of Pathology, Azienda Ospedale Università Padova, Via Gabelli 61, 35121 Padua, Italy
| | - Benedetta Chiusole
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Fabio Murtas
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy; Department of Surgery, Oncology and Gastroenterology (DISCOG), University of Padua, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Pietro Ruggieri
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Via Nicolò Giustiniani 1, 35128 Padua, Italy
| | - Elisa Pala
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Via Nicolò Giustiniani 1, 35128 Padua, Italy
| | - Mariachiara Cerchiaro
- Department of Orthopedics and Orthopedic Oncology, University of Padua, Via Nicolò Giustiniani 1, 35128 Padua, Italy
| | | | - Giovanni Scarzello
- Radiotherapy Unit, Istituto Oncologico Veneto IOV - IRCCS, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Marco Krengli
- Radiotherapy Unit, Istituto Oncologico Veneto IOV - IRCCS, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Gianluca Bisinella
- Division of Orthopedics and Trauma, AULSS 6 Euganea, Ospedali Riuniti Padova Sud, Via Albere 30, Monselice, Padua, Italy
| | - Sara Battisti
- Division of Orthopedics and Trauma, AULSS 6 Euganea, Ospedali Riuniti Padova Sud, Via Albere 30, Monselice, Padua, Italy
| | - Antonio Di Maggio
- Oncologic Radiology Unit, Department of Radiology and Medical Physics, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Vittorina Zagonel
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy
| | - Angelo Paolo Dei Tos
- Department of Pathology, Azienda Ospedale Università Padova, Via Gabelli 61, 35121 Padua, Italy; Department of Medicine, University of Padua School of Medicine, Via 8 Febbraio 2, 35122 Padua, Italy
| | - Marta Sbaraglia
- Department of Pathology, Azienda Ospedale Università Padova, Via Gabelli 61, 35121 Padua, Italy; Department of Medicine, University of Padua School of Medicine, Via 8 Febbraio 2, 35122 Padua, Italy
| | - Antonella Brunello
- Oncology 1 Unit, Department of Oncology, Istituto Oncologico Veneto IOV - IRCCS, Via Gattamelata 64, 35128 Padua, Italy.
| |
Collapse
|
4
|
Lv R, Du L, Bai L. RNF125, transcriptionally regulated by NFATC2, alleviates osteoarthritis via inhibiting the Wnt/β-catenin signaling pathway through degrading TRIM14. Int Immunopharmacol 2023; 125:111191. [PMID: 37951197 DOI: 10.1016/j.intimp.2023.111191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Osteoarthritis (OA) is a chronic joint disease characterized by the progressive degradation of articular cartilage. In this study, as determined by histological staining, the cartilage surface of the OA rats was damaged, defective and broken, and chondrocytes and proteoglycan were reduced. While moderate physical exercise showed protective effects on the cartilage. Besides, RNA-seq was performed to select a target protein and RNF125 (an E3 ubiquitin ligase) was decreased in the cartilage tissues of OA rats and increased after physiological exercise. However, the precise role of RNF125 in OA is still unknown. This work aimed to investigate the involvement and underlying mechanism of RNF125 in OA pathogenesis. Our results defined that adenovirus-mediated overexpression of RNF125 inhibited the degradation of extracellular matrix of chondrocytes induced by IL-1β, as revealed by increased chondrocyte viability, upregulated COL2A1 and ACAN levels, and downregulated MMP1, MMP13 and ADAMTS5 levels, which was abrogated by NR4A2 knockdown. In vivo, RNF125 relieved OA, manifested as reduced cartilage injury and increased chondrocytes. Mechanically, NFATC2 bound to the RNF125 promoter and directly regulated RNF125 transcription, as illustrated by luciferase reporter, Ch-IP and DNA pull-down assays. Furthermore, RNF125 overexpression inhibited the nuclear translocation of β-catenin, thus suppressing activation of the Wnt/β-catenin signaling pathway. Also, RNF125 as E3 ubiquitin ligase led to the ubiquitination and degradation of TRIM14 protein, and TRIM14 overexpression efficiently reversed the effects of RNF125 overexpression on OA progression. Totally, this study provides new insights into OA pathogenesis regulated by RNF125. RNF125 may be a novel biomarker for OA therapy.
Collapse
Affiliation(s)
- Runxiao Lv
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning Province, PR China
| | - Lunhao Bai
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
5
|
Mackiewicz J, Lisek M, Boczek T. Targeting CaN/NFAT in Alzheimer's brain degeneration. Front Immunol 2023; 14:1281882. [PMID: 38077352 PMCID: PMC10701682 DOI: 10.3389/fimmu.2023.1281882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by a progressive loss of cognitive functions. While the exact causes of this debilitating disorder remain elusive, numerous investigations have characterized its two core pathologies: the presence of β-amyloid plaques and tau tangles. Additionally, multiple studies of postmortem brain tissue, as well as results from AD preclinical models, have consistently demonstrated the presence of a sustained inflammatory response. As the persistent immune response is associated with neurodegeneration, it became clear that it may also exacerbate other AD pathologies, providing a link between the initial deposition of β-amyloid plaques and the later development of neurofibrillary tangles. Initially discovered in T cells, the nuclear factor of activated T-cells (NFAT) is one of the main transcription factors driving the expression of inflammatory genes and thus regulating immune responses. NFAT-dependent production of inflammatory mediators is controlled by Ca2+-dependent protein phosphatase calcineurin (CaN), which dephosphorylates NFAT and promotes its transcriptional activity. A substantial body of evidence has demonstrated that aberrant CaN/NFAT signaling is linked to several pathologies observed in AD, including neuronal apoptosis, synaptic deficits, and glia activation. In view of this, the role of NFAT isoforms in AD has been linked to disease progression at different stages, some of which are paralleled to diminished cognitive status. The use of classical inhibitors of CaN/NFAT signaling, such as tacrolimus or cyclosporine, or adeno-associated viruses to specifically inhibit astrocytic NFAT activation, has alleviated some symptoms of AD by diminishing β-amyloid neurotoxicity and neuroinflammation. In this article, we discuss the recent findings related to the contribution of CaN/NFAT signaling to the progression of AD and highlight the possible benefits of targeting this pathway in AD treatment.
Collapse
Affiliation(s)
| | | | - Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
6
|
Xie S, Choudhari S, Wu CL, Abramson K, Corcoran D, Gregory SG, Thimmapuram J, Guilak F, Little D. Aging and obesity prime the methylome and transcriptome of adipose stem cells for disease and dysfunction. FASEB J 2023; 37:e22785. [PMID: 36794668 PMCID: PMC10561192 DOI: 10.1096/fj.202201413r] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/20/2022] [Accepted: 01/09/2023] [Indexed: 02/17/2023]
Abstract
The epigenome of stem cells occupies a critical interface between genes and environment, serving to regulate expression through modification by intrinsic and extrinsic factors. We hypothesized that aging and obesity, which represent major risk factors for a variety of diseases, synergistically modify the epigenome of adult adipose stem cells (ASCs). Using integrated RNA- and targeted bisulfite-sequencing in murine ASCs from lean and obese mice at 5- and 12-months of age, we identified global DNA hypomethylation with either aging or obesity, and a synergistic effect of aging combined with obesity. The transcriptome of ASCs in lean mice was relatively stable to the effects of age, but this was not true in obese mice. Functional pathway analyses identified a subset of genes with critical roles in progenitors and in diseases of obesity and aging. Specifically, Mapt, Nr3c2, App, and Ctnnb1 emerged as potential hypomethylated upstream regulators in both aging and obesity (AL vs. YL and AO vs. YO), and App, Ctnnb1, Hipk2, Id2, and Tp53 exhibited additional effects of aging in obese animals. Furthermore, Foxo3 and Ccnd1 were potential hypermethylated upstream regulators of healthy aging (AL vs. YL), and of the effects of obesity in young animals (YO vs. YL), suggesting that these factors could play a role in accelerated aging with obesity. Finally, we identified candidate driver genes that appeared recurrently in all analyses and comparisons undertaken. Further mechanistic studies are needed to validate the roles of these genes capable of priming ASCs for dysfunction in aging- and obesity-associated pathologies.
Collapse
Affiliation(s)
- Shaojun Xie
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Sulbha Choudhari
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
- Advanced Biomedical Computational Science, Bioinformatics and Computational Science, Frederick National Laboratory for Cancer Research, 8560 Progress Drive, Frederick, MD 2170
| | - Chia-Lung Wu
- Department of Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester, Rochester, NY, 14611
| | - Karen Abramson
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
| | - David Corcoran
- Genomic Analysis and Bioinformatics Shared Resource, Duke Center for Genomic and Computational Biology, 101 Science Drive, Duke University Medical Center Box 3382, Durham, NC 27708
- Lineberger Bioinformatics Core, 5200 Marsico Hall, University of North Carolina-Chapel Hill, Chapel Hill, NC 27516
| | - Simon G. Gregory
- Duke Molecular Physiology Institute, 300 North Duke Street, Durham, NC 27701
- Department of Neurology, Duke University School of Medicine, 311 Research Drive, Durham, NC 27710
| | - Jyothi Thimmapuram
- Bioinformatics Core, Purdue University, 1022 Young Hall, 155 S. Grant Street, West Lafayette, IN 47907
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University in St. Louis, 4515 McKinley Ave., St. Louis, MO 63110
- Shriners Hospitals for Children – St. Louis, 4400 Clayton Ave, St. Louis Missouri 63110
| | - Dianne Little
- Departments of Basic Medical Sciences and Biomedical Engineering, Purdue University, 2186 Lynn Hall, 625 Harrison St, West Lafayette, IN 47907-2026
| |
Collapse
|
7
|
Fu MP, Merrill SM, Sharma M, Gibson WT, Turvey SE, Kobor MS. Rare diseases of epigenetic origin: Challenges and opportunities. Front Genet 2023; 14:1113086. [PMID: 36814905 PMCID: PMC9939656 DOI: 10.3389/fgene.2023.1113086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Rare diseases (RDs), more than 80% of which have a genetic origin, collectively affect approximately 350 million people worldwide. Progress in next-generation sequencing technology has both greatly accelerated the pace of discovery of novel RDs and provided more accurate means for their diagnosis. RDs that are driven by altered epigenetic regulation with an underlying genetic basis are referred to as rare diseases of epigenetic origin (RDEOs). These diseases pose unique challenges in research, as they often show complex genetic and clinical heterogeneity arising from unknown gene-disease mechanisms. Furthermore, multiple other factors, including cell type and developmental time point, can confound attempts to deconvolute the pathophysiology of these disorders. These challenges are further exacerbated by factors that contribute to epigenetic variability and the difficulty of collecting sufficient participant numbers in human studies. However, new molecular and bioinformatics techniques will provide insight into how these disorders manifest over time. This review highlights recent studies addressing these challenges with innovative solutions. Further research will elucidate the mechanisms of action underlying unique RDEOs and facilitate the discovery of treatments and diagnostic biomarkers for screening, thereby improving health trajectories and clinical outcomes of affected patients.
Collapse
Affiliation(s)
- Maggie P. Fu
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Sarah M. Merrill
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Mehul Sharma
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - William T. Gibson
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada
| | - Stuart E. Turvey
- BC Children’s Hospital Research Institute, Vancouver, BC, Canada,Department of Pediatrics, Faculty of Medicine, BC Children’s Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Michael S. Kobor
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada,Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada,BC Children’s Hospital Research Institute, Vancouver, BC, Canada,*Correspondence: Michael S. Kobor,
| |
Collapse
|
8
|
Wang Y, Ren J, Hou G, Ge X. NFATC1 and NFATC2 expression patterns in human osteochondromas. Heliyon 2023; 9:e13018. [PMID: 36747924 PMCID: PMC9898645 DOI: 10.1016/j.heliyon.2023.e13018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Background Our previous study in genetic mouse models found that NFATc1 and NFATc2 suppress osteochondroma formation from entheseal progenitors. However, it remains unclear whether NFAT signaling is also involved in human osteochondromagenesis. As the first step in addressing this question, the current study aimed to determine the expression patterns of NFATC1 and NFATC2 in human osteochondroma samples. Methods Immunohistochemistry (IHC) was used to examine and analyze NFATC1 and NFATC2 expression in human osteochondroma samples. The human periosteum was used to map the expression of NFATC1 under physiological conditions by IHC. Furthermore, human periosteal progenitors were isolated and identified from the periosteal tissues of bone fracture healing patients. The expression of NFATC1 in human periosteal progenitors was characterized by Western blotting compared to human bone marrow stromal cells (BMSC). Results The IHC results showed that the expression of NFATC1 was undetectable in most human osteochondromas cells, and only a small proportion of osteochondroma cells, especially clonally grown chondrocytes, showed positive staining of NFATC1. NFATC2 expression was also undetectable in most chondrocytes in human osteochondromas. The mouse and human periosteum showed a comparable ratio of NFATC1 positive cells (9.56 ± 0.80% vs 11.04 ± 2.05%, P = 0.3101). Furthermore, Western blotting analysis revealed that NFATC1 expression was highly enriched in human periosteal progenitors compared to BMSC. Conclusions NFATC1 and NFATC2 are undetectable in most human osteochondroma chondrocytes. The expression pattern of NFATC1 in human osteochondromas and the normal periosteum suggests that NFAT signaling could be suppressed during human osteochondromagenesis.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China
| | - Jiangdong Ren
- Department of Joint Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopaedics of Guangdong Province), Guangzhou, Guangdong, China
| | - Guojin Hou
- Department of Orthopedics, Peking University Third Hospital, Beijing, China
| | - Xianpeng Ge
- Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China,National Clinical Research Center for Geriatric Diseases, Beijing, China,Corresponding author. Department of Stomatology, Xuanwu Hospital Capital Medical University, Beijing, China.
| |
Collapse
|
9
|
Human complete NFAT1 deficiency causes a triad of joint contractures, osteochondromas, and B-cell malignancy. Blood 2022; 140:1858-1874. [PMID: 35789258 DOI: 10.1182/blood.2022015674] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/20/2022] [Indexed: 11/20/2022] Open
Abstract
The discovery of humans with monogenic disorders has a rich history of generating new insights into biology. Here we report the first human identified with complete deficiency of nuclear factor of activated T cells 1 (NFAT1). NFAT1, encoded by NFATC2, mediates calcium-calcineurin signals that drive cell activation, proliferation, and survival. The patient is homozygous for a damaging germline NFATC2 variant (c.2023_2026delTACC; p.Tyr675Thrfs∗18) and presented with joint contractures, osteochondromas, and recurrent B-cell lymphoma. Absence of NFAT1 protein in chondrocytes caused enrichment in prosurvival and inflammatory genes. Systematic single-cell-omic analyses in PBMCs revealed an environment that promotes lymphomagenesis with accumulation of naïve B cells (enriched for oncogenic signatures MYC and JAK1), exhausted CD4+ T cells, impaired T follicular helper cells, and aberrant CD8+ T cells. This work highlights the pleiotropic role of human NFAT1, will empower the diagnosis of additional patients with NFAT1 deficiency, and further defines the detrimental effects associated with long-term use of calcineurin inhibitors.
Collapse
|
10
|
Canalis E, Schilling L, Eller T, Yu J. Role of nuclear factor of activated T cells in chondrogenesis osteogenesis and osteochondroma formation. J Endocrinol Invest 2022; 45:1507-1520. [PMID: 35352320 PMCID: PMC10024159 DOI: 10.1007/s40618-022-01781-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/04/2022] [Indexed: 12/22/2022]
Abstract
PURPOSE Nuclear factor of activated T cells (NFATc) are transcription factors that play a function in the immune response and in osteoclast differentiation. In the present work, we define the function of NFATc2 in chondrogenic and osteogenic cells. METHODS Nfatc2loxP/loxP and Nfatc1loxP/loxP;Nfatc2loxP/loxP conditional mice were crossed with Prx1-Cre transgenics to inactivate Nfatc2 singly and with Nfatc1. Femurs and vertebrae were examined by microcomputed tomography (µCT) X-Ray images and histology and analyzed for the presence of osteochondromas. RESULTS µCT demonstrated that Prx1-Cre;Nfatc2∆/∆ female mice had transient osteopenia and male mice did not have a cancellous or a cortical bone phenotype when compared to control mice. In contrast, the dual inactivation of Nfatc1 and Nfatc2 in Prx1-expressing cells resulted in cancellous osteopenia and small bones at 1 month of age in both sexes. Nfatc1;Nfatc2 deleted mice exhibited a ~ 50% decrease in bone volume and connectivity. Total bone area, periosteal and endocortical bone perimeters and femoral length were reduced indicating smaller bones. As the mice matured, the shortening of the femoral length persisted, but the osteopenic phenotype resolved and cancellous femoral bone of 4-month-old Nfatc1;Nfatc2 deleted mice was not different from controls although male mice had vertebral osteopenia. In addition, Nfatc1;Nfatc2 deleted mice displayed distortion of the distal metaphysis and, as they matured, the articular presence of mineralized tumors with the appearance of osteochondromas. CONCLUSION Our studies reveal that NFATc1 and NFATc2 are necessary for optimal bone homeostasis and the suppression of osteochondroma formation.
Collapse
Affiliation(s)
- E Canalis
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA.
- Departments of Medicine, UConn Health, Farmington, CT, 06030, USA.
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA.
| | - L Schilling
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA
| | - T Eller
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA
| | - J Yu
- Departments of Orthopaedic Surgery and Medicine, UConn Health, Farmington, CT, 06030-4037, USA
- The UConn Musculoskeletal Institute, UConn Health, Farmington, CT, 06030, USA
| |
Collapse
|
11
|
Jahr H, van der Windt AE, Timur UT, Baart EB, Lian WS, Rolauffs B, Wang FS, Pufe T. Physosmotic Induction of Chondrogenic Maturation Is TGF-β Dependent and Enhanced by Calcineurin Inhibitor FK506. Int J Mol Sci 2022; 23:ijms23095110. [PMID: 35563498 PMCID: PMC9100228 DOI: 10.3390/ijms23095110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/30/2022] [Indexed: 02/04/2023] Open
Abstract
Increasing extracellular osmolarity 100 mOsm/kg above plasma level to the physiological levels for cartilage induces chondrogenic marker expression and the differentiation of chondroprogenitor cells. The calcineurin inhibitor FK506 has been reported to modulate the hypertrophic differentiation of primary chondrocytes under such conditions, but the molecular mechanism has remained unclear. We aimed at clarifying its role. Chondrocyte cell lines and primary cells were cultured under plasma osmolarity and chondrocyte-specific in situ osmolarity (+100 mOsm, physosmolarity) was increased to compare the activation of nuclear factor of activated T-cells 5 (NFAT5). The effects of osmolarity and FK506 on calcineurin activity, cell proliferation, extracellular matrix quality, and BMP- and TGF-β signaling were analyzed using biochemical, gene, and protein expression, as well as reporter and bio-assays. NFAT5 translocation was similar in chondrocyte cell lines and primary cells. High supraphysiological osmolarity compromised cell proliferation, while physosmolarity or FK506 did not, but in combination increased proteoglycan and collagen expression in chondrocytes in vitro and in situ. The expression of the TGF-β-inducible protein TGFBI, as well as chondrogenic (SOX9, Col2) and terminal differentiation markers (e.g., Col10) were affected by osmolarity. Particularly, the expression of minor collagens (e.g., Col9, Col11) was affected. The inhibition of the FK506-binding protein suggests modulation at the TGF-β receptor level, rather than calcineurin-mediated signaling, as a cause. Physiological osmolarity promotes terminal chondrogenic differentiation of progenitor cells through the sensitization of the TGF-β superfamily signaling at the type I receptor. While hyperosmolarity alone facilitates TGF-β superfamily signaling, FK506 further enhances signaling by releasing the FKBP12 break from the type I receptor to improve collagenous marker expression. Our results help explain earlier findings and potentially benefit future cell-based cartilage repair strategies.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (U.T.T.); (T.P.)
- Department of Orthopaedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
- Correspondence: ; Tel.: +49-2418089525
| | - Anna E. van der Windt
- Department of Orthopaedics, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Ufuk Tan Timur
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (U.T.T.); (T.P.)
- Department of Orthopaedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands
| | - Esther B. Baart
- Department of Obstetrics & Gynaecology, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Wei-Shiung Lian
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Bernd Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Medical Center, Albert-Ludwigs-University, 79085 Freiburg, Germany;
| | - Feng-Sheng Wang
- Core Laboratory for Phenomics and Diagnostics, Department of Medical Research, College of Medicine, Chang Gung University, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan; (W.-S.L.); (F.-S.W.)
- Center for Mitochondrial Research and Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 83301, Taiwan
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, University Hospital RWTH Aachen University, 52074 Aachen, Germany; (U.T.T.); (T.P.)
| |
Collapse
|
12
|
Parama D, Girisa S, Khatoon E, Kumar A, Alqahtani MS, Abbas M, Sethi G, Kunnumakkara AB. An Overview of the Pharmacological Activities of Scopoletin against Different Chronic Diseases. Pharmacol Res 2022; 179:106202. [DOI: 10.1016/j.phrs.2022.106202] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 12/24/2022]
|
13
|
Ren R, Guo J, Chen Y, Zhang Y, Chen L, Xiong W. The role of Ca 2+ /Calcineurin/NFAT signalling pathway in osteoblastogenesis. Cell Prolif 2021; 54:e13122. [PMID: 34523757 PMCID: PMC8560623 DOI: 10.1111/cpr.13122] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 12/18/2022] Open
Abstract
The bone remodelling process is closely related to bone health. Osteoblasts and osteoclasts participate in the bone remodelling process under the regulation of various factors inside and outside. Excessive activation of osteoclasts or lack of function of osteoblasts will cause occurrence and development of multiple bone‐related diseases. Ca2+/Calcineurin/NFAT signalling pathway regulates the growth and development of many types of cells, such as cardiomyocyte differentiation, angiogenesis, chondrogenesis, myogenesis, bone development and regeneration, etc. Some evidences indicate that this signalling pathway plays an extremely important role in bone formation and bone pathophysiologic changes. This review discusses the role of Ca2+/Calcineurin/NFAT signalling pathway in the process of osteogenic differentiation, as well as the influence of regulating each component in this signalling pathway on the differentiation and function of osteoblasts, whereby the relationship between Ca2+/Calcineurin/NFAT signalling pathway and osteoblastogenesis could be deeper understood.
Collapse
Affiliation(s)
- Ranyue Ren
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jiachao Guo
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yangmengfan Chen
- Department of Trauma and Reconstructive Surgery, Siegfried Weller Research Institute, BG Trauma Center Tübingen, University of Tübingen, Tübingen, Germany
| | - Yayun Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liangxi Chen
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wei Xiong
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
14
|
Role of Nuclear Factor of Activated T Cells (NFAT) Pathway in Regulating Autophagy and Inflammation in Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22168684. [PMID: 34445390 PMCID: PMC8395439 DOI: 10.3390/ijms22168684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Nuclear factor of activated T cells (NFAT) family of transcription factors are substrates of calcineurin and play an important role in integrating Ca2+ signaling with a variety of cellular functions. Of the five NFAT proteins (NFAT1-5), NFAT1-4 are subject to dephosphorylation and activation by calcineurin, a Ca2+-calmodulin-dependent phosphatase. Increased levels of intracellular Ca2+ activates calcineurin, which in turn dephosphorylates and promotes nuclear translocation of NFAT. We investigated the functions of NFAT proteins in the retinal pigment epithelial cells (RPE). Our results show that NFAT-mediated luciferase activity was induced upon treatment with the bacterial endotoxin, lipopolysaccharide (LPS) and treatment with the NFAT peptide inhibitor, MAGPHPVIVITGPHEE (VIVIT) decreased LPS-induced NFAT luciferase activity. LPS-induced activation of NFAT-regulated cytokines (IL-6 and IL-8) is inhibited by treatment of cells with VIVIT. We also investigated the effects of NFAT signaling on the autophagy pathway. Our results show that inhibition of NFAT with VIVIT in cells deprived of nutrients resulted in cytosolic retention of transcription Factor EB (TFEB), decreased expression of TFEB-regulated coordinated Lysosomal Expression and Regulation CLEAR network genes and decreased starvation-induced autophagy flux in the RPE cells. In summary, these studies suggest that the NFAT pathway plays an important role in the regulation of autophagy and inflammation in the RPE.
Collapse
|
15
|
Dashti NK, Dickson BC, Zhang L, Xie Z, Nielsen GP, Antonescu CR. A unique epithelioid vascular neoplasm of bone characterized by EWSR1/FUS-NFATC1/2 fusions. Genes Chromosomes Cancer 2021; 60:762-771. [PMID: 34310785 DOI: 10.1002/gcc.22984] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
An increasing number of epithelioid vascular lesions, in particular tumors from the benign and low-grade end of the spectrum, have been characterized by recurrent gene fusions. As a result, the detection of these molecular markers have improved the classification of diagnostically challenging cases. However, despite the significant progress, there are occasional lesions that do not fit in known histologic or molecular groups. Herein, we present five such unclassified epithelioid vascular lesions, which occurred in the bone and showed a distinct morphology composed of alternating vasoformative and solid growth and mild to moderate nuclear pleomorphism. The variegated morphologic appearance resembled that of composite hemangioendothelioma, being distinct from both epithelioid hemangioma and epithelioid hemangioendothelioma, and consistently showed cytologic atypia. Due to their unusual morphologic appearance and negative molecular work-up, targeted transcriptome sequencing was performed in two cases showing the presence of NFATC2 fusions with either EWSR1 or FUS genes. Three additional bone tumors with EWSR1 gene rearrangements were identified by FISH screening of a large cohort of 45 fusion-negative epithelioid vascular neoplasms, one fused to NFATC2 while two others to NFATC1. There were three females and two males, with a wide age range at presentation, mean of 44 years. The lesions occurred in the pelvis, maxillary sinus, and humerus. Two patients presented with polyostotic disease, both located in the pelvic bones. Two patients had available follow-up, one developed two local recurrences in the humerus over a 15-year period, while the other showed no recurrence 4 years subsequent to an en-bloc resection. Tumors were positive for CD31 and ERG, while negative for EMA, CK, synaptophysin, and chromogranin. FISH confirmed this abnormality in all cases, none of them being associated with gene amplifications. Further studies are needed to establish the pathogenetic relationship of this rare molecular subset with other epithelioid vascular tumors and to determine its clinical behavior.
Collapse
Affiliation(s)
- Nooshin K Dashti
- Department of Pathology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Brendan C Dickson
- Department of Pathology & Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Lei Zhang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Ziyu Xie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | | | - Cristina R Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
16
|
Yukawa M, Jagannathan S, Vallabh S, Kartashov AV, Chen X, Weirauch MT, Barski A. AP-1 activity induced by co-stimulation is required for chromatin opening during T cell activation. J Exp Med 2020; 217:jem.20182009. [PMID: 31653690 PMCID: PMC7037242 DOI: 10.1084/jem.20182009] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/06/2019] [Accepted: 09/23/2019] [Indexed: 12/24/2022] Open
Abstract
Activation of T cells is dependent on the organized and timely opening and closing of chromatin. Herein, we identify AP-1 as the transcription factor that directs most of this remodeling. Chromatin accessibility profiling showed quick opening of closed chromatin in naive T cells within 5 h of activation. These newly opened regions were strongly enriched for the AP-1 motif, and indeed, ChIP-seq demonstrated AP-1 binding at >70% of them. Broad inhibition of AP-1 activity prevented chromatin opening at AP-1 sites and reduced the expression of nearby genes. Similarly, induction of anergy in the absence of co-stimulation during activation was associated with reduced induction of AP-1 and a failure of proper chromatin remodeling. The translational relevance of these findings was highlighted by the substantial overlap of AP-1-dependent elements with risk loci for multiple immune diseases, including multiple sclerosis, inflammatory bowel disease, and allergic disease. Our findings define AP-1 as the key link between T cell activation and chromatin remodeling.
Collapse
Affiliation(s)
- Masashi Yukawa
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sajjeev Jagannathan
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Sushmitha Vallabh
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Andrey V Kartashov
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Xiaoting Chen
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - Artem Barski
- Division of Allergy & Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH.,Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| |
Collapse
|
17
|
Canalis E, Schilling L, Eller T, Yu J. Nuclear factor of activated T cells 1 and 2 are required for vertebral homeostasis. J Cell Physiol 2020; 235:8520-8532. [PMID: 32329053 DOI: 10.1002/jcp.29696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/28/2020] [Indexed: 01/08/2023]
Abstract
The present study defines the function of nuclear factor of activated T cells (NFAT)c1 and NFATc2 in osteoblast function in vivo and in vitro. Nfatc1loxP/loxP , Nfatc2loxP/loxP , and Nfatc1loxP/loxP ;Nfatc2loxP/loxP conditional mice were mated with BGLAP-Cre transgenics to inactivate Nfatc1 and Nfatc2 singly and in combination in osteoblasts. Microcomputed tomography demonstrated that male and female conditionally inactivated Nfatc1, Nfatc2 and dual Nfatc1;Nfatc2 mice had osteopenia at Lumbar 3 (L3) sites when compared to littermate controls. However, the Nfatc1 and Nfatc2 inactivation singly and in combination in Bglap-expressing osteoblasts did not result in an appreciable phenotype at femoral sites. Bone histomorphometry of L3 confirmed the osteopenic phenotype and demonstrated that Nfatc1;Nfatc2 inactivated male mice had a significant decrease in osteoblast number and in osteoblast surface and osteoid surface. The dual downregulation of Nfatc1 and Nfatc2 in bone marrow stromal cells caused a decrease in Alpl and Bglap expression, confirming a role of these transcription factors in osteoblast function. In conclusion, our studies reveal that NFATc1 and NFATc2 are necessary for optimal vertebral, but not femoral, bone homeostasis in vivo and osteoblast differentiation in vitro.
Collapse
Affiliation(s)
- Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,Department of Medicine, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Lauren Schilling
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Tabitha Eller
- UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Jungeun Yu
- Department of Orthopaedic Surgery, UConn Health, Farmington, Connecticut.,UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| |
Collapse
|
18
|
Belluti S, Rigillo G, Imbriano C. Transcription Factors in Cancer: When Alternative Splicing Determines Opposite Cell Fates. Cells 2020; 9:E760. [PMID: 32244895 PMCID: PMC7140685 DOI: 10.3390/cells9030760] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/05/2020] [Accepted: 03/17/2020] [Indexed: 02/08/2023] Open
Abstract
Alternative splicing (AS) is a finely regulated mechanism for transcriptome and proteome diversification in eukaryotic cells. Correct balance between AS isoforms takes part in molecular mechanisms that properly define spatiotemporal and tissue specific transcriptional programs in physiological conditions. However, several diseases are associated to or even caused by AS alterations. In particular, multiple AS changes occur in cancer cells and sustain the oncogenic transcriptional program. Transcription factors (TFs) represent a key class of proteins that control gene expression by direct binding to DNA regulatory elements. AS events can generate cancer-associated TF isoforms with altered activity, leading to sustained proliferative signaling, differentiation block and apoptosis resistance, all well-known hallmarks of cancer. In this review, we focus on how AS can produce TFs isoforms with opposite transcriptional activities or antagonistic functions that severely impact on cancer biology. This summary points the attention to the relevance of the analysis of TFs splice variants in cancer, which can allow patients stratification despite the presence of interindividual genetic heterogeneity. Recurrent TFs variants that give advantage to specific cancer types not only open the opportunity to use AS transcripts as clinical biomarkers but also guide the development of new anti-cancer strategies in personalized medicine.
Collapse
Affiliation(s)
| | | | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy; (S.B.); (G.R.)
| |
Collapse
|
19
|
Li C, Zheng Z, Ha P, Jiang W, Berthiaume EA, Lee S, Mills Z, Pan H, Chen EC, Jiang J, Culiat CT, Zhang X, Ting K, Soo C. Neural EGFL like 1 as a potential pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug. Biomaterials 2020; 226:119541. [PMID: 31634652 PMCID: PMC6938239 DOI: 10.1016/j.biomaterials.2019.119541] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 09/09/2019] [Accepted: 10/08/2019] [Indexed: 01/06/2023]
Abstract
Arthritis, an inflammatory condition that causes pain and cartilage destruction in joints, affects over 54.4 million people in the US alone. Here, for the first time, we demonstrated the emerging role of neural EGFL like 1 (NELL-1) in arthritis pathogenesis by showing that Nell-1-haploinsufficient (Nell-1+/6R) mice had accelerated and aggravated osteoarthritis (OA) progression with elevated inflammatory markers in both spontaneous primary OA and chemical-induced secondary OA models. In the chemical-induced OA model, intra-articular injection of interleukin (IL)1β induced more severe inflammation and cartilage degradation in the knee joints of Nell-1+/6R mice than in wildtype animals. Mechanistically, in addition to its pro-chondrogenic potency, NELL-1 also effectively suppressed the expression of inflammatory cytokines and their downstream cartilage catabolic enzymes by upregulating runt-related transcription factor (RUNX)1 in mouse and human articular cartilage chondrocytes. Notably, NELL-1 significantly reduced IL1β-stimulated inflammation and damage to articular cartilage in vivo. In particular, NELL-1 administration markedly reduced the symptoms of antalgic gait observed in IL1β-challenged Nell-1+/6R mice. Therefore, NELL-1 is a promising pro-chondrogenic, anti-inflammatory dual-functional disease-modifying osteoarthritis drug (DMOAD) candidate for preventing and suppressing arthritis-related cartilage damage.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Pin Ha
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Wenlu Jiang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Emily A Berthiaume
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Seungjun Lee
- Department of Chemistry and Biochemistry, School of Letters and Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Zane Mills
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Hsinchuan Pan
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Eric C Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Jie Jiang
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | | | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
20
|
Rihan M, Nalla LV, Dharavath A, Shard A, Kalia K, Khairnar A. Pyruvate Kinase M2: a Metabolic Bug in Re-Wiring the Tumor Microenvironment. CANCER MICROENVIRONMENT : OFFICIAL JOURNAL OF THE INTERNATIONAL CANCER MICROENVIRONMENT SOCIETY 2019; 12:149-167. [PMID: 31183810 PMCID: PMC6937361 DOI: 10.1007/s12307-019-00226-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022]
Abstract
Metabolic reprogramming is a newly emerged hallmark of cancer attaining a recent consideration as an essential factor for the progression and endurance of cancer cells. A prime event of this altered metabolism is increased glucose uptake and discharge of lactate into the cells surrounding constructing a favorable tumor niche. Several oncogenic factors help in promoting this consequence including, pyruvate kinase M2 (PKM2) a rate-limiting enzyme of glycolysis in tumor metabolism via exhibiting its low pyruvate kinase activity and nuclear moon-lightening functions to increase the synthesis of lactate and macromolecules for tumor proliferation. Not only its role in cancer cells but also its role in the tumor microenvironment cells has to be understood for developing the small molecules against it which is lacking with the literature till date. Therefore, in this present review, the role of PKM2 with respect to various tumor niche cells will be clarified. Further, it highlights the updated list of therapeutics targeting PKM2 pre-clinically and clinically with their added limitations. This upgraded understanding of PKM2 may provide a pace for the reader in developing chemotherapeutic strategies for better clinical survival with limited resistance.
Collapse
Affiliation(s)
- Mohd Rihan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India
| | - Lakshmi Vineela Nalla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India
| | - Anil Dharavath
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India
| | - Amit Shard
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India.
| | - Kiran Kalia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gujarat, India
| | - Amit Khairnar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Palaj, Gandhinagar, Gujarat, -382355, India.
| |
Collapse
|
21
|
Schroeder N, Wuelling M, Hoffmann D, Brand-Saberi B, Vortkamp A. Atoh8 acts as a regulator of chondrocyte proliferation and differentiation in endochondral bones. PLoS One 2019; 14:e0218230. [PMID: 31449527 PMCID: PMC6709907 DOI: 10.1371/journal.pone.0218230] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/14/2019] [Indexed: 12/16/2022] Open
Abstract
Atonal homolog 8 (Atoh8) is a transcription factor of the basic helix-loop-helix (bHLH) protein family, which is expressed in the cartilaginous elements of endochondral bones. To analyze its function during chondrogenesis we deleted Atoh8 in mice using a chondrocyte- (Atoh8flox/flox;Col2a1-Cre) and a germline- (Atoh8flox/flox;Prx1-Crefemale) specific Cre allele. In both strains, Atoh8 deletion leads to a reduced skeletal size of the axial and appendicular bones, but the stages of phenotypic manifestations differ. While we observed obviously shortened bones in Atoh8flox/flox;Col2a1-Cre mice only postnatally, the bones of Atoh8flox/flox;Prx1-Crefemale mice are characterized by a reduced bone length already at prenatal stages. Detailed histological and molecular investigations revealed reduced zones of proliferating and hypertrophic chondrocytes. In addition, Atoh8 deletion identified Atoh8 as a positive regulator of chondrocyte proliferation. As increased Atoh8 expression is found in the region of prehypertrophic chondrocytes where the expression of Ihh, a main regulator of chondrocyte proliferation and differentiation, is induced, we investigated a potential interaction of Atoh8 function and Ihh signaling. By activating Ihh signaling with Purmorphamine we demonstrate that Atoh8 regulates chondrocyte proliferation in parallel or downstream of Ihh signaling while it acts on the onset of hypertrophy upstream of Ihh likely by modulating Ihh expression levels.
Collapse
Affiliation(s)
- Nadine Schroeder
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| | - Manuela Wuelling
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Center for Medical Biotechnology, Bioinformatics and Computational Biophysics, University of Duisburg-Essen, Essen, Germany
| | - Beate Brand-Saberi
- Department of Anatomy and Molecular Embryology, Ruhr-University Bochum, Bochum, Germany
| | - Andrea Vortkamp
- Center for Medical Biotechnology, Department of Developmental Biology, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
22
|
Diaz-Perez JA, Nielsen GP, Antonescu C, Taylor MS, Lozano-Calderon SA, Rosenberg AE. EWSR1/FUS-NFATc2 rearranged round cell sarcoma: clinicopathological series of 4 cases and literature review. Hum Pathol 2019; 90:45-53. [PMID: 31078563 PMCID: PMC6714048 DOI: 10.1016/j.humpath.2019.05.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/05/2019] [Indexed: 12/27/2022]
Abstract
The classification of bone neoplasms composed of small round cells is experiencing a transformation after the discovery of various gene fusion rearrangements that determine diagnosis, behavior, and response to therapy. We present herein 4 new cases of small round cell tumor of the bone that harbor NFATc2 rearrangements involving either EWSR1 or FUS genes. We studied the clinical presentation, pathologic features, genetics (FISH, targeted RNA sequencing) and outcome in these 4 patients. We also reviewed the literature describing similar cases. All our patients were male. The median age at diagnosis was 33.5 years. All tumors presented in long bones of the extremities as a large destructive mass with a mean size of 12.5 cm. All cases were hypercellular with prominent collagenous stroma and consisted of small to medium size round cells arranged in cords, thin trabeculae, and pseudoacinar structures. Most cases showed focal or diffuse membrane staining for CD99; whereas S100, synaptophysin and chromogranin were negative. EMA showed cytoplasmic staining in one case. Genetic studies identified EWSR1-NFATc2 fusion in 3 cases, and FUS-NFATc2 fusion in one case. Two patients were treated with neoadjuvant chemotherapy using Ewing sarcoma regimens, and surgical excision was performed on 3 patients; necrosis was minimal. Follow-up is limited; after a median follow-up of 8.7 months, one patient developed local recurrence and metastases to the lungs. Poorly differentiated round cell sarcoma with EWSR1/FUS-NFATc2 fusions are uncommon. The tumors have consistent clinical findings, morphology, and immunoprofile that in combination are distinctive and differ from that of Ewing sarcoma. Importantly, these tumors do not respond to Ewing sarcoma chemotherapy regimens.
Collapse
Affiliation(s)
- Julio A Diaz-Perez
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL
| | - G Petur Nielsen
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | - Cristina Antonescu
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Martin S Taylor
- Department of Pathology and Laboratory Medicine, Massachusetts General Hospital, Harvard University, Boston, MA
| | | | - Andrew E Rosenberg
- Department of Pathology and Laboratory Medicine, Miller School of Medicine, University of Miami, Miami, FL.
| |
Collapse
|
23
|
|
24
|
Kaplan MH. Opening the Black Box of Immunosuppression. THE JOURNAL OF IMMUNOLOGY 2018; 201:3147-3148. [PMID: 30455369 DOI: 10.4049/jimmunol.1801320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Mark H Kaplan
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202
| |
Collapse
|
25
|
Gong M, Liang T, Zhang H, Chen S, Hu Y, Zhou J, Zhang X, Zhang W, Geng X, Zou X. Gene expression profiling: identification of gene expression in human MSC chondrogenic differentiation. Am J Transl Res 2018; 10:3555-3566. [PMID: 30662607 PMCID: PMC6291687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/05/2018] [Indexed: 06/09/2023]
Abstract
Understanding the mechanisms that govern cell fate will lead to the development of techniques for the induction of human mesenchymal stem cell differentiation into desired cell outcomes and the production of an autologous source of tissue for regenerative medicine. Here, we demonstrate that stem cells derived from adult bone marrow grown with 3D pellets take on characteristics similar to human cartilage. The NFAT signaling pathway is primarily linked to cell differentiation and influences chondrogenic differentiation. Based on our previous results that alterations in the expression of the NFATc1 gene affect chondrogenesis, we screened a microarray and identified 29 genes with altered expression, including 13 up-regulated (fold change ≥ 2) and 16 down-regulated (fold change ≤ 2) genes, compared with the control group. We then used RT-PCR to validate the chip data. Gene ontology and pathway analyses were performed on these altered genes. We found that these altered genes function in the complement and coagulation cascades, metabolism, biosynthesis, transcriptional regulation, proteolysis, and intracellular signaling pathways, such as the cytoplasmic calcineurin-dependent signaling pathway, the cyclin-dependent kinase inhibitor 2C signaling pathway, the MAPK signaling pathway, and the insulin signaling pathway. Our study suggests that these pathways may play important roles in chondrogenesis, which could be useful in the design of biomaterials.
Collapse
Affiliation(s)
- Ming Gong
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Tangzhao Liang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Hao Zhang
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
| | - Shaochu Chen
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
| | - Yawei Hu
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
| | - Jianhua Zhou
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
| | - Xuan Zhang
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
| | - Wang Zhang
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, P. R. China
| | - Xiaojing Geng
- Department of Aging Medicine, The Fifth Affiliated Hospital of Sun Yat-sen UniversityZhuhai 519000, P. R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| |
Collapse
|
26
|
BCPA { N, N'-1,4-Butanediylbis[3-(2-chlorophenyl)acrylamide]} Inhibits Osteoclast Differentiation through Increased Retention of Peptidyl-Prolyl cis-trans Isomerase Never in Mitosis A-Interacting 1. Int J Mol Sci 2018; 19:ijms19113436. [PMID: 30388885 PMCID: PMC6275020 DOI: 10.3390/ijms19113436] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Osteoporosis is caused by an imbalance of osteoclast and osteoblast activities and it is characterized by enhanced osteoclast formation and function. Peptidyl-prolyl cis-trans isomerase never in mitosis A (NIMA)-interacting 1 (Pin1) is a key mediator of osteoclast cell-cell fusion via suppression of the dendritic cell-specific transmembrane protein (DC-STAMP). We found that N,N′-1,4-butanediylbis[3-(2-chlorophenyl)acrylamide] (BCPA) inhibited receptor activator of nuclear factor kappa-B ligand (RANKL)-induced osteoclastogenesis in a dose-dependent manner without cytotoxicity. In addition, BCPA attenuated the reduction of Pin1 protein during osteoclast differentiation without changing Pin1 mRNA levels. BCPA repressed the expression of osteoclast-related genes, such as DC-STAMP and osteoclast-associated receptor (OSCAR), without altering the mRNA expression of nuclear factor of activated T cells (NFATc1) and cellular oncogene fos (c-Fos). Furthermore, Tartrate-resistant acid phosphatase (TRAP)-positive mononuclear cells were significantly decreased by BCPA treatment compared to treatment with the Pin1 inhibitor juglone. These data suggest that BCPA can inhibit osteoclastogenesis by regulating the expression of the DC-STAMP osteoclast fusion protein by attenuating Pin1 reduction. Therefore, BCPA may be used to treat osteoporosis.
Collapse
|
27
|
Tan Z, Kang T, Zhang X, Tong Y, Chen S. Nerve growth factor prevents arsenic-induced toxicity in PC12 cells through the AKT/GSK-3β/NFAT pathway. J Cell Physiol 2018; 234:4726-4738. [PMID: 30256405 DOI: 10.1002/jcp.27255] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/25/2018] [Indexed: 12/13/2022]
Abstract
The potential risk of arsenic-related neurodegeneration has been a growing concern. Arsenic exposure has been reported to disrupt neurite growth and neuron body integrity in vitro; however, its underlying mechanism remains unclear. Previously, we showed that arsenic sulfide (AS) exerted cytotoxicity in gastric and colon cancer cells through regulating nuclear factor of the activated T cells (NFAT) pathway. The NFAT pathway regulates axon path finding and neural development. Using neural crest cell line PC12 cells as a model, here we show that AS caused mitochondrial membrane potential collapse, reactive oxygen species production, and cytochrome c release, leading to mitochondria-mediated apoptosis via the AKT/GSK-3β/NFAT pathway. Increased glycogen synthase kinase-3 beta (GSK-3β) activation leads to the inactivation of NFAT and its antiapoptotic effects. Through inhibiting GSK-3β activity, both nerve growth factor (NGF) and Tideglusib, a GSK-3β inhibitor partially rescued the PC12 cells from the AS-induced cytotoxicity and restored the expression of NFATc3. In addition, overexpression of NFATc3 stimulated neurite outgrowth and potentiated the effect of NGF on promoting the neurite outgrowth. Collectively, our results show that NFATc3 serves as the downstream target of NGF and plays a key role in preventing AS-induced neurotoxicity through regulating the AKT/GSK-3β/NFAT pathway in PC12 cells.
Collapse
Affiliation(s)
- Zhen Tan
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ting Kang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xiuli Zhang
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yingying Tong
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Siyu Chen
- Department of Oncology, Xin Hua Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
28
|
Yu J, Zanotti S, Schilling L, Canalis E. Nuclear factor of activated T cells 2 is required for osteoclast differentiation and function in vitro but not in vivo. J Cell Biochem 2018; 119:9334-9345. [PMID: 30010214 DOI: 10.1002/jcb.27212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/30/2018] [Indexed: 01/09/2023]
Abstract
Nuclear factor of activated T cells (NFAT) c2 is important for the immune response and it compensates for NFATc1 for its effects on osteoclastogenesis, but its role in this process is not established. To study the function of NFATc2 in the skeleton, Nfatc2loxP/loxP mice, where the Nfact2 exon 2 is flanked by loxP sequences, were created and mated with mice expressing the Cre recombinase under the control of the Lyz2 promoter. Bone marrow-derived macrophage (BMM) from Lyz2Cre/WT ;Nfatc2Δ/Δ mice cultured in the presence of macrophage-colony stimulating factor and receptor activator of NF-κB ligand exhibited a decrease in the number and size of osteoclasts and a smaller sealing zone when compared to BMMs from Nfatc2loxP/loxP littermate controls. Bone resorption was decreased in osteoclasts from Lyz2Cre/WT ;Nfatc2Δ/Δ mice. This demonstrates that NFATc2 is necessary for optimal osteoclast maturation and function in vitro. Male and female Lyz2Cre/WT ;Nfatc2Δ/Δ mice did not exhibit an obvious skeletal phenotype by microcomputed tomography (μCT) at either 1 or 4 months of age when compared to Nfatc2loxP/loxP sex-matched littermates. Bone histomorphometry confirmed the μCT results, and conditional 4-month-old Lyz2Cre/WT ;Nfatc2Δ/Δ mice did not exhibit changes in parameters of bone histomorphometry. In conclusion, NFATc2 is necessary for optimal osteoclastogenesis in vitro, but its downregulation in the myeloid lineage has no consequences in skeletal remodeling in vivo.
Collapse
Affiliation(s)
- Jungeun Yu
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Stefano Zanotti
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
- Department of Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Lauren Schilling
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| | - Ernesto Canalis
- Department of Orthopaedic Surgery, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
- Department of Medicine, UConn Musculoskeletal Institute, UConn Health, Farmington, Connecticut
| |
Collapse
|
29
|
Tie K, Wu M, Deng Y, Wen Y, Dan Xu, Chen L, Wang H. Histone hypo-acetylation of Sox9 mediates nicotine-induced weak cartilage repair by suppressing BMSC chondrogenic differentiation. Stem Cell Res Ther 2018; 9:98. [PMID: 29631619 PMCID: PMC5891899 DOI: 10.1186/s13287-018-0853-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/02/2018] [Accepted: 03/21/2018] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Nicotine has negative effects on tissue repair, little research concerns its effect on the cartilage repair of tissue engineering stem cells. The present study aimed to investigate the effects of nicotine on the bone marrow-derived mesenchymal stem cells' (BMSCs) chondrogenic repair function of cartilage defects and explored the molecular mechanism. METHODS A cartilage defect model of rat was repaired by BMSC transplantation, and treated with nicotine or saline at 2.0 mg/kg/d in 12 weeks. Nicotine's effect on chondrogenic differentiation was studied by exposing BMSCs to nicotine at 0.1, 1, 10, and 100 μM, and methyllycaconitine (MLA), which is a selective α7-nicotinic acetylcholine receptor (nAChR) inhibitor and si-RNA of nuclear factor of activated T cells 2 (NFATc2), were used to verify the molecular mechanism of nicotine's effect. RESULTS Data showed that nicotine inhibited cartilage repair function by suppressing SRY-type high-mobility group box 9 (Sox9) in regenerated tissues. Further in vitro study demonstrated that nicotine enhanced intracellular Ca2+ and activity of calcineurin (CaN) through α7-nAChR, increased the nucleic expressions of NFATc2 and the bindings to SOX9 promoter, and thus reduced the acetylation of H3K9 and H3K14 in SOX9 promoter. CONCLUSIONS Findings from this study demonstrated that nicotine suppressed the chondrogenic differentiation of BMSCs in vivo and in vitro, which offers insight into the risk assessment of cartilage defect repair in a nicotine exposure population and its therapeutic target.
Collapse
Affiliation(s)
- Kai Tie
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Min Wu
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yu Deng
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Yinxian Wen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Dan Xu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, People's Republic of China.,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China.
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan, 430071, People's Republic of China. .,Hubei Provincial Key Laboratory of Developmentally Originated Diseases, 185 Donghu Road, Wuchang District, Wuhan, 430071, People's Republic of China.
| |
Collapse
|
30
|
Nishimura R, Hata K, Nakamura E, Murakami T, Takahata Y. Transcriptional network systems in cartilage development and disease. Histochem Cell Biol 2018; 149:353-363. [PMID: 29308531 DOI: 10.1007/s00418-017-1628-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2017] [Indexed: 12/13/2022]
Abstract
Transcription factors play important roles in the regulation of cartilage development by controlling the expression of chondrogenic genes. Genetic studies have revealed that Sox9/Sox5/Sox6, Runx2/Runx3 and Osterix in particular are essential for the sequential steps of cartilage development. Importantly, these transcription factors form network systems that are also required for appropriate cartilage development. Molecular cloning approaches have largely contributed to the identification of several transcriptional partners for Sox9 and Runx2 during cartilage development. Although the importance of a negative-feedback loop between Indian hedgehog (Ihh) and parathyroid hormone-related protein (PTHrP) in chondrocyte hypertrophy has been well established, recent studies indicate that several transcription factors interact with the Ihh-PTHrP loop and demonstrated that Ihh has multiple functions in the regulation of cartilage development. The most common cartilage disorder, osteoarthritis, has been reported to result from the pathological action of several transcription factors, including Runx2, C/EBPβ and HIF-2α. On the other hand, NFAT family members appear to play roles in the protection of cartilage from osteoarthritis. It is also becoming important to understand the homeostasis and regulation of articular chondrocytes, because they have different cellular and molecular features from chondrocytes of the growth plate. This review summarizes the regulation and roles of transcriptional network systems in cartilage development and their pathological roles in osteoarthritis.
Collapse
Affiliation(s)
- Riko Nishimura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Kenji Hata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Eriko Nakamura
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Tomohiko Murakami
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yoshifumi Takahata
- Department of Molecular and Cellular Biochemistry, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
31
|
Li C, Zheng Z, Zhang X, Asatrian G, Chen E, Song R, Culiat C, Ting K, Soo C. Nfatc1 Is a Functional Transcriptional Factor Mediating Nell-1-Induced Runx3 Upregulation in Chondrocytes. Int J Mol Sci 2018; 19:168. [PMID: 29316655 PMCID: PMC5796117 DOI: 10.3390/ijms19010168] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 12/19/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023] Open
Abstract
Neural EGFL like 1 (Nell-1) is essential for chondrogenic differentiation, maturation, and regeneration. Our previous studies have demonstrated that Nell-1's pro-chondrogenic activities are predominantly reliant upon runt-related transcription factor 3 (Runx3)-mediated Indian hedgehog (Ihh) signaling. Here, we identify the nuclear factor of activated T-cells 1 (Nfatc1) as the key transcriptional factor mediating the Nell-1 → Runx3 signal transduction in chondrocytes. Using chromatin immunoprecipitation assay, we were able to determine that Nfatc1 binds to the -833--810 region of the Runx3-promoter in response to Nell-1 treatment. By revealing the Nell-1 → Nfatc1 → Runx3 → Ihh cascade, we demonstrate the involvement of Nfatc1, a nuclear factor of activated T-cells, in chondrogenesis, while providing innovative insights into developing a novel therapeutic strategy for cartilage regeneration and other chondrogenesis-related conditions.
Collapse
Affiliation(s)
- Chenshuang Li
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Zhong Zheng
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Xinli Zhang
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Greg Asatrian
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Eric Chen
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Richard Song
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Cymbeline Culiat
- NellOne Therapeutics, Inc., 99 Midway Ln # E, Oak Ridge, TN 37830, USA.
| | - Kang Ting
- Division of Growth and Development, Section of Orthodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Chia Soo
- Division of Plastic and Reconstructive Surgery and Department of Orthopaedic Surgery, the Orthopaedic Hospital Research Center, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
32
|
Gong M, Liang T, Jin S, Dai X, Zhou Z, Gao M, Huang S, Luo J, Zou L, Zou X. Methylation-mediated silencing of miR-124 facilitates chondrogenesis by targeting NFATc1 under hypoxic conditions. Am J Transl Res 2017; 9:4111-4124. [PMID: 28979686 PMCID: PMC5622255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Chondrogenic differentiation of mesenchymal stem cells is regulated by many different pathways. Recent studies have established that hypoxia and epigenetic alterations potently affect expression of chondrogenesis marker genes. Sox9 is generally regarded as a master regulator of chondrogenesis and microRNA-124 (miRNA-124) regulates gene expression in murine bone marrow-derived mesenchymal stem cells. Therefore, in this study we investigated whether epigenetic regulation of miRNA-124 could affect the expression of Sox9 and thereby regulate chondrogenesis. A cell pellet culture model was used to induce chondrogenesis in C3H10T1/2 cells under hypoxic conditions (2% O2) to determine the effects of hypoxia on miR-124 expression and DNA methylation. The expression of miR-124 was significantly downregulated under hypoxic conditions compared to normoxic conditions (21% O2). The expression of chondrogenesis marker genes was significantly increased under hypoxic conditions. Bisulfite sequencing of the CpG islands in the promoter region of miR-124-3 showed that CpG methylation was significantly increased under hypoxic conditions. Treating the cells with the DNA demethylating agent 5'-AZA significantly increased miR-124 expression and decreased expression of markers of chondrogenesis. Overexpressing miR-124 under hypoxic conditions inhibited NFATc1 reporter activity. NFATc1 was shown to bind to the promoter region of Sox9. Taken together, our data provide evidence that miR-124 acts as an inhibitor of NFATc1. Under hypoxic conditions when miR-124 is downregulated by methylation of CpG islands in the promoter, NFATc1 can bind to the Sox9 promoter and induce the expression of Sox9 leading to chondrogenesis. These results support the role of epigenetic regulation in establishing and maintaining a chondrogenic phenotype.
Collapse
Affiliation(s)
- Ming Gong
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
- Department of Spinal Surgery, People’s Hospital of LonghuaShenzhen 518109, R.P. China
| | - Tangzhao Liang
- Department of Orthopedic Surgery, The Third Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Song Jin
- Department of Orthopaedic Surgery, The Eighth Affiliated Hospital of Sun Yat-sen UniversityShenzhen 518000, P. R. China
| | - Xuejun Dai
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Zhiyu Zhou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Manman Gao
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Sheng Huang
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Jiaquan Luo
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| | - Lijin Zou
- Department of Surgery, The First Affiliated Hospital of Nanchang UniversityNanchang 330006, P. R. China
| | - Xuenong Zou
- Guangdong Provincial Key Laboratory of Orthopaedics and Traumatology, Orthopaedic Research Institute/Department of Spinal Surgery, The First Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510080, P. R. China
| |
Collapse
|
33
|
Boczek T, Lisek M, Ferenc B, Zylinska L. Cross talk among PMCA, calcineurin and NFAT transcription factors in control of calmodulin gene expression in differentiating PC12 cells. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2017; 1860:502-515. [PMID: 28153703 DOI: 10.1016/j.bbagrm.2017.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 01/16/2017] [Accepted: 01/27/2017] [Indexed: 11/19/2022]
Abstract
Brain aging is characterized by progressive loss of plasma membrane calcium pump (PMCA) and its activator - calmodulin (CaM), but the mechanism of this phenomenon remains unresolved. CaM encoded by three genes Calm1, Calm2, Calm3, works to translate Ca2+ signal into changes in frequently opposite cellular activities. This unique function allows CaM to affect gene expression via stimulation of calcineurin (CaN) and its downstream target - nuclear factor of activated T-cells (NFAT) and to terminate Ca2+ signal by stimulation of its extrusion. PMCA, which exists in four isoforms PMCA1-4, may in turn shape the pattern of Ca2+ transients and control CaN activity by its direct binding. Therefore, the interplay between PMCA, CaM and CaN/NFAT is highly plausible. To verify that, we used differentiated PC12 cells with reduced expression of PMCA2 or PMCA3 to mimic the potential changes in aged brain. Manipulation in PMCAs level decreased CaM protein in PMCA2 or PMCA3-reduced lines that was accompanied by down-regulation of Calm1 and Calm2 in both lines, but Calm3 only in PMCA2-reduced cells. Further studies showed substantially higher NFATc2 nuclear accumulation and increased NFAT transcriptional activity. Blocking of CaN/NFAT signalling resulted in almost full CaM recovery, mainly due to up-regulation of Calm2 and Calm3 genes. Moreover, higher occupancy of Calm2 and Calm3 promoters by NFATc2 and increased expression of these genes in response to NFATc2 silencing were demonstrated in PMCA2 and PMCA3-reduced lines. Our results indicate that decrease in CaM level in response to PMCAs downregulation can be driven by CaN/NFAT pathway.
Collapse
Affiliation(s)
- Tomasz Boczek
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland; Boston Children's Hospital and Harvard Medical School, 300 Longwood Ave, Boston, MA 02115, USA.
| | - Malwina Lisek
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| | - Bozena Ferenc
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Mazowiecka 6/8 Str., 92-215 Lodz, Poland
| |
Collapse
|
34
|
Mamun AA, Liu F. Role of IRF4-Mediated Inflammation: Implication in Neurodegenerative Diseases. NEUROLOGY & NEUROTHERAPY OPEN ACCESS JOURNAL 2017; 2:107. [PMID: 39473489 PMCID: PMC11521387 DOI: 10.23880/nnoaj-16000107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Neuro-inflammation is a common feature of various central nervous system (CNS) disorders, including stroke, Alzheimer's disease, Multiple sclerosis, etc., and has a significant impact on the outcomes. Regulation of the immune response has therapeutic value. Interferon regulatory factor 4 (IRF4) is a hemopoietic transcription factor critical for activation of microglia/macrophages and modulation of inflammatory responses. The effects of IRF4 signaling on inflammation are pleiotropic, and vary depending on immune cell types and the pathological microenvironment that is regulated by both pro- and anti-inflammatory cytokines. Mechanistically, IRF4 is a quintessential 'context-dependent' transcription factor that regulates distinct groups of inflammatory mediators in a differential manner depending on their activation in different cell types including phagocytes, T-cell subtypes, and neuronal cells. In this review, we summarized the recent findings of IRF4 in the context of immune responses in different cell types with diverse pathological conditions. The primary goal of this review is to understand the signaling pathways and beneficial functions of IRF4, in hope of developing effective therapeutic strategies targeting the immune responses to neurodegenerative diseases.
Collapse
Affiliation(s)
- AA Mamun
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| | - F Liu
- Department of Neurology, McGovern Medical School, The University of Texas Medical School, USA
| |
Collapse
|
35
|
Manocha GD, Ghatak A, Puig KL, Kraner SD, Norris CM, Combs CK. NFATc2 Modulates Microglial Activation in the AβPP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2017; 58:775-787. [PMID: 28505967 PMCID: PMC6265241 DOI: 10.3233/jad-151203] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Alzheimer's disease (AD) brains are characterized by fibrillar amyloid-β (Aβ) peptide containing plaques and associated reactive microglia. The proinflammatory phenotype of the microglia suggests that they may negatively affect disease course and contribute to behavioral decline. This hypothesis predicts that attenuating microglial activation may provide benefit against disease. Prior work from our laboratory and others has characterized a role for the transcription factor, nuclear factor of activated T cells (NFAT), in regulating microglial phenotype in response to different stimuli, including Aβ peptide. We observed that the NFATc2 isoform was the most highly expressed in murine microglia cultures, and inhibition or deletion of NFATc2 was sufficient to attenuate the ability of the microglia to secrete cytokines. In order to determine whether the NFATc2 isoform, in particular, was a valid immunomodulatory target in vivo, we crossed an NFATc2-/- line to a well-known AD mouse model, an AβPP/PS1 mouse line. As expected, the AβPP/PS1 x NFATc2-/- mice had attenuated cytokine levels compared to AβPP/PS1 mice as well as reduced microgliosis and astrogliosis with no effect on plaque load. Although some species differences in relative isoform expression may exist between murine and human microglia, it appears that microglial NFAT activity is a viable target for modulating the proinflammatory changes that occur during AD.
Collapse
Affiliation(s)
- Gunjan D. Manocha
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Atreyi Ghatak
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Kendra L. Puig
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| | - Susan D. Kraner
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Christopher M. Norris
- Department of Pharmacology and Nutritional Sciences and the Sanders Brown Center on Aging, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Colin K. Combs
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, USA
| |
Collapse
|
36
|
McElyea SD, Starbuck JM, Tumbleson-Brink DM, Harrington E, Blazek JD, Ghoneima A, Kula K, Roper RJ. Influence of prenatal EGCG treatment and Dyrk1a dosage reduction on craniofacial features associated with Down syndrome. Hum Mol Genet 2016; 25:4856-4869. [PMID: 28172997 PMCID: PMC6049609 DOI: 10.1093/hmg/ddw309] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022] Open
Abstract
Trisomy 21 (Ts21) affects craniofacial precursors in individuals with Down syndrome (DS). The resultant craniofacial features in all individuals with Ts21 may significantly affect breathing, eating and speaking. Using mouse models of DS, we have traced the origin of DS-associated craniofacial abnormalities to deficiencies in neural crest cell (NCC) craniofacial precursors early in development. Hypothetically, three copies of Dyrk1a (dual-specificity tyrosine-(Y)-phosphorylation regulated kinase 1A), a trisomic gene found in most humans with DS and mouse models of DS, may significantly affect craniofacial structure. We hypothesized that we could improve DS-related craniofacial abnormalities in mouse models using a Dyrk1a inhibitor or by normalizing Dyrk1a gene dosage. In vitro and in vivo treatment with Epigallocatechin-3-gallate (EGCG), a Dyrk1a inhibitor, modulated trisomic NCC deficiencies at embryonic time points. Furthermore, prenatal EGCG treatment normalized some craniofacial phenotypes, including cranial vault in adult Ts65Dn mice. Normalization of Dyrk1a copy number in an otherwise trisomic Ts65Dn mice normalized many dimensions of the cranial vault, but did not correct all craniofacial anatomy. These data underscore the complexity of the gene–phenotype relationship in trisomy and suggest that changes in Dyrk1a expression play an important role in morphogenesis and growth of the cranial vault. These results suggest that a temporally specific prenatal therapy may be an effective way to ameliorate some craniofacial anatomical changes associated with DS.
Collapse
Affiliation(s)
- Samantha D McElyea
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - John M Starbuck
- Department of Orthodontics and Facial Genetics, Indiana University School of Dentistry, 1121 W. Michigan Street, DS 250B, Indianapolis, IN, USA
- Department of Anthropology, University of Central Florida, 4000 Central Florida Blvd., Howard Phillips Hall, Room 309F, Orlando, FL, USA
| | - Danika M Tumbleson-Brink
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - Emily Harrington
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - Joshua D Blazek
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| | - Ahmed Ghoneima
- Department of Orthodontics and Facial Genetics, Indiana University School of Dentistry, 1121 W. Michigan Street, DS 250B, Indianapolis, IN, USA
| | - Katherine Kula
- Department of Orthodontics and Facial Genetics, Indiana University School of Dentistry, 1121 W. Michigan Street, DS 250B, Indianapolis, IN, USA
| | - Randall J Roper
- Department of Biology, Indiana University-Purdue University Indianapolis, 723 W. Michigan Street, SL306, Indianapolis, IN, USA
| |
Collapse
|
37
|
Teixeira LK, Carrossini N, Sécca C, Kroll JE, DaCunha DC, Faget DV, Carvalho LDS, de Souza SJ, Viola JPB. NFAT1 transcription factor regulates cell cycle progression and cyclin E expression in B lymphocytes. Cell Cycle 2016; 15:2346-59. [PMID: 27399331 DOI: 10.1080/15384101.2016.1203485] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The NFAT family of transcription factors has been primarily related to T cell development, activation, and differentiation. Further studies have shown that these ubiquitous proteins are observed in many cell types inside and outside the immune system, and are involved in several biological processes, including tumor growth, angiogenesis, and invasiveness. However, the specific role of the NFAT1 family member in naive B cell proliferation remains elusive. Here, we demonstrate that NFAT1 transcription factor controls Cyclin E expression, cell proliferation, and tumor growth in vivo. Specifically, we show that inducible expression of NFAT1 inhibits cell cycle progression, reduces colony formation, and controls tumor growth in nude mice. We also demonstrate that NFAT1-deficient naive B lymphocytes show a hyperproliferative phenotype and high levels of Cyclin E1 and E2 upon BCR stimulation when compared to wild-type B lymphocytes. NFAT1 transcription factor directly regulates Cyclin E expression in B cells, inhibiting the G1/S cell cycle phase transition. Bioinformatics analysis indicates that low levels of NFAT1 correlate with high expression of Cyclin E1 in different human cancers, including Diffuse Large B-cell Lymphomas (DLBCL). Together, our results demonstrate a repressor role for NFAT1 in cell cycle progression and Cyclin E expression in B lymphocytes, and suggest a potential function for NFAT1 protein in B cell malignancies.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Nina Carrossini
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Cristiane Sécca
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - José E Kroll
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - Déborah C DaCunha
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Douglas V Faget
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Lilian D S Carvalho
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| | - Sandro J de Souza
- b Brain Institute, Federal University of Rio Grande do Norte (UFRN) , Natal , Brazil
| | - João P B Viola
- a Program of Cellular Biology , Brazilian National Cancer Institute (INCA) , Rio de Janeiro , Brazil
| |
Collapse
|
38
|
Cell cycle and apoptosis regulation by NFAT transcription factors: new roles for an old player. Cell Death Dis 2016; 7:e2199. [PMID: 27100893 PMCID: PMC4855676 DOI: 10.1038/cddis.2016.97] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/13/2016] [Accepted: 03/16/2016] [Indexed: 12/11/2022]
Abstract
The NFAT (nuclear factor of activated T cells) family of transcription factors consists of four Ca2+-regulated members (NFAT1–NFAT4), which were first described in T lymphocytes. In addition to their well-documented role in T lymphocytes, where they control gene expression during cell activation and differentiation, NFAT proteins are also expressed in a wide range of cells and tissue types and regulate genes involved in cell cycle, apoptosis, angiogenesis and metastasis. The NFAT proteins share a highly conserved DNA-binding domain (DBD), which allows all NFAT members to bind to the same DNA sequence in enhancers or promoter regions. The same DNA-binding specificity suggests redundant roles for the NFAT proteins, which is true during the regulation of some genes such as IL-2 and p21. However, it has become increasingly clear that different NFAT proteins and even isoforms can have unique functions. In this review, we address the possible reasons for these distinct roles, particularly regarding N- and C-terminal transactivation regions (TADs) and the partner proteins that interact with these TADs. We also discuss the genes regulated by NFAT during cell cycle regulation and apoptosis and the role of NFAT during tumorigenesis.
Collapse
|
39
|
Ge X, Tsang K, He L, Garcia RA, Ermann J, Mizoguchi F, Zhang M, Zhou B, Zhou B, Aliprantis AO. NFAT restricts osteochondroma formation from entheseal progenitors. JCI Insight 2016; 1:e86254. [PMID: 27158674 DOI: 10.1172/jci.insight.86254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Osteochondromas are common benign osteocartilaginous tumors in children and adolescents characterized by cartilage-capped bony projections on the surface of bones. These tumors often cause pain, deformity, fracture, and musculoskeletal dysfunction, and they occasionally undergo malignant transformation. The pathogenesis of osteochondromas remains poorly understood. Here, we demonstrate that nuclear factor of activated T cells c1 and c2 (NFATc1 and NFATc2) suppress osteochondromagenesis through individual and combinatorial mechanisms. In mice, conditional deletion of NFATc1 in mesenchymal limb progenitors, Scleraxis-expressing (Scx-expressing) tendoligamentous cells, or postnatally in Aggrecan-expressing cells resulted in osteochondroma formation at entheses, the insertion sites of ligaments and tendons onto bone. Combinatorial deletion of NFATc1 and NFATc2 gave rise to larger and more numerous osteochondromas in inverse proportion to gene dosage. A population of entheseal NFATc1- and Aggrecan-expressing cells was identified as the osteochondroma precursor, previously believed to be growth plate derived or perichondrium derived. Mechanistically, we show that NFATc1 restricts the proliferation and chondrogenesis of osteochondroma precursors. In contrast, NFATc2 preferentially inhibits chondrocyte hypertrophy and osteogenesis. Together, our findings identify and characterize a mechanism of osteochondroma formation and suggest that regulating NFAT activity is a new therapeutic approach for skeletal diseases characterized by defective or exaggerated osteochondral growth.
Collapse
Affiliation(s)
- Xianpeng Ge
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Kelly Tsang
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lizhi He
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Roberto A Garcia
- Department of Pathology, Bone and Soft Tissue Pathology Division, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Joerg Ermann
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Fumitaka Mizoguchi
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Minjie Zhang
- Orthopaedic Research Laboratories, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Bin Zhou
- Department of Genetics, Pediatrics, and Medicine (Cardiology), Albert Einstein College of Medicine of Yeshiva University, New York, USA
| | - Bin Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Antonios O Aliprantis
- Department of Medicine, Division of Rheumatology, Immunology and Allergy, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
40
|
Zhang H, Bai S, Wang ZS, Dong X, Peng Q, Zou H. Effects of Different Levels of Protein Supplements in the Diet of Early-Weaned Yaks on Growth Performance, Intestinal Development, and Immune Response to Tuberculosis. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
|
42
|
Abstract
Articular cartilage is a unique load-bearing connective tissue with a low intrinsic capacity for repair and regeneration. Its avascularity makes it relatively hypoxic and its unique extracellular matrix is enriched with cations, which increases the interstitial fluid osmolarity. Several physicochemical and biomechanical stimuli are reported to influence chondrocyte metabolism and may be utilized for regenerative medical approaches. In this review article, we summarize the most relevant stimuli and describe how ion channels may contribute to cartilage homeostasis, with special emphasis on intracellular signaling pathways. We specifically focus on the role of calcium signaling as an essential mechanotransduction component and highlight the role of phosphatase signaling in this context.
Collapse
Affiliation(s)
- Holger Jahr
- Department of Orthopaedic Surgery, University Hospital RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
| | - Csaba Matta
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Nagyerdei krt. 98, Debrecen, 4032 Hungary
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Surrey, UK
- Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Duke of Kent Building, Guildford, Surrey GU2 7XH UK
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen’s Medical Centre, Nottingham, NG7 2UH UK
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah, 21589 Kingdom of Saudi Arabia
| |
Collapse
|
43
|
Integrative genomic and transcriptomic analysis identified candidate genes implicated in the pathogenesis of hepatosplenic T-cell lymphoma. PLoS One 2014; 9:e102977. [PMID: 25057852 PMCID: PMC4109958 DOI: 10.1371/journal.pone.0102977] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 06/23/2014] [Indexed: 12/20/2022] Open
Abstract
Hepatosplenic T-cell lymphoma (HSTL) is an aggressive lymphoma cytogenetically characterized by isochromosome 7q [i(7)(q10)], of which the molecular consequences remain unknown. We report here results of an integrative genomic and transcriptomic (expression microarray and RNA-sequencing) study of six i(7)(q10)-positive HSTL cases, including HSTL-derived cell line (DERL-2), and three cases with ring 7 [r(7)], the recently identified rare variant aberration. Using high resolution array CGH, we profiled all cases and mapped the common deleted region (CDR) at 7p22.1p14.1 (34.88 Mb; 3506316-38406226 bp) and the common gained region (CGR) at 7q22.11q31.1 (38.77 Mb; 86259620–124892276 bp). Interestingly, CDR spans a smaller region of 13 Mb (86259620–99271246 bp) constantly amplified in cases with r(7). In addition, we found that TCRG (7p14.1) and TCRB (7q32) are involved in formation of r(7), which seems to be a byproduct of illegitimate somatic rearrangement of both loci. Further transcriptomic analysis has not identified any CDR-related candidate tumor suppressor gene. Instead, loss of 7p22.1p14.1 correlated with an enhanced expression of CHN2 (7p14.1) and the encoded β2-chimerin. Gain and amplification of 7q22.11q31.1 are associated with an increased expression of several genes postulated to be implicated in cancer, including RUNDC3B, PPP1R9A and ABCB1, a known multidrug resistance gene. RNA-sequencing did not identify any disease-defining mutation or gene fusion. Thus, chromosome 7 imbalances remain the only driver events detected in this tumor. We hypothesize that the Δ7p22.1p14.1-associated enhanced expression of CHN2/β2-chimerin leads to downmodulation of the NFAT pathway and a proliferative response, while upregulation of the CGR-related genes provides growth advantage for neoplastic δγT-cells and underlies their intrinsic chemoresistance. Finally, our study confirms the previously described gene expression profile of HSTL and identifies a set of 24 genes, including three located on chromosome 7 (CHN2, ABCB1 and PPP1R9A), distinguishing HSTL from other malignancies.
Collapse
|
44
|
Beier F. NFATs are good for your cartilage! Osteoarthritis Cartilage 2014; 22:893-5. [PMID: 24769231 DOI: 10.1016/j.joca.2014.04.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 04/08/2014] [Accepted: 04/12/2014] [Indexed: 02/02/2023]
Affiliation(s)
- F Beier
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| |
Collapse
|
45
|
Nfatc2 and Tob1 have non-overlapping function in T cell negative regulation and tumorigenesis. PLoS One 2014; 9:e100629. [PMID: 24945807 PMCID: PMC4063948 DOI: 10.1371/journal.pone.0100629] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 05/27/2014] [Indexed: 11/19/2022] Open
Abstract
Nfatc2 and Tob1 are intrinsic negative regulators of T cell activation. Nfatc2-deficient and Tob1-deficient T cells show reduced thresholds of activation; however, whether these factors have independent or overlapping roles in negative regulation of T cell responses has not been previously examined. Here, we show that Nfatc2 knockout (KO) but not Tob1 KO mice have age-associated accumulation of persistently activated T cells in vivo and expansion of the CD44+ memory cell compartment and age-associated lymphocytic infiltrates in visceral organs, without significant changes in numbers of CD4+CD25+Foxp3+ regulatory T cells (Treg). In vitro, CD4+CD25- "conventional" T cells (Tconvs) from both KO strains showed greater proliferation than wild type (WT) Tconvs. However, while Tregs from Nfatc2 KO mice retained normal suppressive function, Tregs from Tob1 KOs had enhanced suppressive activity. Nfatc2 KO Tconvs expanded somewhat more rapidly than WT Tconvs under conditions of homeostatic proliferation, but their accelerated growth capacity was negated, at least acutely, in a lymphoreplete environment. Finally, Nfatc2 KO mice developed a previously uncharacterized increase in B-cell malignancies, which was not accelerated by the absence of Tob1. The data thus support the prevailing hypothesis that Nfatc2 and Tob1 are non-redundant regulators of lymphocyte homeostasis.
Collapse
|
46
|
Kosiorek M, Podszywalow-Bartnicka P, Zylinska L, Pikula S. NFAT1 and NFAT3 cooperate with HDAC4 during regulation of alternative splicing of PMCA isoforms in PC12 cells. PLoS One 2014; 9:e99118. [PMID: 24905014 PMCID: PMC4048221 DOI: 10.1371/journal.pone.0099118] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 05/10/2014] [Indexed: 02/07/2023] Open
Abstract
Background The bulk of human genes undergo alternative splicing (AS) upon response to physiological stimuli. AS is a great source of protein diversity and biological processes and is associated with the development of many diseases. Pheochromocytoma is a neuroendocrine tumor, characterized by an excessive Ca2+-dependent secretion of catecholamines. This underlines the importance of balanced control of calcium transport via regulation of gene expression pattern, including different calcium transport systems, such as plasma membrane Ca2+-ATPases (PMCAs), abundantly expressed in pheochromocytoma chromaffin cells (PC12 cells). PMCAs are encoded by four genes (Atp2b1, Atp2b2, Atp2b3, Atp2b4), whose transcript products undergo alternative splicing giving almost 30 variants. Results In this scientific report, we propose a novel mechanism of regulation of PMCA alternative splicing in PC12 cells through cooperation of the nuclear factor of activated T-cells (NFAT) and histone deacetylases (HDACs). Luciferase assays showed increased activity of NFAT in PC12 cells, which was associated with altered expression of PMCA. RT-PCR experiments suggested that inhibition of the transcriptional activity of NFAT might result in the rearrangement of PMCA splicing variants in PC12 cells. NFAT inhibition led to dominant expression of 2x/c, 3x/a and 4x/a PMCA variants, while in untreated cells the 2w,z/b, 3z,x/b,c,e,f, and 4x/b variants were found as well. Furthermore, chromatin immunoprecipitation experiments showed that NFAT1-HDAC4 or NFAT3-HDAC4 complexes might be involved in regulation of PMCA2x splicing variant generation. Conclusions We suggest that the influence of NFAT/HDAC on PMCA isoform composition might be important for altered dopamine secretion by PC12 cells.
Collapse
Affiliation(s)
- Michalina Kosiorek
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
- Department of Neurodegenerative Disorders, Laboratory of Neurogenetics, Mossakowski Medical Research Centre PAS, Warsaw, Poland
| | | | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Lodz, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, Warsaw, Poland
- * E-mail:
| |
Collapse
|
47
|
Siebelt M, van der Windt AE, Groen HC, Sandker M, Waarsing JH, Müller C, de Jong M, Jahr H, Weinans H. FK506 protects against articular cartilage collagenous extra-cellular matrix degradation. Osteoarthritis Cartilage 2014; 22:591-600. [PMID: 24561282 DOI: 10.1016/j.joca.2014.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 01/22/2014] [Accepted: 02/06/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is a non-rheumatologic joint disease characterized by progressive degeneration of the cartilage extra-cellular matrix (ECM), enhanced subchondral bone remodeling, activation of synovial macrophages and osteophyte growth. Inhibition of calcineurin (Cn) activity through tacrolimus (FK506) in in vitro monolayer chondrocytes exerts positive effects on ECM marker expression. This study therefore investigated the effects of FK506 on anabolic and catabolic markers of osteoarthritic chondrocytes in 2D and 3D in vitro cultures, and its therapeutic effects in an in vivo rat model of OA. METHODS Effects of high and low doses of FK506 on anabolic (QPCR/histochemistry) and catabolic (QPCR) markers were evaluated in vitro on isolated (2D) and ECM-embedded chondrocytes (explants, 3D pellets). Severe cartilage damage was induced unilaterally in rat knees using papain injections in combination with a moderate running protocol. Twenty rats were treated with FK506 orally and compared to twenty untreated controls. Subchondral cortical and trabecular bone changes (longitudinal microCT) and macrophage activation (SPECT/CT) were measured. Articular cartilage was analyzed ex vivo using contrast enhanced microCT and histology. RESULTS FK506 treatment of osteoarthritic chondrocytes in vitro induced anabolic (mainly collagens) and reduced catabolic ECM marker expression. In line with this, FK506 treatment clearly protected ECM integrity in vivo by markedly decreasing subchondral sclerosis, less development of subchondral pores, depletion of synovial macrophage activation and lower osteophyte growth. CONCLUSION FK506 protected cartilage matrix integrity in vitro and in vivo. Additionally, FK506 treatment in vivo reduced OA-like responses in different articular joint tissues and thereby makes Cn an interesting target for therapeutic intervention of OA.
Collapse
Affiliation(s)
- M Siebelt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - A E van der Windt
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H C Groen
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - M Sandker
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - J H Waarsing
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - C Müller
- Center for Radiopharmaceutical Sciences PSI-ETH-USZ, Paul Scherrer Institute, Villigen-PSI, Switzerland
| | - M de Jong
- Department of Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - H Jahr
- Department of Orthopedics, Erasmus University Medical Center, Rotterdam, The Netherlands; Department of Orthopedic Surgery, University Hospital RWTH, Aachen, Germany
| | - H Weinans
- Department of Biomechanical Engineering, TU Delft, The Netherlands; Department of Orthopaedics, UMC Utrecht, The Netherlands; Department of Rheumatology, UMC Utrecht, The Netherlands
| |
Collapse
|
48
|
Kosiorek M, Zylinska L, Zablocki K, Pikula S. Calcineurin/NFAT signaling represses genes Vamp1 and Vamp2 via PMCA-dependent mechanism during dopamine secretion by Pheochromocytoma cells. PLoS One 2014; 9:e92176. [PMID: 24667359 PMCID: PMC3965406 DOI: 10.1371/journal.pone.0092176] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 02/19/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Plasma membrane Ca(2+)-ATPases (PMCA) extrude Ca(2+) ions out of the cell and contribute to generation of calcium oscillations. Calcium signaling is crucial for transcriptional regulation of dopamine secretion by neuroendocrine PC12 cells. Low resting [Ca(2+)]c in PC12 cells is maintained mainly by two Ca(2+)-ATPases, PMCA2 and PMCA3. Recently, we found that Ca(2+) dependent phosphatase calcineurin was excessively activated under conditions of experimental downregulation of PMCA2 or PMCA3. Thus, the aim of this study was to explain if, via modulation of the Ca(2+)/calcineurin-dependent nuclear factor of activated T cells (NFAT) pathway, PMCA2 and PMCA3 affect intracellular signaling in pheochromocytoma/neuronal cells/PC12 cells. Secondly, we tested whether this might influence dopamine secretion by PC12 cells. RESULTS PMCA2- and PMCA3-deficient cells displayed profound decrease in dopamine secretion accompanied by a permanent increase in [Ca(2+)]c. Reduction in secretion might result from changes in NFAT signaling, following altered PMCA pattern. Consequently, activation of NFAT1 and NFAT3 transcription factors was observed in PMCA2- or PMCA3-deficient cells. Furthermore, chromatin immunoprecipitation assay indicated that NFATs could be involved in repression of Vamp genes encoding vesicle associated membrane proteins (VAMP). CONCLUSIONS PMCA2 and PMCA3 are crucial for dopamine secretion in PC12 cells. Reduction in PMCA2 or PMCA3 led to calcium-dependent activation of calcineurin/NFAT signaling and, in consequence, to repression of the Vamp gene and deterioration of the SNARE complex formation in PC12 cells.
Collapse
Affiliation(s)
- Michalina Kosiorek
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
- Laboratory of Neurogenetics, Department of Neurodegenerative Disorders, Mossakowski Medical Research Centre PAS, Warsaw, Poland
- * E-mail: (MK); (SP)
| | - Ludmila Zylinska
- Department of Molecular Neurochemistry, Medical University, Lodz, Poland
| | - Krzysztof Zablocki
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
| | - Slawomir Pikula
- Department of Biochemistry, Nencki Institute of Experimental Biology, PAS, Warsaw, Poland
- * E-mail: (MK); (SP)
| |
Collapse
|
49
|
Briand-Suleau A, Martinovic J, Tosca L, Tou B, Brisset S, Bouligand J, Delattre V, Giurgea I, Bachir J, Folliot P, Goumy C, Francannet C, Guiochon-Mantel A, Benachi A, Vermeesch J, Tachdjian G, Vago P, Goossens M, Métay C. SALL4 and NFATC2: Two major actors of interstitial 20q13.2 duplication. Eur J Med Genet 2014; 57:174-80. [DOI: 10.1016/j.ejmg.2013.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 12/31/2013] [Indexed: 11/26/2022]
|
50
|
Pei X, Duan Z, Ma M, Zhang Y, Guo L. Role of Ca/CaN/NFAT signaling in IL-4 expression by splenic lymphocytes exposed to phthalate (2-ethylhexyl) ester in spleen lymphocytes. Mol Biol Rep 2014; 41:2129-42. [PMID: 24420859 DOI: 10.1007/s11033-014-3062-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 01/04/2014] [Indexed: 01/14/2023]
Abstract
The aims of present study were to investigate the effect of phthalate (2-ethylhexyl) ester (DEHP) and mono-(2-ethylhexyl) phthalate (MEHP) on Th1/Th2 balance signaling for interleukin 4 (IL-4) expression in splenic lymphocytes, and contribution of MEHP to any hypothesized changes in vitro. Primary splenic lymphocytes were exposed to DEHP/MEHP. ELISA and Western blotting were used to detect proteins. Confocal-microscopy was used to examine nuclear translocation. Nuclear factor of activated T cells (NFAT) DNA binding activity was examined by electrophoretic mobility-shift assay. DEHP significantly increased IL-4 and interferon gamma (IFN-γ) level, and reduced Th1/Th2 ratio (reflected by IFN-γ/IL-4) with 5 μg/L Concanavalin A (ConA) treatment. While MEHP reduced Th1/Th2 ratio (represented by IFN-γ/IL-6). IL-4 mRNA was significantly increased by DEHP but not by MEHP after PMA and Ion treatment. DEHP significantly inhibited NFATp protein in cytosol and nucleus. DEHP augmented nuclear translocation of NFATc in transfected EL4 cells and NFAT DNA-binding activity. DEHP-mediated enhancement of calcium-dependent phosphatase calcineurin (CaN) protein, and NFAT and IL-4 expression were abrogated by calcium antagonist verapamil and CaN inhibitor tarcolimus. Ca(2+)/calmodulin antagonist chlorpromazine significantly suppressed IL-4 and CaN production with no NFAT mRNA change. Our study suggests that DEHP and MEHP impact Th1/Th2 balance by modulating different cytokines. DEHP-affected IL-4 expression through Ca/CaN/NFAT signaling pathway, but no effect was discovered for MEHP.
Collapse
Affiliation(s)
- Xiucong Pei
- Department of Toxicology, School of Public Health, Shenyang Medical College, Shenyang, 110034, Liaoning, China,
| | | | | | | | | |
Collapse
|