1
|
Auer JMT, Stoddart JJ, Christodoulou I, Lima A, Skouloudaki K, Hall HN, Vukojević V, Papadopoulos DK. Of numbers and movement - understanding transcription factor pathogenesis by advanced microscopy. Dis Model Mech 2020; 13:dmm046516. [PMID: 33433399 PMCID: PMC7790199 DOI: 10.1242/dmm.046516] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcription factors (TFs) are life-sustaining and, therefore, the subject of intensive research. By regulating gene expression, TFs control a plethora of developmental and physiological processes, and their abnormal function commonly leads to various developmental defects and diseases in humans. Normal TF function often depends on gene dosage, which can be altered by copy-number variation or loss-of-function mutations. This explains why TF haploinsufficiency (HI) can lead to disease. Since aberrant TF numbers frequently result in pathogenic abnormalities of gene expression, quantitative analyses of TFs are a priority in the field. In vitro single-molecule methodologies have significantly aided the identification of links between TF gene dosage and transcriptional outcomes. Additionally, advances in quantitative microscopy have contributed mechanistic insights into normal and aberrant TF function. However, to understand TF biology, TF-chromatin interactions must be characterised in vivo, in a tissue-specific manner and in the context of both normal and altered TF numbers. Here, we summarise the advanced microscopy methodologies most frequently used to link TF abundance to function and dissect the molecular mechanisms underlying TF HIs. Increased application of advanced single-molecule and super-resolution microscopy modalities will improve our understanding of how TF HIs drive disease.
Collapse
Affiliation(s)
- Julia M T Auer
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Jack J Stoddart
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Ana Lima
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | | | - Hildegard N Hall
- MRC Human Genetics Unit, University of Edinburgh, Edinburgh EH4 1XU, UK
| | - Vladana Vukojević
- Center for Molecular Medicine (CMM), Department of Clinical Neuroscience, Karolinska Institutet, 17176 Stockholm, Sweden
| | | |
Collapse
|
2
|
Ohshima K, Fujiya K, Nagashima T, Ohnami S, Hatakeyama K, Urakami K, Naruoka A, Watanabe Y, Moromizato S, Shimoda Y, Ohnami S, Serizawa M, Akiyama Y, Kusuhara M, Mochizuki T, Sugino T, Shiomi A, Tsubosa Y, Uesaka K, Terashima M, Yamaguchi K. Driver gene alterations and activated signaling pathways toward malignant progression of gastrointestinal stromal tumors. Cancer Sci 2019; 110:3821-3833. [PMID: 31553483 PMCID: PMC6890443 DOI: 10.1111/cas.14202] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/17/2019] [Accepted: 09/22/2019] [Indexed: 12/28/2022] Open
Abstract
Mutually exclusive KIT and PDGFRA mutations are considered to be the earliest events in gastrointestinal stromal tumors (GIST), but insufficient for their malignant progression. Herein, we aimed to identify driver genes and signaling pathways relevant to GIST progression. We investigated genetic profiles of 707 driver genes, including mutations, gene fusions, copy number gain or loss, and gene expression for 65 clinical specimens of surgically dissected GIST, consisting of six metastatic tumors and 59 primary tumors from stomach, small intestine, rectum, and esophagus. Genetic alterations included oncogenic mutations and amplification‐dependent expression enhancement for oncogenes (OG), and loss of heterozygosity (LOH) and expression reduction for tumor suppressor genes (TSG). We assigned activated OG and inactivated TSG to 27 signaling pathways, the activation of which was compared between malignant GIST (metastasis and high‐risk GIST) and less malignant GIST (low‐ and very low‐risk GIST). Integrative molecular profiling indicated that a greater incidence of genetic alterations of driver genes was detected in malignant GIST (96%, 22 of 23) than in less malignant GIST (73%, 24 of 33). Malignant GIST samples groups showed mutations, LOH, and aberrant expression dominantly in driver genes associated with signaling pathways of PI3K (PIK3CA, AKT1, and PTEN) and the cell cycle (RB1, CDK4, and CDKN1B). Additionally, we identified potential PI3K‐related genes, the expression of which was upregulated (SNAI1 and TPX2) or downregulated (BANK1) in malignant GIST. Based on our observations, we propose that inhibition of PI3K pathway signals might potentially be an effective therapeutic strategy against malignant progression of GIST.
Collapse
Affiliation(s)
- Keiichi Ohshima
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Fujiya
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Takeshi Nagashima
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Sumiko Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Keiichi Hatakeyama
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Kenichi Urakami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Region Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Akane Naruoka
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuko Watanabe
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Sachi Moromizato
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yuji Shimoda
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,SRL, Inc., Tokyo, Japan
| | - Shumpei Ohnami
- Cancer Diagnostics Research Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masakuni Serizawa
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Yasuto Akiyama
- Immunotherapy Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Masatoshi Kusuhara
- Drug Discovery and Development Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan.,Region Resources Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Tohru Mochizuki
- Medical Genetics Division, Shizuoka Cancer Center Research Institute, Shizuoka, Japan
| | - Takashi Sugino
- Division of Pathology, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Akio Shiomi
- Division of Colon and Rectal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Yasuhiro Tsubosa
- Division of Esophageal Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Masanori Terashima
- Division of Gastric Surgery, Shizuoka Cancer Center Hospital, Shizuoka, Japan
| | - Ken Yamaguchi
- Shizuoka Cancer Center Hospital and Research Institute, Shizuoka, Japan
| |
Collapse
|
3
|
Recent Advances in the 5q- Syndrome. Mediterr J Hematol Infect Dis 2015; 7:e2015037. [PMID: 26075044 PMCID: PMC4450650 DOI: 10.4084/mjhid.2015.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 12/12/2022] Open
Abstract
The 5q- syndrome is the most distinct of the myelodysplastic syndromes (MDS) and patients with this disorder have a deletion of chromosome 5q [del(5q)] as the sole karyotypic abnormality. Several genes mapping to the commonly deleted region of the 5q- syndrome have been implicated in disease pathogenesis in recent years. Haploinsufficiency of the ribosomal gene RPS14 has been shown to cause the erythroid defect in the 5q- syndrome. Loss of the microRNA genes miR-145 and miR-146a has been associated with the thrombocytosis observed in 5q- syndrome patients. Haploinsufficiency of CSNK1A1 leads to hematopoietic stem cell expansion in mice and may play a role in the initial clonal expansion in patients with 5q- syndrome. Moreover, a subset of patients harbor mutation of the remaining CSNK1A1 allele. Mouse models of the 5q- syndrome, which recapitulate the key features of the human disease, indicate that a p53-dependent mechanism underlies the pathophysiology of this disorder. Importantly, activation of p53 has been demonstrated in the human 5q- syndrome. Recurrent TP53 mutations have been associated with an increased risk of disease evolution and with decreased response to the drug lenalidomide in del(5q) MDS patients. Potential new therapeutic agents for del(5q) MDS include the translation enhancer L-leucine.
Collapse
|
4
|
Irving AA, Yoshimi K, Hart ML, Parker T, Clipson L, Ford MR, Kuramoto T, Dove WF, Amos-Landgraf JM. The utility of Apc-mutant rats in modeling human colon cancer. Dis Model Mech 2014; 7:1215-25. [PMID: 25288683 PMCID: PMC4213726 DOI: 10.1242/dmm.016980] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Prior to the advent of genetic engineering in the mouse, the rat was the model of choice for investigating the etiology of cancer. Now, recent advances in the manipulation of the rat genome, combined with a growing recognition of the physiological differences between mice and rats, have reignited interest in the rat as a model of human cancer. Two recently developed rat models, the polyposis in the rat colon (Pirc) and Kyoto Apc Delta (KAD) strains, each carry mutations in the intestinal-cancer-associated adenomatous polyposis coli (Apc) gene. In contrast to mouse models carrying Apc mutations, in which cancers develop mainly in the small intestine rather than in the colon and there is no gender bias, these rat models exhibit colonic predisposition and gender-specific susceptibility, as seen in human colon cancer. The rat also provides other experimental resources as a model organism that are not provided by the mouse: the structure of its chromosomes facilitates the analysis of genomic events, the size of its colon permits longitudinal analysis of tumor growth, and the size of biological samples from the animal facilitates multiplexed molecular analyses of the tumor and its host. Thus, the underlying biology and experimental resources of these rat models provide important avenues for investigation. We anticipate that advances in disease modeling in the rat will synergize with resources that are being developed in the mouse to provide a deeper understanding of human colon cancer.
Collapse
Affiliation(s)
- Amy A Irving
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Kazuto Yoshimi
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Marcia L Hart
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Taybor Parker
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA
| | - Linda Clipson
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Madeline R Ford
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Takashi Kuramoto
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - William F Dove
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - James M Amos-Landgraf
- McArdle Laboratory for Cancer Research, Department of Oncology, University of Wisconsin-Madison, Madison, WI 53792, USA. Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Honda H, Nagamachi A, Inaba T. -7/7q- syndrome in myeloid-lineage hematopoietic malignancies: attempts to understand this complex disease entity. Oncogene 2014; 34:2413-25. [PMID: 24998854 DOI: 10.1038/onc.2014.196] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/27/2014] [Accepted: 06/03/2014] [Indexed: 01/19/2023]
Abstract
The recurrence of chromosomal abnormalities in a specific subtype of cancer strongly suggests that dysregulated gene expression in the corresponding region has a critical role in disease pathogenesis. -7/7q-, defined as the entire loss of chromosome 7 and partial deletion of its long arm, is among the most frequently observed chromosomal aberrations in myeloid-lineage hematopoietic malignancies such as myelodysplastic syndrome and acute myeloid leukemia, particularly in patients treated with cytotoxic agents and/or irradiation. Tremendous efforts have been made to clarify the molecular mechanisms underlying the disease development, and several possible candidate genes have been cloned. However, the study is still underway, and the entire nature of this syndrome is not completely understood. In this review, we focus on the attempts to identify commonly deleted regions in patients with -7/7q-; isolate the candidate genes responsible for disease development, cooperative genes and the factors affecting disease prognosis; and determine effective and potent therapeutic approaches. We also refer to the possibility that the accumulation of multiple gene haploinsufficiency, rather than the loss of a single tumor suppressor gene, may contribute to the development of diseases with large chromosomal deletions such as -7/7q-.
Collapse
Affiliation(s)
- H Honda
- Department of Disease Model, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - A Nagamachi
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - T Inaba
- Department of Molecular Oncology and Leukemia Program Project, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
6
|
A strategy to identify dominant point mutant modifiers of a quantitative trait. G3-GENES GENOMES GENETICS 2014; 4:1113-21. [PMID: 24747760 PMCID: PMC4065254 DOI: 10.1534/g3.114.010595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A central goal in the analysis of complex traits is to identify genes that modify a phenotype. Modifiers of a cancer phenotype may act either intrinsically or extrinsically on the salient cell lineage. Germline point mutagenesis by ethylnitrosourea can provide alleles for a gene of interest that include loss-, gain-, or alteration-of-function. Unlike strain polymorphisms, point mutations with heterozygous quantitative phenotypes are detectable in both essential and nonessential genes and are unlinked from other variants that might confound their identification and analysis. This report analyzes strategies seeking quantitative mutational modifiers of ApcMin in the mouse. To identify a quantitative modifier of a phenotype of interest, a cluster of test progeny is needed. The cluster size can be increased as necessary for statistical significance if the founder is a male whose sperm is cryopreserved. A second critical element in this identification is a mapping panel free of polymorphic modifiers of the phenotype, to enable low-resolution mapping followed by targeted resequencing to identify the causative mutation. Here, we describe the development of a panel of six “isogenic mapping partner lines” for C57BL/6J, carrying single-nucleotide markers introduced by mutagenesis. One such derivative, B6.SNVg, shown to be phenotypically neutral in combination with ApcMin, is an appropriate mapping partner to locate induced mutant modifiers of the ApcMin phenotype. The evolved strategy can complement four current major initiatives in the genetic analysis of complex systems: the Genome-wide Association Study; the Collaborative Cross; the Knockout Mouse Project; and The Cancer Genome Atlas.
Collapse
|
7
|
|
8
|
Boultwood J. The role of haploinsufficiency of RPS14 and p53 activation in the molecular pathogenesis of the 5q- syndrome. Pediatr Rep 2011; 3 Suppl 2:e10. [PMID: 22053272 PMCID: PMC3206529 DOI: 10.4081/pr.2011.s2.e10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Accepted: 06/04/2011] [Indexed: 01/27/2023] Open
Abstract
In recent years we have gained great insight into the molecular pathogenesis of the 5q- syndrome, a distinct subtype of myelodysplasia. The demonstration of haploinsufficiency of the ribosomal gene RPS14 (mapping to the commonly deleted region) and the finding that this is the cause of the erythroid defect in the 5qsyndrome represent major advances. A mouse model of the human 5q- syndrome generated by large-scale deletion of the Cd74-Nid67 interval (containing RPS14) further supports a critical role for RPS14 haploinsufficiency. It is widely accepted that ribosomal deficiency results in p53 activation and defective erythropoiesis and the crossing of the '5q- mice' with p53 deficient mice ameliorated the erythroid progenitor defect. Emerging data suggests that the p53 activation observed in the mouse model may also apply to the human 5q- syndrome.
Collapse
|
9
|
Rara haploinsufficiency modestly influences the phenotype of acute promyelocytic leukemia in mice. Blood 2010; 117:2460-8. [PMID: 21190992 DOI: 10.1182/blood-2010-08-300087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RARA (retinoic acid receptor alpha) haploinsufficiency is an invariable consequence of t(15;17)(q22;q21) translocations in acute promyelocytic leukemia (APL). Retinoids and RARA activity have been implicated in hematopoietic self-renewal and neutrophil maturation. We and others therefore predicted that RARA haploinsufficiency would contribute to APL pathogenesis. To test this hypothesis, we crossed Rara(+/-) mice with mice expressing PML (promyelocytic leukemia)-RARA from the cathepsin G locus (mCG-PR). We found that Rara haploinsufficiency cooperated with PML-RARA, but only modestly influenced the preleukemic and leukemic phenotype. Bone marrow from mCG-PR(+/-) × Rara(+/-) mice had decreased numbers of mature myeloid cells, increased ex vivo myeloid cell proliferation, and increased competitive advantage after transplantation. Rara haploinsufficiency did not alter mCG-PR-dependent leukemic latency or penetrance, but did influence the distribution of leukemic cells; leukemia in mCG-PR(+/-) × Rara(+/-) mice presented more commonly with low to normal white blood cell counts and with myeloid infiltration of lymph nodes. APL cells from these mice were responsive to all-trans retinoic acid and had virtually no differences in expression profiling compared with tumors arising in mCG-PR(+/-) × Rara(+/+) mice. These data show that Rara haploinsufficiency (like Pml haploinsufficiency and RARA-PML) can cooperate with PML-RARA to influence the pathogenesis of APL in mice, but that PML-RARA is the t(15;17) disease-initiating mutation.
Collapse
|
10
|
Zhou G, Smilenov LB, Lieberman HB, Ludwig T, Hall EJ. RADIOSENSITIVITY TO HIGH ENERGY IRON IONS IS INFLUENCED BY HETEROZYGOSITY for ATM, RAD9 and BRCA1. ADVANCES IN SPACE RESEARCH : THE OFFICIAL JOURNAL OF THE COMMITTEE ON SPACE RESEARCH (COSPAR) 2010; 46:681-686. [PMID: 24431481 PMCID: PMC3890108 DOI: 10.1016/j.asr.2010.02.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Loss of function of DNA repair genes has been implicated in the development of many types of cancer. In the last several years, heterozygosity leading to haploinsufficiency for proteins involved in DNA repair was shown to play a role in genomic instability and carcinogenesis after DNA damage is induced, for example by ionizing radiation. Since the effect of heterozygosity for one gene is relatively small, we hypothesize that predisposition to cancer could be a result of the additive effect of heterozygosity for two or more genes critical to pathways that control DNA damage signaling, repair or apoptosis. We investigated the role of heterozygosity for Atm, Rad9 and Brca1 on cell oncogenic transformation and cell survival induced by 1GeV/n 56Fe ions. Our results show that cells heterozygous for both Atm and Rad9 or Atm and Brca1 have high survival rates and are more sensitive to transformation by high energy Iron ions when compared with wild-type controls or cells haploinsufficient for only one of these proteins. Since mutations or polymorphisms for similar genes exist in a small percentage of the human population, we have identified a radiosensitive sub-population. This finding has several implications. First, the existence of a radiosensitive sub-population may distort the shape of the dose-response relationship. Second, it would not be ethical to put exceptionally radiosensitive individuals into a setting where they may potentially be exposed to substantial doses of radiation.
Collapse
Affiliation(s)
- G Zhou
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| | - L B Smilenov
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| | - H B Lieberman
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| | - T Ludwig
- Institute for Cancer Genetics, Columbia University Medical Center, New York, NY 10032, USA
| | - E J Hall
- Center for Radiological Research, Columbia University Medical Center, New York, NY10032, USA
| |
Collapse
|
11
|
Abstract
The 5q- syndrome is the most distinct of all the myelodysplastic syndromes with a clear genotype/phenotype relationship. The significant progress made during recent years has been based on the determination of the commonly deleted region and the demonstration of haploinsufficiency for the ribosomal gene RPS14. The functional screening of all the genes in the commonly deleted region determined that RPS14 haploinsufficiency is the probable cause of the erythroid defect in the 5q- syndrome. A mouse model of the human 5q- syndrome has now been created by chromosomal engineering involving a large-scale deletion of the Cd74-Nid67 interval (containing RPS14). A variety of lines of evidence support the model of ribosomal deficiency causing p53 activation and defective erythropoiesis, including most notably the crossing of the "5q- mice" with p53-deficient mice, thereby ameliorating the erythroid progenitor defect. Emerging evidence supports the notion that the p53 activation observed in the mouse model may also apply to the human 5q- syndrome. Other mouse modeling data suggest that haploinsufficiency of the microRNA genes miR-145 and miR-146a may contribute to the thrombocytosis seen in the 5q- syndrome. Lenalidomide has become an established therapy for the 5q- syndrome, although its precise mode of action remains uncertain.
Collapse
|
12
|
Abstract
Loss of a whole chromosome 5 or a deletion of the long arm of chromosome 5, -5/del(5q), is a recurring abnormality in myeloid neoplasms. The APC gene is located at chromosome band 5q23, and is deleted in more than 95% of patients with a -5/del(5q), raising the question of whether haploinsufficiency of APC contributes to the development of myeloid neoplasms with loss of 5q. We show that conditional inactivation of a single allele of Apc in mice leads to the development of severe anemia with macrocytosis and monocytosis. Further characterization of the erythroid lineage revealed that erythropoiesis is blocked at the early stages of differentiation. The long-term hematopoietic stem cell (LT-HSC) and short-term HSC (ST-HSC) populations are expanded in Apc-heterozygous mice compared with the control littermates; however, the HSCs have a reduced capacity to regenerate hematopoiesis in vivo in the absence of a single allele of Apc. Apc heterozygous myeloid progenitor cells display an increased frequency of apoptosis, and decreased in vitro colony-forming capacity, recapitulating several characteristic features of myeloid neoplasms with a -5/del(5q). Our results indicate that haploinsufficiency of Apc impairs hematopoiesis, and raise the possibility that loss of function of APC contributes to the development of myelodysplasia.
Collapse
|
13
|
An Q, Burke GAA, Dainton M, Harrison CJ, Kempski H, Konn Z, Myooren W, Stewart A, Taj M, Webb D, Strefford JC, Martineau M. Haploinsufficiency of the MLL and TOB2 genes in lymphoid malignancy. Leukemia 2009; 24:649-52. [DOI: 10.1038/leu.2009.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Veitia RA, Birchler JA. Dominance and gene dosage balance in health and disease: why levels matter! J Pathol 2009; 220:174-85. [DOI: 10.1002/path.2623] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Bhartiya S, Chaudhary N, Venkatesh K, Doyle FJ. Multiple feedback loop design in the tryptophan regulatory network of Escherichia coli suggests a paradigm for robust regulation of processes in series. J R Soc Interface 2009; 3:383-91. [PMID: 16849267 PMCID: PMC1578758 DOI: 10.1098/rsif.2005.0103] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Biological networks have evolved through adaptation in uncertain environments. Of the different possible design paradigms, some may offer functional advantages over others. These designs can be quantified by the structure of the network resulting from molecular interactions and the parameter values. One may, therefore, like to identify the design motif present in the evolved network that makes it preferable over other alternatives. In this work, we focus on the regulatory networks characterized by serially arranged processes, which are regulated by multiple feedback loops. Specifically, we consider the tryptophan system present in Escherichia coli, which may be conceptualized as three processes in series, namely transcription, translation and tryptophan synthesis. The multiple feedback loop motif results from three distinct negative feedback loops, namely genetic repression, mRNA attenuation and enzyme inhibition. A framework is introduced to identify the key design components of this network responsible for its physiological performance. We demonstrate that the multiple feedback loop motif, as seen in the tryptophan system, enables robust performance to variations in system parameters while maintaining a rapid response to achieve homeostasis. Superior performance, if arising from a design principle, is intrinsic and, therefore, inherent to any similarly designed system, either natural or engineered. An experimental engineering implementation of the multiple feedback loop design on a two-tank system supports the generality of the robust attributes offered by the design.
Collapse
Affiliation(s)
- Sharad Bhartiya
- Department of Chemical Engineering, Indian Institute of Technology—BombayMumbai 400 076, India
- Centre for Systems and Control Engineering, Indian Institute of Technology—BombayMumbai 400 076, India
| | - Nikhil Chaudhary
- Centre for Systems and Control Engineering, Indian Institute of Technology—BombayMumbai 400 076, India
| | - K.V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology—BombayMumbai 400 076, India
- School of Biosciences and Bioengineering, Indian Institute of Technology—BombayMumbai 400 076, India
- Authors for correspondence () ()
| | - Francis J Doyle
- Department of Chemical Engineering, University of CaliforniaSanta Barbara, CA 93106, USA
- Authors for correspondence () ()
| |
Collapse
|
16
|
Lehmann S, Ogawa S, Raynaud SD, Sanada M, Nannya Y, Ticchioni M, Bastard C, Kawamata N, Koeffler HP. Molecular allelokaryotyping of early-stage, untreated chronic lymphocytic leukemia. Cancer 2008; 112:1296-305. [PMID: 18246537 DOI: 10.1002/cncr.23270] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND To the authors' knowledge, genetic abnormalities in early-stage chronic lymphocytic leukemia (CLL) have not been examined fully. Single nucleotide polymorphism (SNP) genomic array (SNP-chip) is a new tool that can detect copy number changes and uniparental disomy (UPD) over the entire genome with very high resolution. METHODS The authors performed SNP-chip analysis on 56 samples from patients with early-stage, untreated CLL. To validate the SNP-chip data, fluorescence in situ hybridization (FISH) analysis was performed at selected sites. Expression levels of ZAP-70 and the mutational status of immunoglobulin heavy-chain gene also were examined. RESULTS SNP-chip analysis easily detected nearly all changes that were identified by FISH, including trisomy 12, deletion of TP53 (17p13), deletion of ATM (11q22), and deletion of 13q14. Only 10 of 56 CLL samples (18%) had no genomic abnormalities. Excluding the 4 common abnormalities mentioned above, 25 CLL samples (45%) had a total of 45 copy number changes detected by SNP-chip analysis. Four samples had 6q deletion at 6q21 that involved the AIM1 gene. UPD was detected in 4 samples; 2 samples involved whole chromosome 13 resulting in homozygous deletion of micro-RNA-15a (miR-15a)/miR-16-1. CLL samples with deletion of 13q14 and trisomy 12 were mutually exclusive. CONCLUSIONS Genetic abnormalities, including whole chromosome 13 UPD, are very common events in early-stage CLL. SNP-chip analysis can detect small genetic abnormalities in CLL and may be able to support or even supplant FISH and cytogenetics.
Collapse
Affiliation(s)
- Sören Lehmann
- Department of Hematology/Oncology, Cedars-Sinai Medical Center, University of California at Los Angeles School of Medicine, Los Angeles, California 90048, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boultwood J, Pellagatti A, Cattan H, Lawrie CH, Giagounidis A, Malcovati L, Porta MGD, Jädersten M, Killick S, Fidler C, Cazzola M, Hellström-Lindberg E, Wainscoat JS. Gene expression profiling of CD34+cells in patients with the 5q− syndrome. Br J Haematol 2007; 139:578-89. [DOI: 10.1111/j.1365-2141.2007.06833.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
Moore JL, Rush LM, Breneman C, Mohideen MAPK, Cheng KC. Zebrafish genomic instability mutants and cancer susceptibility. Genetics 2006; 174:585-600. [PMID: 16888336 PMCID: PMC1602069 DOI: 10.1534/genetics.106.059386] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Somatic loss of tumor suppressor gene function comprising the second hit of Knudson's two-hit hypothesis is important in human cancer. A genetic screen was performed in zebrafish (Danio rerio) to find mutations that cause genomic instability (gin), as scored by Streisinger's mosaic-eye assay that models this second hit. The assay, based on a visible test for loss of wild-type gene function at a single locus, golden, is representative of genomewide events. Twelve ENU-induced genomic instability (gin) mutations were isolated. Most mutations showed weak dominance in heterozygotes and all showed a stronger phenotype in homozygotes. Trans-heterozygosity for 7 of these mutations showed greatly enhanced instability. A variety of spontaneous tumors were found in heterozygous adults from all gin lines, consistent with the expectation that genomic instability (mutator) mutations can accelerate carcinogenesis. The incidence of spontaneous cancer at 30-34 months was increased 9.6-fold in heterozygotes for the mutant with the strongest phenotype, gin-10. Tumors were seen in skin, colon, kidney, liver, pancreas, ovary, testis, and neuronal tissues, with multiple tumors in some fish. The study of these mutants will add to our understanding of the mechanisms of somatic loss of gene function and how those mechanisms contribute to cancer susceptibility.
Collapse
Affiliation(s)
- Jessica L Moore
- The Jake Gittlen Cancer Research Foundation, Department of Pathology, Pennsylvania State College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
19
|
Tumor development: haploinsufficiency and local network assembly. Cancer Lett 2005; 240:17-28. [PMID: 16223564 DOI: 10.1016/j.canlet.2005.08.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Accepted: 08/15/2005] [Indexed: 01/11/2023]
Abstract
According to the current models, tumor development is a continuous process of mutation accumulation, leading to several intermediate phenotypes and final phases of autonomy, unlimited growth and metastasis. One of the most important events in that process is the initial destabilization of cellular pathways that subsequently allow mutations to accumulate. The mechanisms involved in that stage are not clear. In principle, the estimated very low mutation frequency in human or mouse cells would suggest that accumulating the required number of mutations for tumor development should be a statistically unlikely event. However, this theory is contradicted by the high incidence of cancers. Here we discuss the role of protein haploinsufficiency as a contributor to the initial phases of tumor development, and suggest possible mechanisms that might be involved in that process.
Collapse
|
20
|
Schoch C, Kohlmann A, Dugas M, Kern W, Hiddemann W, Schnittger S, Haferlach T. Genomic gains and losses influence expression levels of genes located within the affected regions: a study on acute myeloid leukemias with trisomy 8, 11, or 13, monosomy 7, or deletion 5q. Leukemia 2005; 19:1224-8. [PMID: 15902281 DOI: 10.1038/sj.leu.2403810] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We performed microarray analyses in AML with trisomies 8 (n=12), 11 (n=7), 13 (n=7), monosomy 7 (n=9), and deletion 5q (n=7) as sole changes to investigate whether genomic gains and losses translate into altered expression levels of genes located in the affected chromosomal regions. Controls were 104 AML with normal karyotype. In subgroups with trisomy, the median expression of genes located on gained chromosomes was higher, while in AML with monosomy 7 and deletion 5q the median expression of genes located in deleted regions was lower. The 50 most differentially expressed genes, as compared to all other subtypes, were equally distributed over the genome in AML subgroups with trisomies. In contrast, 30 and 86% of the most differentially expressed genes characteristic for AML with 5q deletion and monosomy 7 are located on chromosomes 5 or 7. In conclusion, gain of whole chromosomes leads to overexpression of genes located on the respective chromosomes. Losses of larger regions of the genome translate into lower expression of the majority of genes represented by only one allele. The reduced expression of these genes is the most characteristic difference in gene expression profiles between AML with monosomy 7 and AML with deletion 5q, respectively, and other AML subtypes. Therefore, these data provide evidence that gene dosage effects gene expression in AML with unbalanced karyotype abnormalities. Losses of specific regions of the genome determine the gene expression profile more strongly than the gain of whole chromosomes.
Collapse
MESH Headings
- Chromosome Aberrations
- Chromosome Deletion
- Chromosomes, Human, Pair 11/genetics
- Chromosomes, Human, Pair 13/genetics
- Chromosomes, Human, Pair 5/genetics
- Chromosomes, Human, Pair 7/genetics
- Chromosomes, Human, Pair 8/genetics
- Gene Expression Profiling
- Gene Expression Regulation, Leukemic
- Humans
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/genetics
- Monosomy/genetics
- Oligonucleotide Array Sequence Analysis/methods
- Trisomy
Collapse
Affiliation(s)
- C Schoch
- Laboratory for Leukemia Diagnostics, Department of Internal Medicine III, University Hospital Grosshadern, Ludwig-Maximilians-University, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
21
|
Bhat PJ, Venkatesh KV. Stochastic variation in the concentration of a repressor activates GAL genetic switch: implications in evolution of regulatory network. FEBS Lett 2005; 579:597-603. [PMID: 15670814 DOI: 10.1016/j.febslet.2004.12.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2004] [Accepted: 12/13/2004] [Indexed: 11/30/2022]
Abstract
In Saccharomyces cerevisiae, a recessive mutation in the signal transducer encoded by GAL3 leads to a significant lag in the induction of GAL genes, referred to as long term adaptation phenotype (LTA). Further, gal3 mutation in combination with other genetic defects leads to the non-inducibility of GAL genes. It was shown that the expression of GAL1 encoded galactokinase, a redundant GAL3 like signal transducer, eventually substitutes for the lack of GAL3 signal transduction function. However, how GAL1 gets induced in the absence of GAL3 is not clear. We hypothesize that GAL1 induction in gal3 cells exposed to galactose is due to a stochastic decrease in the repressor, Gal80p concentration, leading to heterogeneity in the population. This observation explains not only LTA observed in gal3 cells but also explains the non-inducibility of gal3 mutants in combination with other genetic defects. By recruiting a dedicated signal transducer, GAL3, S. cerevisiae GAL switch has evolved to overcome the fortuitous induction, which occurs due to low signal to noise ratio in certain mutants of Escherichia coli and Kluveromyces lactis.
Collapse
Affiliation(s)
- Paike Jayadeva Bhat
- School of Biosciences & Bioengineering, Indian Institute of Technology, Powai, Mumbai 400 076, India.
| | | |
Collapse
|
22
|
Abstract
Based on their histopathological appearances, most diffusely infiltrative gliomas can be classified either as astrocytic tumors (As), pure oligodendroglial tumors (Os) or mixed oligoastrocytic tumors (OAs). The latter two may be grouped together as oligodendroglial tumors (OTs). The distinction between As and OTs is important because of the more favorable clinical behavior of OTs. Unfortunately, the histopathological delineation of OAs, Os and As can be difficult because of vague and subjective histopathological criteria. Over the last decade, the knowledge on the molecular genetic background of OTs has drastically increased. This review provides an overview of molecular genetic aberrations in OTs and discusses the pathobiological and clinical significance of these aberrations. In contrast to As, OTs frequently show frequent loss of heterozygosity on chromosome arms 1p and 19q. Since these aberrations are significantly correlated with clinically relevant parameters, such as prognosis and chemosensitivity, and given the difficulties in histopathological typing and grading of glial tumors, genetic testing should be included in routine glioma diagnostics. It is to be expected that the identification of the relevant tumor suppressor genes located on 1p and 19q will lead to more refined genetic tests for OTs. Furthermore, as microarray technology is rapidly increasing, it is likely that clinically relevant markers for OTs will be identified on other chromosomes and need to be included into routine glioma diagnostics as well.
Collapse
Affiliation(s)
- Judith W M Jeuken
- Department of Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
23
|
Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA, Hopkins N. Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2004; 2:E139. [PMID: 15138505 PMCID: PMC406397 DOI: 10.1371/journal.pbio.0020139] [Citation(s) in RCA: 329] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2003] [Accepted: 03/10/2004] [Indexed: 01/21/2023] Open
Abstract
We have generated several hundred lines of zebrafish (Danio rerio), each heterozygous for a recessive embryonic lethal mutation. Since many tumor suppressor genes are recessive lethals, we screened our colony for lines that display early mortality and/or gross evidence of tumors. We identified 12 lines with elevated cancer incidence. Fish from these lines develop malignant peripheral nerve sheath tumors, and in some cases also other tumor types, with moderate to very high frequencies. Surprisingly, 11 of the 12 lines were each heterozygous for a mutation in a different ribosomal protein (RP) gene, while one line was heterozygous for a mutation in a zebrafish paralog of the human and mouse tumor suppressor gene, neurofibromatosis type 2. Our findings suggest that many RP genes may act as haploinsufficient tumor suppressors in fish. Many RP genes might also be cancer genes in humans, where their role in tumorigenesis could easily have escaped detection up to now.
Collapse
Affiliation(s)
- Adam Amsterdam
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Kirsten C Sadler
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Kevin Lai
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Sarah Farrington
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Roderick T Bronson
- 2Department of Pathology, Tufts University School of Veterinary MedicineBoston, MassachusettsUnited States of America
| | - Jacqueline A Lees
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| | - Nancy Hopkins
- 1Center for Cancer Research, Massachusetts Institute of TechnologyCambridge, MassachusettsUnited States of America
| |
Collapse
|
24
|
Cleton-Jansen AM, Buerger H, Haar NT, Philippo K, van de Vijver MJ, Boecker W, Smit VTHBM, Cornelisse CJ. Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosomes Cancer 2004; 41:109-16. [PMID: 15287023 DOI: 10.1002/gcc.20070] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Loss of heterozygosity (LOH) at the long arm of chromosome 16 is a frequent genetic alteration in breast cancer. It can occur by physical loss of part of or the entire chromosomal arm, resulting in a decrease in copy number or loss followed by mitotic recombination. Comparative genomic hybridization (CGH) demonstrated that well-differentiated breast tumors showed significantly more physical loss of 16q than did poorly differentiated ones and that this difference was already discernable in the preinvasive stage. However, polymorphic markers detected no difference in the frequency of 16q LOH between invasive tumors of different histological grade. Here, by combining data on LOH (n=52), fluorescence in situ hybridization (n=18) with chromosome 16-specific probes, and CGH (n=34), we show a preference in well-differentiated grade I tumors for physical loss of chromosome arm 16q, whereas in poorly differentiated grade III tumors LOH is accompanied by mitotic recombination. This clarifies the discrepancies observed between CGH and LOH for 16q in breast cancer. These different somatic genetic mechanisms may reflect the presence of multiple tumor suppressor genes that are the target of LOH at chromosome arm 16q.
Collapse
|
25
|
Yoshimura S, Yamada T, Ohwada S, Koyama T, Hamada K, Tago K, Sakamoto I, Takeyoshi I, Ikeya T, Makita F, Iino Y, Morishita Y. Mutations in the ST7/RAY1/HELG locus rarely occur in primary colorectal, gastric, and hepatocellular carcinomas. Br J Cancer 2003; 88:1909-13. [PMID: 12799635 PMCID: PMC2741100 DOI: 10.1038/sj.bjc.6600942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2002] [Revised: 01/07/2003] [Accepted: 03/05/2003] [Indexed: 11/09/2022] Open
Abstract
Human cancers frequently show a loss of heterozygosity on chromosome 7q31, which indicates the existence of broad-range tumour-suppressor gene(s) at this locus. Truncating mutations in the ST7 gene at this locus are seen frequently in primary colon cancer and breast cancer cell lines. Therefore, the ST7 gene represents a novel candidate gene for the tumour suppressor at this locus. However, more recent studies have reported that ST7 mutations are infrequent or absent in primary cancer and cell lines. To ascertain the frequency of mutations of the ST7 gene in cancer cells, we examined mutations in the ST7 coding sequence in 48 colorectal, 48 gastric, and 48 hepatocellular carcinomas using polymerase chain reaction-single-strand conformational polymorphism and direct sequencing. We detected somatic mutations, which were located near the exon-intron junction in intron 8, in only three out of 144 cases. We conclude that mutations in the ST7 gene are rare in primary colorectal, gastric, and hepatocellular carcinomas.
Collapse
Affiliation(s)
- S Yoshimura
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - T Yamada
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - S Ohwada
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - T Koyama
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - K Hamada
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - K Tago
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - I Sakamoto
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - I Takeyoshi
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - T Ikeya
- Maebashi Red Cross Hospital, 3-21-36, Asahi-cho, Maebashi, Gunma 371-0014, Japan
| | - F Makita
- National Nishi-Gunma Hospital, 2854, Kanai, Shibukawa, Gunma 377-8511, Japan
| | - Y Iino
- Department of Emergency and Critical Care Medicine, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| | - Y Morishita
- Second Department of Surgery, Gunma University Faculty of Medicine, 3-39-15, Showa-machi, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
26
|
Asou N. The role of a Runt domain transcription factor AML1/RUNX1 in leukemogenesis and its clinical implications. Crit Rev Oncol Hematol 2003; 45:129-50. [PMID: 12604126 DOI: 10.1016/s1040-8428(02)00003-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A Runt domain transcription factor AML1/RUNX1 is essential for generation and differentiation of definitive hematopoietic stem cells. AML1 is the most frequent target of chromosomal translocations in acute leukemias. Several chimeric proteins such as AML1-MTG8 and TEL-AML1 have transdominant properties for wild-type AML1 and acts as transcriptional repressors. The transcriptional repression in AML1 fusion proteins is mediated by recruitment of nuclear corepressor complex that maintains local histone deacetylation. Inhibition of the expression of AML1-responsive genes leads to a block in hematopoietic cell differentiation and consequent leukemic transformation. On the other hand, mutations in the Runt domain of the AML1 are identified in both sporadic acute myeloblastic leukemia (AML) without AML1 translocation and familial platelet disorder with predisposition to AML. These observations indicate that a decrease in AML1 dosage resulting from chromosomal translocations or mutations contributes to leukemogenesis. Furthermore, dysregulated chromatin remodeling and transcriptional control appears to be a common pathway in AML1-associated leukemias that could be an important target for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Norio Asou
- Department of Internal Medicine II, Kumamoto University School of Medicine, 1-1-1 Honjo, 860-8556, Kumamoto, Japan.
| |
Collapse
|
27
|
Kemkemer R, Schrank S, Vogel W, Gruler H, Kaufmann D. Increased noise as an effect of haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 in vitro. Proc Natl Acad Sci U S A 2002; 99:13783-8. [PMID: 12368469 PMCID: PMC129775 DOI: 10.1073/pnas.212386999] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2001] [Indexed: 11/18/2022] Open
Abstract
In human diseases related to tumor-suppressor genes, it is suggested that only the complete loss of the protein results in specific symptoms such as tumor formation, whereas simple reduction of protein quantity to 50%, called haploinsufficiency, essentially does not affect cellular behavior. Using a model of gene expression, it was presumed that haploinsufficiency is related to an increased noise in gene expression also in vivo [Cook, D. L., Gerber, A. N. & Tapscott, S. J. (1998) Proc. Natl. Acad. Sci. USA 95, 15641-15646]. Here, we demonstrate that haploinsufficiency of the tumor-suppressor gene neurofibromatosis type 1 (NF1) results in an increased variation of dendrite formation in cultured NF1 melanocytes. These morphological differences between NF1 and control melanocytes can be described by a mathematical model in which the cell is considered to be a self-organized automaton. The model describes the adjustment of the cells to a set point and includes a noise term that allows for stochastic processes. It describes the experimental data of control and NF1 melanocytes. In the cells haploinsufficient for NF1 we found an altered signal-to-noise ratio detectable as increased variation in dendrite formation in two of three investigated morphological parameters. We also suggest that in vivo NF1 haploinsufficiency results in an increased noise in cellular regulation and that this effect of haploinsufficiency may be found also in other tumor suppressors.
Collapse
Affiliation(s)
- Ralf Kemkemer
- Department of Biophysics, University of Ulm, Albert Einstein Allee 11, D-89070 Ulm, Germany
| | | | | | | | | |
Collapse
|
28
|
Girnun GD, Smith WM, Drori S, Sarraf P, Mueller E, Eng C, Nambiar P, Rosenberg DW, Bronson RT, Edelmann W, Kucherlapati R, Gonzalez FJ, Spiegelman BM. APC-dependent suppression of colon carcinogenesis by PPARgamma. Proc Natl Acad Sci U S A 2002; 99:13771-6. [PMID: 12370429 PMCID: PMC129773 DOI: 10.1073/pnas.162480299] [Citation(s) in RCA: 220] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Activation of PPARgamma by synthetic ligands, such as thiazolidinediones, stimulates adipogenesis and improves insulin sensitivity. Although thiazolidinediones represent a major therapy for type 2 diabetes, conflicting studies showing that these agents can increase or decrease colonic tumors in mice have raised concerns about the role of PPARgamma in colon cancer. To analyze critically the role of this receptor, we have used mice heterozygous for Ppargamma with both chemical and genetic models of this malignancy. Heterozygous loss of PPARgamma causes an increase in beta-catenin levels and a greater incidence of colon cancer when animals are treated with azoxymethane. However, mice with preexisting damage to Apc, a regulator of beta-catenin, develop tumors in a manner insensitive to the status of PPARgamma. These data show that PPARgamma can suppress beta-catenin levels and colon carcinogenesis but only before damage to the APC/beta-catenin pathway. This finding suggests a potentially important use for PPARgamma ligands as chemopreventative agents in colon cancer.
Collapse
Affiliation(s)
- Geoffrey D Girnun
- Dana-Farber Cancer Institute and Department of Cell Biology, Harvard Medical School, One Jimmy Fund Way, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|