1
|
Engineering of Cytolethal Distending Toxin B by Its Reducing Immunogenicity and Maintaining Stability as a New Drug Candidate for Tumor Therapy; an In Silico Study. Toxins (Basel) 2021; 13:toxins13110785. [PMID: 34822569 PMCID: PMC8624547 DOI: 10.3390/toxins13110785] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 10/30/2021] [Accepted: 11/01/2021] [Indexed: 12/25/2022] Open
Abstract
The cytolethal distending toxin (CDT), Haemophilus ducreyi, is one of the bacterial toxins that have recently been considered for targeted therapies, especially in cancer therapies. CDT is an A-B2 exotoxin. Its catalytic subunit (CdtB) is capable of inducing DNA double strand breaks, cell cycle arrest and apoptosis in host eukaryotic cells. The sequence alignment indicates that the CdtB is structurally homologyr to phosphatases and deoxyribonucleases I (DNase I). Recently, it has been found that CdtB toxicity is mainly related to its nuclease activity. The immunogenicity of CDT can reduce its effectiveness in targeted therapies. However, the toxin can be very useful if its immunogenicity is significantly reduced. Detecting hotspot ectopic residues by computational servers and then mutating them to eliminate B-cell epitopes is a promising approach to reduce the immunogenicity of foreign protein-based therapeutics. By the mentioned method, in this study, we try to reduce the immunogenicity of the CdtB- protein sequence. This study initially screened residue of the CdtB is B-cell epitopes both linearly and conformationally. By overlapping the B-cell epitopes with the excluded conserve residues, and active and enzymatic sites, four residues were allowed to be mutated. There were two mutein options that show reduced antigenicity probability. Option one was N19F, G74I, and S161F with a VaxiJen score of 0.45 and the immune epitope database (IEDB) score of 1.80, and option two was N19F, G74I, and S161W with a VaxiJen score of 0.45 and IEDB score of 1.88. The 3D structure of the proposed sequences was evaluated and refined. The structural stability of native and mutant proteins was accessed through molecular dynamic simulation. The results showed that the mutations in the mutants caused no considerable changes in their structural stability. However, mutant 1 reveals more thermodynamic stability during the simulation. The applied approaches in this study can be used as rough guidelines for finding hot spot immunogen regions in the therapeutic proteins. Our results provide a new version of CdtB that, due to reduced immunogenicity and increased stability, can be used in toxin-based drugs such as immunotoxins.
Collapse
|
2
|
Jaiswal V, Chanumolu SK, Gupta A, Chauhan RS, Rout C. Jenner-predict server: prediction of protein vaccine candidates (PVCs) in bacteria based on host-pathogen interactions. BMC Bioinformatics 2013; 14:211. [PMID: 23815072 PMCID: PMC3701604 DOI: 10.1186/1471-2105-14-211] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 06/20/2013] [Indexed: 11/24/2022] Open
Abstract
Background Subunit vaccines based on recombinant proteins have been effective in preventing infectious diseases and are expected to meet the demands of future vaccine development. Computational approach, especially reverse vaccinology (RV) method has enormous potential for identification of protein vaccine candidates (PVCs) from a proteome. The existing protective antigen prediction software and web servers have low prediction accuracy leading to limited applications for vaccine development. Besides machine learning techniques, those software and web servers have considered only protein’s adhesin-likeliness as criterion for identification of PVCs. Several non-adhesin functional classes of proteins involved in host-pathogen interactions and pathogenesis are known to provide protection against bacterial infections. Therefore, knowledge of bacterial pathogenesis has potential to identify PVCs. Results A web server, Jenner-Predict, has been developed for prediction of PVCs from proteomes of bacterial pathogens. The web server targets host-pathogen interactions and pathogenesis by considering known functional domains from protein classes such as adhesin, virulence, invasin, porin, flagellin, colonization, toxin, choline-binding, penicillin-binding, transferring-binding, fibronectin-binding and solute-binding. It predicts non-cytosolic proteins containing above domains as PVCs. It also provides vaccine potential of PVCs in terms of their possible immunogenicity by comparing with experimentally known IEDB epitopes, absence of autoimmunity and conservation in different strains. Predicted PVCs are prioritized so that only few prospective PVCs could be validated experimentally. The performance of web server was evaluated against known protective antigens from diverse classes of bacteria reported in Protegen database and datasets used for VaxiJen server development. The web server efficiently predicted known vaccine candidates reported from Streptococcus pneumoniae and Escherichia coli proteomes. The Jenner-Predict server outperformed NERVE, Vaxign and VaxiJen methods. It has sensitivity of 0.774 and 0.711 for Protegen and VaxiJen dataset, respectively while specificity of 0.940 has been obtained for the latter dataset. Conclusions Better prediction accuracy of Jenner-Predict web server signifies that domains involved in host-pathogen interactions and pathogenesis are better criteria for prediction of PVCs. The web server has successfully predicted maximum known PVCs belonging to different functional classes. Jenner-Predict server is freely accessible at http://117.211.115.67/vaccine/home.html
Collapse
Affiliation(s)
- Varun Jaiswal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173234, India
| | | | | | | | | |
Collapse
|
3
|
Factor H binds to the hypervariable region of many Streptococcus pyogenes M proteins but does not promote phagocytosis resistance or acute virulence. PLoS Pathog 2013; 9:e1003323. [PMID: 23637608 PMCID: PMC3630203 DOI: 10.1371/journal.ppat.1003323] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 03/07/2013] [Indexed: 12/21/2022] Open
Abstract
Many pathogens express a surface protein that binds the human complement regulator factor H (FH), as first described for Streptococcus pyogenes and the antiphagocytic M6 protein. It is commonly assumed that FH recruited to an M protein enhances virulence by protecting the bacteria against complement deposition and phagocytosis, but the role of FH-binding in S. pyogenes pathogenesis has remained unclear and controversial. Here, we studied seven purified M proteins for ability to bind FH and found that FH binds to the M5, M6 and M18 proteins but not the M1, M3, M4 and M22 proteins. Extensive immunochemical analysis indicated that FH binds solely to the hypervariable region (HVR) of an M protein, suggesting that selection has favored the ability of certain HVRs to bind FH. These FH-binding HVRs could be studied as isolated polypeptides that retain ability to bind FH, implying that an FH-binding HVR represents a distinct ligand-binding domain. The isolated HVRs specifically interacted with FH among all human serum proteins, interacted with the same region in FH and showed species specificity, but exhibited little or no antigenic cross-reactivity. Although these findings suggested that FH recruited to an M protein promotes virulence, studies in transgenic mice did not demonstrate a role for bound FH during acute infection. Moreover, phagocytosis tests indicated that ability to bind FH is neither sufficient nor necessary for S. pyogenes to resist killing in whole human blood. While these data shed new light on the HVR of M proteins, they suggest that FH-binding may affect S. pyogenes virulence by mechanisms not assessed in currently used model systems. The human complement system may be rapidly activated upon infection and thereby plays a key role in innate immunity. However, activation must be tightly controlled, to avoid attack on self tissues. A key component of this control system is the plasma protein factor H (FH). Many pathogens bind FH, as first described for Streptococcus pyogenes, and it has been proposed that the surface-localized M protein of this bacterium “hijacks” FH to escape phagocytosis. However, it remains unclear whether FH-binding to M protein indeed protects S. pyogenes against phagocytosis and promotes bacterial growth in vivo. Here, we demonstrate that FH binds to some but not all M proteins and solely binds to the hypervariable region (HVR), a part of M protein important for virulence. Nevertheless, several lines of evidence, including studies with transgenic mice, indicated that FH-binding ability did not contribute to acute virulence or phagocytosis resistance. These data shed new light on the HVR of M proteins but underline the difficulty in determining the in vivo role of a ligand-binding region. Binding of FH may contribute to S. pyogenes virulence by mechanisms not assessed in currently used models.
Collapse
|
4
|
Li Z, Fallon J, Mandeli J, Wetmur J, Woo SLC. A genetically enhanced anaerobic bacterium for oncopathic therapy of pancreatic cancer. J Natl Cancer Inst 2008; 100:1389-400. [PMID: 18812551 DOI: 10.1093/jnci/djn308] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND A major obstacle in treatment of solid tumors is the inefficient delivery of therapeutic agents to the hypoxic cores. Hypoxia offers the potential for anaerobic bacteria colonization and tumor destruction by the bacteria, and dormant spores of wild-type Clostridium perfringens (Cp) germinate and proliferate within the hypoxic cores of pancreatic tumors in mice. However, the oncopathic effects of Cp were limited by host inflammatory responses and by Cp's residual tolerance to oxygen, which caused toxic effects in animals. METHODS Recombinant Cp strains in which superoxide dismutase, a major oxygen tolerance gene, was deleted (Cp/sod(-)) were constructed to enhance its selective growth in tumors. In addition, Panton-Valentine Leukocidin (PVL), an inflammation-suppressing gene from Staphylococcus aureus, was inserted into the Cp/sod(-) genome to enhance its oncopathic potency. The ability of the recombinant Cp strains to kill tumors was investigated in C57/BL6 mice bearing murine PANC02 tumors. Systemic and organ toxic effects were assessed by monitoring serum chemistries and histopathological examination. Statistical tests were two-sided. RESULTS Cp/sod(-) showed reduced toxic effects compared with wild-type Cp when spores were administered intravenously into PANC02 tumor-bearing mice. Mice treated with Cp/sod(-)/PVL spores demonstrated a reduction in neutrophils and macrophages in tumors, logarithmically elevated growth of intratumoral bacteria, enhanced tumor necrosis, and substantially prolonged survival without apparent systemic and organ toxic effects, compared with mice treated with both wild-type Cp and Cp/sod(-) spores. Accordingly, 47% of Cp/sod(-)/PVL-treated mice (n = 15) achieved tumor-free survival for over 120 days, whereas all mice treated with Cp/sod(-) or phosphate-buffered saline (n = 10 per group) died within 50 days. The median survival for Cp/sod(-)/PVL-treated mice was 77 days (95% confidence interval [CI] = 45 to 120 days) and for Cp/sod(-)-treated mice was 30 days (95% CI = 23 to 36 days; P < .001). CONCLUSIONS Cp/sod(-)/PVL provides a prototype for a novel class of oncopathic microbes that may have potential for the safe and effective treatment of pancreatic cancer and other poorly vascularized tumors.
Collapse
Affiliation(s)
- Zhiyu Li
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1496, New York, NY 10029-6574, USA
| | | | | | | | | |
Collapse
|
5
|
Abstract
Many of the greatest challenges in medicine and public health involve the evolution of drug resistance by pathogens. Recent advances in the theory of natural selection suggest that there are two broad classes of pathogen traits that can be targeted by drugs or vaccines. The first class, consisting of traits that benefit the individual organisms bearing them, causes a strong evolutionary response and the rapid emergence of drug resistance. The second class, consisting of traits that benefit groups of pathogen organisms including the individual provider, causes a weaker evolutionary response and less drug resistance. Although most previous drug development has targeted the first class, it would be advantageous to focus on the second class as targets for drug and vaccine development. Specific examples and test cases are discussed.
Collapse
Affiliation(s)
- John W Pepper
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| |
Collapse
|
6
|
Abstract
Many bacterial pathogens release soluble proteins, referred to as toxins, which damage host cells during disease. In the past, bacterial toxins have been studied extensively using cultured cells, and in vitro biochemical systems. However, little is known about the types of cells targeted by toxins during the disease process while within the host. This has limited our understanding of these important virulence factors. To address this problem, we have recently used transparent zebrafish embryos to follow toxin activity in a multiorgan system in real-time. Zebrafish provide many advantages over more traditional animal models, since major organs can be directly visualized by light microscopy. This allows one to follow toxin activity and organ damage as it occurs following intoxication. As proof-of-principle, we have recently exploited the zebrafish embryo to identify the activities of Clostridium difficile toxin B, an intracellular bacterial toxin. By using the zebrafish system we have been able to identify a major organ, the heart, targeted by this toxin.
Collapse
|
7
|
Phalipon A, Sansonetti PJ. Shigella’
s ways of manipulating the host intestinal innate and adaptive immune system: a tool box for survival? Immunol Cell Biol 2007; 85:119-29. [PMID: 17213832 DOI: 10.1038/sj.icb7100025] [Citation(s) in RCA: 165] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Shigella, a Gram-negative invasive enteropathogenic bacterium, causes the rupture, invasion and inflammatory destruction of the human colonic epithelium. This complex and aggressive process accounts for the symptoms of bacillary dysentery. The so-called invasive phenotype of Shigella is linked to expression of a type III secretory system (TTSS) injecting effector proteins into the epithelial cell membrane and cytoplasm, thereby inducing local but massive changes in the cell cytoskeleton that lead to bacterial internalization into non-phagocytic intestinal epithelial cells. The invasive phenotype also accounts for the potent pro-inflammatory capacity of the microorganism. Recent evidence indicates that a large part of the mucosal inflammation is initiated by intracellular sensing of bacterial peptidoglycan by cytosolic leucine-rich receptors of the NOD family, particularly NOD1, in epithelial cells. This causes activation of the nuclear factor kappa B and c-JunNH(2)-terminal-kinase pathways, with interleukin-8 appearing as a major chemokine mediating the inflammatory burst that is dominated by massive infiltration of the mucosa by polymorphonuclear leukocytes. Not unexpectedly, this inflammatory response, which is likely to be very harmful for the invading microbe, is regulated by the bacterium itself. A group of proteins encoded by Shigella, which are injected into target cells by the TTSS, has been recently recognized as a family of potent regulators of the innate immune response. These enzymes target key cellular functions that are essential in triggering the inflammatory response, and more generally defense responses of the intestinal mucosa. This review focuses on the mechanisms employed by Shigella to manipulate the host innate response in order to escape early bacterial killing, thus ensuring establishment of its infectious process. The escape strategies, the possible direct effect of Shigella on B and T lymphocytes, their impact on the development of adaptive immunity, and how they may help explain the limited protection induced by natural infection are discussed.
Collapse
Affiliation(s)
- Armelle Phalipon
- Unité de Pathogénie Microbienne Moléculaire, INSERM U786, Institut Pasteur 25, Rue du Dr Roux, Paris, France.
| | | |
Collapse
|
8
|
Hamm EE, Voth DE, Ballard JD. Identification of Clostridium difficile toxin B cardiotoxicity using a zebrafish embryo model of intoxication. Proc Natl Acad Sci U S A 2006; 103:14176-81. [PMID: 16966605 PMCID: PMC1599930 DOI: 10.1073/pnas.0604725103] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Clostridium difficile toxin B (TcdB) has been studied extensively by using cell-free systems and tissue culture, but, like many bacterial toxins, the in vivo targets of TcdB are unknown and have been difficult to elucidate with traditional animal models. In the current study, the transparent Danio rerio (zebrafish) embryo was used as a model for imaging of in vivo TcdB localization and organ-specific damage in real time. At 24 h after treatment, TcdB was found to localize at the pericardial region, and zebrafish exhibited the first signs of cardiovascular damage, including a 90% reduction in systemic blood flow and a 20% reduction in heart rate. Within 72 h of exposure to TcdB, the ventricle chamber of the heart became deformed and was unable to contract or pump blood, and the fish exhibited extensive pericardial edema. In line with the observed defects in ventricle contraction, TcdB was found to directly disrupt coordinated contractility and rhythmicity in primary cardiomyocytes. Furthermore, using a caspase-3 inhibitor, we were able to block TcdB-related cardiovascular damage and prevent zebrafish death. These findings present an insight into the in vivo targets of TcdB, as well as demonstrate the strength of the zebrafish embryo as a tractable model for identification of in vivo targets of bacterial toxins and evaluation of novel candidate therapeutics.
Collapse
Affiliation(s)
- Elaine E. Hamm
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Jimmy D. Ballard
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
9
|
Heesemann J, Sing A, Trülzsch K. Yersinia's stratagem: targeting innate and adaptive immune defense. Curr Opin Microbiol 2006; 9:55-61. [PMID: 16413818 DOI: 10.1016/j.mib.2005.10.018] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2005] [Accepted: 10/23/2005] [Indexed: 10/25/2022]
Abstract
In contrast to Salmonella and Shigella, enteropathogenic Yersinia species are extracellular multiplying Gram-negative bacteria. This life style requires a sophisticated anti-host strategy, which is implemented by the Yersinia virulence plasmid. This plasmid encodes the type 3 secretion system (injectisome), at least six microinjected anti-host effector proteins, a trimeric coiled coil outer membrane protein (Yersinia adhesin) with cell adhesin and protective functions against complement and defensins, and the released V antigen, which has Toll-like receptor 2 agonist activity.
Collapse
Affiliation(s)
- Jürgen Heesemann
- Max von Pettenkofer-Institut, Pettenkoferstrasse 9 a, D-80336 Muenchen, Germany.
| | | | | |
Collapse
|