1
|
Recognition of Neisseria meningitidis by the long pentraxin PTX3 and its role as an endogenous adjuvant. PLoS One 2015; 10:e0120807. [PMID: 25786110 PMCID: PMC4364741 DOI: 10.1371/journal.pone.0120807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/07/2015] [Indexed: 11/21/2022] Open
Abstract
Long pentraxin 3 (PTX3) is a non-redundant component of the humoral arm of innate immunity. The present study was designed to investigate the interaction of PTX3 with Neisseria meningitidis. PTX3 bound acapsular meningococcus, Neisseria-derived outer membrane vesicles (OMV) and 3 selected meningococcal antigens (GNA0667, GNA1030 and GNA2091). PTX3-recognized microbial moieties are conserved structures which fulfil essential microbial functions. Ptx3-deficient mice had a lower antibody response in vaccination protocols with OMV and co-administration of PTX3 increased the antibody response, particularly in Ptx3-deficient mice. Administration of PTX3 reduced the bacterial load in infant rats challenged with Neisseria meningitidis. These results suggest that PTX3 recognizes a set of conserved structures from Neisseria meningitidis and acts as an amplifier/endogenous adjuvant of responses to this bacterium.
Collapse
|
2
|
|
3
|
Polonelli L, Beninati C, Teti G, Felici F, Ciociola T, Giovati L, Sperindè M, Passo CL, Pernice I, Domina M, Arigò M, Papasergi S, Mancuso G, Conti S, Magliani W. Yeast killer toxin-like candidacidal Ab6 antibodies elicited through the manipulation of the idiotypic cascade. PLoS One 2014; 9:e105727. [PMID: 25162681 PMCID: PMC4146504 DOI: 10.1371/journal.pone.0105727] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 07/23/2014] [Indexed: 12/11/2022] Open
Abstract
A mouse anti-anti-anti-idiotypic (Id) IgM monoclonal antibody (mAb K20, Ab4), functionally mimicking a Wyckerhamomyces anomalus (Pichia anomala) killer toxin (KT) characterized by fungicidal activity against yeasts presenting specific cell wall receptors (KTR) mainly constituted by β-1,3-glucan, was produced from animals presenting anti-KT Abs (Ab3) following immunization with a rat IgM anti-Id KT-like mAb (mAb K10, Ab2). MAb K10 was produced by immunization with a KT-neutralizing mAb (mAb KT4, Ab1) bearing the internal image of KTR. MAb K20, likewise mAb K10, proved to be fungicidal in vitro against KT-sensitive Candida albicans cells, an activity neutralized by mAb KT4, and was capable of binding to β-1,3-glucan. MAb K20 and mAb K10 competed with each other and with KT for binding to C. albicans KTR. MAb K20 was used to identify peptide mimics of KTR by the selection of phage clones from random peptide phage display libraries. Using this strategy, four peptides (TK 1-4) were selected and used as immunogen in mice in the form of either keyhole limpet hemocyanin (KLH) conjugates or peptide-encoding minigenes. Peptide and DNA immunization could induce serum Abs characterized by candidacidal activity, which was inhibited by laminarin, a soluble β-1,3-glucan, but not by pustulan, a β-1,6-glucan. These findings show that the idiotypic cascade can not only overcome the barrier of animal species but also the nature of immunogens and the type of technology adopted.
Collapse
Affiliation(s)
- Luciano Polonelli
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Concetta Beninati
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Teti
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Franco Felici
- Dipartimento di Bioscienze e Territorio (DiBT), Università degli Studi del Molise, Contrada Fonte Lappone, Pesche (IS), Italy
| | - Tecla Ciociola
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Laura Giovati
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Martina Sperindè
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Carla Lo Passo
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Ida Pernice
- Dipartimento di Scienze Biologiche ed Ambientali, Università degli Studi di Messina, Messina, Italy
| | - Maria Domina
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Milena Arigò
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Salvatore Papasergi
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Dipartimento di Scienze Pediatriche, Ginecologiche, Microbiologiche e Biomediche, Università degli Studi di Messina, Messina, Italy
| | - Stefania Conti
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| | - Walter Magliani
- Dipartimento di Scienze Biomediche, Biotecnologiche e Traslazionali, Unità di Microbiologia e Virologia, Università degli Studi di Parma, Parma, Italy
| |
Collapse
|
4
|
Nagaputra JC, Rollier CS, Sadarangani M, Hoe JC, Mehta OH, Norheim G, Saleem M, Chan H, Derrick JP, Feavers I, Pollard AJ, Moxon ER. Neisseria meningitidis native outer membrane vesicles containing different lipopolysaccharide glycoforms as adjuvants for meningococcal and nonmeningococcal antigens. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 21:234-42. [PMID: 24351756 PMCID: PMC3910940 DOI: 10.1128/cvi.00561-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 12/12/2013] [Indexed: 12/13/2022]
Abstract
We evaluated the adjuvant effect of a modified glycoform of lipopolysaccharide (LPS) (LgtB-LpxL1) compared to that of the nonmodified glycoform Lpxl1 serogroup B meningococcal H44/76 native outer membrane vesicles (nOMVs) on immune responses to vaccination with the recombinant meningococcal protein, rPorA, tetanus toxoid, or meningococcal serogroup C capsular polysaccharide. We used LgtB-LpxL1 LPS because the disruption of the lgtB gene, which results in the exposure of N-acetylglucosamine-galactose-glucose residues in the LPS outer core, has been shown to enhance the activation of human dendritic cells in vitro. The responses were compared to those of a monophosphoryl lipid A (MPL)-based adjuvant and to an aluminum hydroxide suspension. The nOMVs induced blood serum IgG responses against each of the three antigens comparable to those obtained with MPL or aluminum salt. However, nOMVs elicited (i) a lower IgG1/IgG2a ratio against rPorA and (ii) serum bactericidal antibody titers superior to those achieved with aluminum salt, reaching similar titers to those obtained with MPL. Similarly, bactericidal antibody titers induced by immunization with meningococcal serogroup C polysaccharide and nOMVs were similar to those obtained using MPL but were better than those with aluminum salt. Immunization with tetanus toxoid and nOMVs resulted in tetanus toxoid-specific IgG responses similar to those obtained when adjuvanted with aluminum salt. These results highlight the potential utility of meningococcal LpxL1 LPS-containing nOMVs as an adjuvant for recombinant meningococcal protein vaccines and suggest their possible use with a variety of other antigens.
Collapse
Affiliation(s)
- Jerry C. Nagaputra
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Christine S. Rollier
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Manish Sadarangani
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - J. Claire Hoe
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Ojas Hrakesh Mehta
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Gunnstein Norheim
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - Muhammad Saleem
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Hannah Chan
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy P. Derrick
- Faculty of Life Sciences, The University of Manchester, Michael Smith Building, Oxford Road, Manchester, United Kingdom
| | - Ian Feavers
- Division of Bacteriology, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Andrew J. Pollard
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| | - E. Richard Moxon
- NIHR Oxford Biomedical Research Centre, Centre for Clinical Vaccinology and Tropical Medicine, Churchill Hospital, Headington, Oxford, United Kingdom
| |
Collapse
|
5
|
A DNA vaccine strategy for effective antibody induction to pathogen-derived antigens. Methods Mol Biol 2011. [PMID: 21993657 DOI: 10.1007/978-1-61779-346-2_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA-based vaccines are currently being developed for treating a diversity of human diseases including cancers, autoimmune conditions, allergies, and microbial infections. In this chapter, we present a general protocol that can be used as a starting point for developing DNA vaccines to pathogen-derived antigens, using Neisseria meningitidis as an example. In addition, we describe a fusion gene-based vaccine protocol for increasing the potency of DNA vaccines that are based on poorly immunogenic antigens such as short pathogen-derived polypeptides. Finally, we provide a safe and effective protocol for delivery of DNA vaccines, based on intramuscular injection followed by electroporation.
Collapse
|
6
|
Ferreira KS, Maranhão AQ, Garcia MCC, Brígido MM, Santos SS, Lopes JD, Almeida SR. Dendritic cells transfected with scFv from Mab 7.B12 mimicking original antigen gp43 induces protection against experimental Paracoccidioidomycosis. PLoS One 2011; 6:e15935. [PMID: 21249212 PMCID: PMC3017565 DOI: 10.1371/journal.pone.0015935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 12/02/2010] [Indexed: 11/25/2022] Open
Abstract
Paracoccidioidomycosis (PCM), endemic in Latin America, is a progressive systemic mycosis caused by Paracoccidioides brasiliensis (P. brasiliensis), which primarily attacks lung tissue. Dendritic cells (DCs) are able to initiate a response in naïve T cells, and they also participate in Th-cell education. Furthermore, these cells have been used for therapy in several disease models. Here we transfected DCs with a plasmid (pMAC/PS-scFv) encoding a single chain variable fragment (scFv) of an anti-Id antibody that is capable of mimicking gp43, the main antigenic component of P. brasiliensis. First, Balb/c mice were immunized subcutaneously with pMAC/PS-scFv and, after seven days, scFv protein was presented to the regional lymph nodes cells. Moreover, we showed that the DCs transfected with scFv were capable of efficiently activating proliferation of total lymph node cells and inducing a decrease in lung infection. Therefore, our results suggested that the use of scFv-transfected DCs may be a promising therapy in the paracoccidioidomycosis (PCM) model.
Collapse
Affiliation(s)
- Karen S Ferreira
- Departamento de Ciências Biológicas do Instituto de Ciências Ambientais, Químicas e Farmacêuticas da Universidade Federal de São Paulo, São Paulo, Brazil.
| | | | | | | | | | | | | |
Collapse
|
7
|
Sadarangani M, Pollard AJ. Serogroup B meningococcal vaccines—an unfinished story. THE LANCET. INFECTIOUS DISEASES 2010; 10:112-24. [DOI: 10.1016/s1473-3099(09)70324-x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Tanasa RI, Trad A, Lange H, Grötzinger J, Lemke H. Allergen IgE-isotype-specific suppression by maternally derived monoclonal anti-IgG-idiotype. Allergy 2010; 65:16-23. [PMID: 19624555 DOI: 10.1111/j.1398-9995.2009.02104.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
BACKGROUND The dramatic increase of IgE-mediated allergic diseases in western countries demonstrates the urgent need for new therapeutic or prophylactic approaches. In mice, a prophylactic long-lasting allergen-specific suppression of IgE responsiveness is induced by maternal IgG antibodies to allergens like ovalbumin, phospholipase A(2) (bvPLA(2)) or ovomucoid. As neonatal application or maternally derived pathogen-reactive antibodies (idiotypes) as well as corresponding anti-idiotypes can induce anti-microbial protection, we probed the transgenerational IgE-suppressive mechanism with a syngeneic monoclonal anti-idiotypic antibody. METHODS The monoclonal bee-venom-phospholipase A(2) (bvPLA(2))-reactive IgG antibody MS613 (idiotype) or the corresponding syngeneic anti-idiotype II/2-19 were injected during the first 2 days postpartum to the dams. Immunization of offspring with minute doses of IgE-inducing bvPLA(2) was started at an adult age of 3(1/2) months. RESULTS The postnatal transfer of the anti-bvPLA(2) idiotype MS613 or the corresponding anti-idiotype II/2-19 induced long-lasting allergen-specific IgE suppression in a dose-dependent manner, while the IgG response to the allergen developed normally. Quantitatively, the anti-idiotype was more effective than idiotype. Molecular modeling of the idiotype-anti-idiotype complex and its comparison with the bvPLA(2) structure revealed that the anti-idiotype does not mimic bvPLA(2) epitopes and thus can not be regarded as an internal image antibody and, consequently, does not function as a surrogate antigen. CONCLUSIONS Idiotypic network reactivity is at least one major factor for induction of transgenerational IgE suppression by maternal IgG antibodies. If applicable to humans, these data suggest the possibility of a prophylactic and possibly therapeutic treatment of IgE-mediated allergic diseases with anti-idiotypic antibodies.
Collapse
Affiliation(s)
- R I Tanasa
- Biochemical Institute of the Medical Faculty, Christian-Albrechts University, Kiel, Germany
| | | | | | | | | |
Collapse
|
9
|
Beninati C, Garibaldi M, Lo Passo C, Mancuso G, Papasergi S, Garufi G, Pernice I, Teti G, Felici F. Immunogenic mimics of Brucella lipopolysaccharide epitopes. Peptides 2009; 30:1936-9. [PMID: 19631246 DOI: 10.1016/j.peptides.2009.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 07/10/2009] [Accepted: 07/14/2009] [Indexed: 10/20/2022]
Abstract
Brucella melitensis and Brucella abortus are responsible for brucellosis in bovine and ovine species and for Malta fever in humans. The lipopolysaccharide (LPS) of Brucella is an important virulence factor and can elicit protective antibodies. Because of their potential importance in vaccine design and in serological diagnosis, we developed peptides mimicking the antigenic properties of distinctive antigenic determinants of Brucella LPS. These peptides were selected from several phage display random peptide libraries for their ability to bind monoclonal antibodies directed against the A- or C-type epitopes of Brucella LPS. Plasmids encoding for two of the isolated peptides induced, after DNA immunization, LPS-specific antibody responses. Although these responses were only moderate in extent, these data further suggest the feasibility of using peptide mimics of carbohydrate epitopes as immunogens, a property which may be useful in the design of novel anti-Brucella vaccines.
Collapse
Affiliation(s)
- Concetta Beninati
- Dipartimento di Patologia e Microbiologia Sperimentale, Università degli Studi di Messina, Messina, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Polyclonal anti-idiotypic antibodies which mimic an epitope of the human prion protein. Mol Immunol 2009; 46:1076-83. [DOI: 10.1016/j.molimm.2008.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 09/24/2008] [Accepted: 09/27/2008] [Indexed: 11/18/2022]
|
11
|
A DNA fusion vaccine induces bactericidal antibodies to a peptide epitope from the PorA porin of Neisseria meningitidis. Infect Immun 2007; 76:334-8. [PMID: 17967859 DOI: 10.1128/iai.00943-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An experimental DNA plasmid vaccine was developed based on a well-characterized and protective peptide epitope derived from a bacterial porin protein. For this study, we used the P1.16b serosubtype epitope, located in variable region (VR)2 in loop 4 of the PorA outer membrane (OM) porin from Neisseria meningitidis serogroup B strain MC58. A plasmid that encoded the entire loop (pPorAloop4) was prepared, as well as a fusion plasmid that encoded the loop in tandem with the fragment C (FrC) immunostimulatory sequence from tetanus toxin (pPorAloop4-FrC). The constructs were used for intramuscular immunization without exogenous adjuvant. Murine antisera raised to the pPorAloop4-FrC DNA fusion plasmid reacted significantly with OMs in enzyme-linked immunosorbent assay and with whole bacteria by immunofluorescence, whereas antisera raised to the pPorAloop4 DNA plasmid and to control plasmid showed little or no reactivity. Significantly, only the pPorALoop4-FrC plasmid induced bactericidal antibodies, demonstrating that the intrinsic immunostimulatory sequence was essential for inducing a protective immune response. The antibodies raised to the P1.16b pPorALoop4-FrC plasmid were serosubtype specific, showing no significant immunofluorescence reactivity or bactericidal activity against other PorA variants. These data provide proof of principle for a DNA fusion plasmid strategy as a novel approach to preparing vaccines based on defined, protective epitopes.
Collapse
|
12
|
Vani J, Nayak R, Shaila MS. Immunization of mice with DNA coding for the variable regions of anti-idiotypic antibody generates antigen-specific response. Vaccine 2007; 25:4922-30. [PMID: 17531360 DOI: 10.1016/j.vaccine.2007.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Revised: 03/15/2007] [Accepted: 04/02/2007] [Indexed: 11/29/2022]
Abstract
Understanding the mechanisms of generation and maintenance of immunological memory is crucial for rational vaccine design. A hypothesis known as relay hypothesis was earlier proposed which explains the maintenance of immunological memory through interaction of idiotypic and anti-idiotypic lymphocytes. In the present study, we have shown that immunization with rinderpest virus hemagglutinin protein specific anti-idiotypic antibody (Ab(2)v(beta)) DNAs coding for heavy and light chains generates antigen-specific antibody and T cell responses as well as Ab1 specific T cell response. We further show that boosting with the recombinant Ab(2)-vbeta proteins generates B and T cell memory response specific for antigen in anti-id DNA primed mice. This study provides experimental evidence for perpetuation of immunological memory through idiotypic network interactions.
Collapse
Affiliation(s)
- J Vani
- Department of Microbiology and Cell Biology, Indian Institute of Science, C.V. Raman Avenue, Bangalore 560012, India
| | | | | |
Collapse
|
13
|
Lo Passo C, Romeo A, Pernice I, Donato P, Midiri A, Mancuso G, Arigò M, Biondo C, Galbo R, Papasergi S, Felici F, Teti G, Beninati C. Peptide Mimics of the Group B Meningococcal Capsule Induce Bactericidal and Protective Antibodies after Immunization. THE JOURNAL OF IMMUNOLOGY 2007; 178:4417-23. [PMID: 17371999 DOI: 10.4049/jimmunol.178.7.4417] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neisseria meningitidis serogroup B (MenB) is a leading cause of sepsis and meningitis in children. No vaccine is available for the prevention of these infections because the group B capsular polysaccharide (CP) (MenB CP) is unable to stimulate an immune response, due to its similarity with human polysialic acid. Because the MenB CP bears both human cross-reactive and non-cross-reactive determinants, we developed immunogenic peptide mimics of the latter epitopes. Peptides were selected from phage display libraries for their ability to bind to a protective anti-MenB CP mAb. One of these peptides (designated 9M) induced marked elevations in serum bactericidal activity, but not polysialic acid cross-reacting Abs, after gene priming followed by carrier-conjugate boosting. Moreover, the occurrence of bacteremia was prevented in infant rats by administration of immune sera before MenB challenge. 9M is a promising lead candidate for the development of an effective and affordable anti-MenB vaccine.
Collapse
Affiliation(s)
- Carla Lo Passo
- Dipartimento di Scienze Microbiologiche, Genetiche e Molecolari, Università degli Studi di Messina, Messina, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|