1
|
Bhattacharyya T. Unraveling melorheostosis: insights into clinical features, diagnosis, and treatment. JBMR Plus 2025; 9:ziae163. [PMID: 39776616 PMCID: PMC11701705 DOI: 10.1093/jbmrpl/ziae163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/14/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Melorheostosis is a rare bone disease characterized by abundant bone formation with a characteristic radiographic appearance that resembles "dripping candle wax." Recent data have shown that the majority of cases are due to somatic activating mutations in bone. Melorheostosis has several clinical and radiographic presentations, which are now known to be caused by different somatic mutations such as MAP2K1, SMAD3, KRAS, and LEMD3. This review provides a comprehensive look at the clinical features, diagnostic approaches, and current treatment options for melorheostosis, alongside future research directions aimed at improving patient outcomes.
Collapse
Affiliation(s)
- Timothy Bhattacharyya
- Clinical Trials and Outcomes Branch, Intramural Research Program, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
2
|
Dong Z, Li Y, Li F, Tian H. Surgical treatment of progressive melorheostosis worsening over 19 years: A case report. Knee 2024; 51:276-281. [PMID: 39454241 DOI: 10.1016/j.knee.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 10/28/2024]
Abstract
BACKGROUND Melorheostosis is a relatively rare disease, which may cause chronic pain, soft tissue mass and restricted range of motion. Diagnosis and treatment of melorheostosis remains challenging. CASE REPORT We describe a patient with sclerotic bone involving the left acetabulum, femur, tibia, and talus. Over 19 years this patient showed slow progression of disease. The bone mass in the right popliteal region resulted in limitation of knee motion. Comprehensive management including physical therapy, medications and surgeries were adopted to obtain a full range of motion and no recurrence for 2 years. DISCUSSION Accurate diagnosis and adequate treatments are critical to melorheostosis patients. Resection of redundant calcified mass is an effective method to treat severe limitation of range of motion associated with knee melorheostosis.
Collapse
Affiliation(s)
- Ziyang Dong
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Yang Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China
| | - Feng Li
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| | - Hua Tian
- Department of Orthopedics, Peking University Third Hospital, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, Beijing, China.
| |
Collapse
|
3
|
Brewer A, Zhao JF, Fasimoye R, Shpiro N, Macartney TJ, Wood NT, Wightman M, Alessi DR, Sapkota GP. Targeted dephosphorylation of SMAD3 as an approach to impede TGF-β signaling. iScience 2024; 27:110423. [PMID: 39104417 PMCID: PMC11298613 DOI: 10.1016/j.isci.2024.110423] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/09/2024] [Accepted: 06/27/2024] [Indexed: 08/07/2024] Open
Abstract
TGF-β (transforming growth factor-β) signaling is involved in a myriad of cellular processes and its dysregulation has been implicated in many human diseases, including fibrosis and cancer. TGF-β transcriptional responses are controlled by tail phosphorylation of transcription factors SMAD2 and SMAD3 (mothers against decapentaplegic homolog 2/3). Therefore, targeted dephosphorylation of phospho-SMAD3 could provide an innovative mechanism to block some TGF-β-induced transcriptional responses, such as the transcription of SERPINE-1, which encodes plasminogen activator inhibitor 1 (PAI-1). Here, by developing and employing a bifunctional molecule, BDPIC (bromoTAG-dTAG proximity-inducing chimera), we redirected multiple phosphatases, tagged with bromoTAG, to dephosphorylate phospho-SMAD3, tagged with dTAG. Using CRISPR-Cas9 technology, we generated homozygous double knock-in A549 bromoTAG/bromoTAG PPM1H/ dTAG/dTAG SMAD3 cells, in which the BDPIC-induced proximity between bromoTAG-PPM1H and dTAG-SMAD3 led to a robust dephosphorylation of dTAG-SMAD3 and a significant decrease in SERPINE-1 transcription. Our work demonstrates targeted dephosphorylation of phospho-proteins as an exciting modality for rewiring cell signaling.
Collapse
Affiliation(s)
- Abigail Brewer
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Jin-Feng Zhao
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Rotimi Fasimoye
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Natalia Shpiro
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Thomas J. Macartney
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Nicola T. Wood
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Melanie Wightman
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Dario R. Alessi
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | - Gopal P. Sapkota
- Medical Research Council (MRC) Protein Phosphorylation & Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
4
|
do Nascimento RRNR, Quaio CRDC, Chung CH, de Moraes Vasconcelos D, Sztajnbok FR, Rosa Neto NS, Perazzio SF. Principles of clinical genetics for rheumatologists: clinical indications and interpretation of broad-based genetic testing. Adv Rheumatol 2024; 64:59. [PMID: 39143637 DOI: 10.1186/s42358-024-00400-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/05/2024] [Indexed: 08/16/2024] Open
Abstract
Advances in DNA sequencing technologies, especially next-generation sequencing (NGS), which is the basis for whole-exome sequencing (WES) and whole-genome sequencing (WGS), have profoundly transformed immune-mediated rheumatic disease diagnosis. Recently, substantial cost reductions have facilitated access to these diagnostic tools, expanded the capacity of molecular diagnostics and enabled the pursuit of precision medicine in rheumatology. Understanding the fundamental principles of genetics and diversity in genetic variant classification is a crucial milestone in rheumatology. However, despite the growing availability of DNA sequencing platforms, a significant number of autoinflammatory diseases (AIDs), neuromuscular disorders, hereditary collagen diseases, and monogenic bone diseases remain unsolved, and variants of uncertain significance (VUS) pose a formidable challenge to addressing these unmet needs in the coming decades. This article aims to provide an overview of the clinical indications and interpretation of comprehensive genetic testing in the medical field, addressing the related complexities and implications.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sandro Félix Perazzio
- Disciplina de Reumatologia, Universidade Federal de Sao Paulo, Escola Paulista de Medicina, Rua Otonis, 863, Sao Paulo, SP, 04025-002, Brazil.
- Fleury Medicina e Saude, Sao Paulo, Brazil.
- Universidade de Sao Paulo Faculdade de Medicina (USP FM), Sao Paulo, Brazil.
| |
Collapse
|
5
|
Miyazawa K, Itoh Y, Fu H, Miyazono K. Receptor-activated transcription factors and beyond: multiple modes of Smad2/3-dependent transmission of TGF-β signaling. J Biol Chem 2024; 300:107256. [PMID: 38569937 PMCID: PMC11063908 DOI: 10.1016/j.jbc.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 04/05/2024] Open
Abstract
Transforming growth factor β (TGF-β) is a pleiotropic cytokine that is widely distributed throughout the body. Its receptor proteins, TGF-β type I and type II receptors, are also ubiquitously expressed. Therefore, the regulation of various signaling outputs in a context-dependent manner is a critical issue in this field. Smad proteins were originally identified as signal-activated transcription factors similar to signal transducer and activator of transcription proteins. Smads are activated by serine phosphorylation mediated by intrinsic receptor dual specificity kinases of the TGF-β family, indicating that Smads are receptor-restricted effector molecules downstream of ligands of the TGF-β family. Smad proteins have other functions in addition to transcriptional regulation, including post-transcriptional regulation of micro-RNA processing, pre-mRNA splicing, and m6A methylation. Recent technical advances have identified a novel landscape of Smad-dependent signal transduction, including regulation of mitochondrial function without involving regulation of gene expression. Therefore, Smad proteins are receptor-activated transcription factors and also act as intracellular signaling modulators with multiple modes of function. In this review, we discuss the role of Smad proteins as receptor-activated transcription factors and beyond. We also describe the functional differences between Smad2 and Smad3, two receptor-activated Smad proteins downstream of TGF-β, activin, myostatin, growth and differentiation factor (GDF) 11, and Nodal.
Collapse
Affiliation(s)
- Keiji Miyazawa
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan.
| | - Yuka Itoh
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Hao Fu
- Department of Biochemistry, Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Kohei Miyazono
- Department of Applied Pathology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; Laboratory for Cancer Invasion and Metastasis, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
6
|
Ye J, Hua Z, Xiao J, Shao Y, Li S, Yin H, Wu M, Rong Y, Hong B, Guo Y, Ma Y, Wang J. p-Smad3 differentially regulates the cytological behavior of osteoclasts before and after osteoblasts maturation. Mol Biol Rep 2024; 51:525. [PMID: 38632128 DOI: 10.1007/s11033-024-09400-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 02/28/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND A series of previous investigations have revealed that p-Smad3 plays a facilitative role in the differentiation and maturation of osteoblasts, while also regulating the expression of certain intercellular communication factors. However, the effects of p-Smad3 in osteoblasts before and after maturation on the proliferation, migration, differentiation, apoptosis and other cellular behaviors of osteoclasts have not been reported. METHODS MC3T3-E1 cells were cultured in osteogenic induction medium for varying durations, After that, the corresponding conditioned medium was collected and the osteoclast lineage cells were treated. To elucidate the regulatory role of p-Smad3 within osteoblasts, we applied the activator TGF-β1 and inhibitor SIS3 to immature and mature osteoblasts and collected corresponding conditioned media for osteoclast intervention. RESULTS We observed an elevation of p-Smad3 and Smad3 during the early stage of osteoblast differentiation, followed by a decline in the later stage. we discovered that as osteoblasts mature, their conditioned media inhibit osteoclasts differentiation and the osteoclast-coupled osteogenic effect. However, it promotes apoptosis in osteoclasts and the angiogenesis coupled with osteoclasts. p-Smad3 in immature osteoblasts, through paracrine effects, promotes the migration, differentiation, and osteoclast-coupled osteogenic effects of osteoclast lineage cells. For mature osteoblasts, p-Smad3 facilitates osteoclast apoptosis and the angiogenesis coupled with osteoclasts. CONCLUSIONS As pre-osteoblasts undergo maturation, p-Smad3 mediated a paracrine effect that transitions osteoclast cellular behaviors from inducing differentiation and stimulating bone formation to promoting apoptosis and coupling angiogenesis.
Collapse
Affiliation(s)
- Jiapeng Ye
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Zhen Hua
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Jirimutu Xiao
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
- Mongolian Medicine College, Inner Mongolia Medical University, Hohhot, Inner Mongolia, 010159, China
| | - Yang Shao
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Shaoshuo Li
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Heng Yin
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Mao Wu
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Yi Rong
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Bowen Hong
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Yong Ma
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Jianwei Wang
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu, 214071, China.
| |
Collapse
|
7
|
Wu M, Wu S, Chen W, Li YP. The roles and regulatory mechanisms of TGF-β and BMP signaling in bone and cartilage development, homeostasis and disease. Cell Res 2024; 34:101-123. [PMID: 38267638 PMCID: PMC10837209 DOI: 10.1038/s41422-023-00918-9] [Citation(s) in RCA: 98] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 12/15/2023] [Indexed: 01/26/2024] Open
Abstract
Transforming growth factor-βs (TGF-βs) and bone morphometric proteins (BMPs) belong to the TGF-β superfamily and perform essential functions during osteoblast and chondrocyte lineage commitment and differentiation, skeletal development, and homeostasis. TGF-βs and BMPs transduce signals through SMAD-dependent and -independent pathways; specifically, they recruit different receptor heterotetramers and R-Smad complexes, resulting in unique biological readouts. BMPs promote osteogenesis, osteoclastogenesis, and chondrogenesis at all differentiation stages, while TGF-βs play different roles in a stage-dependent manner. BMPs and TGF-β have opposite functions in articular cartilage homeostasis. Moreover, TGF-β has a specific role in maintaining the osteocyte network. The precise activation of BMP and TGF-β signaling requires regulatory machinery at multiple levels, including latency control in the matrix, extracellular antagonists, ubiquitination and phosphorylation in the cytoplasm, nucleus-cytoplasm transportation, and transcriptional co-regulation in the nuclei. This review weaves the background information with the latest advances in the signaling facilitated by TGF-βs and BMPs, and the advanced understanding of their diverse physiological functions and regulations. This review also summarizes the human diseases and mouse models associated with disordered TGF-β and BMP signaling. A more precise understanding of the BMP and TGF-β signaling could facilitate the development of bona fide clinical applications in treating bone and cartilage disorders.
Collapse
Affiliation(s)
- Mengrui Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Shali Wu
- Department of Cell and Developmental Biology, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
8
|
Raimann A, Misof BM, Fratzl P, Fratzl-Zelman N. Bone Material Properties in Bone Diseases Affecting Children. Curr Osteoporos Rep 2023; 21:787-805. [PMID: 37897675 DOI: 10.1007/s11914-023-00822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/30/2023]
Abstract
PURPOSE OF REVIEW Metabolic and genetic bone disorders affect not only bone mass but often also the bone material, including degree of mineralization, matrix organization, and lacunar porosity. The quality of juvenile bone is moreover highly influenced by skeletal growth. This review aims to provide a compact summary of the present knowledge on the complex interplay between bone modeling and remodeling during skeletal growth and to alert the reader to the complexity of bone tissue characteristics in children with bone disorders. RECENT FINDINGS We describe cellular events together with the characteristics of the different tissues and organic matrix organization (cartilage, woven and lamellar bone) occurring during linear growth. Subsequently, we present typical alterations thereof in disorders leading to over-mineralized bone matrix compared to those associated with low or normal mineral content based on bone biopsy studies. Growth spurts or growth retardation might amplify or mask disease-related alterations in bone material, which makes the interpretation of bone tissue findings in children complex and challenging.
Collapse
Affiliation(s)
- Adalbert Raimann
- Department of Pediatrics and Adolescent Medicine, Division of Pediatric Pulmonology, Allergology and Endocrinology, Medical University of Vienna, Vienna, Austria
- Vienna Bone and Growth Center, Vienna, Austria
| | - Barbara M Misof
- Vienna Bone and Growth Center, Vienna, Austria
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, Research Campus Golm, Potsdam, Germany
| | - Nadja Fratzl-Zelman
- Vienna Bone and Growth Center, Vienna, Austria.
- Ludwig Boltzmann Institute of Osteology at the Hanusch Hospital of OEGK and AUVA Trauma Center Meidling, 1st Medical Department, Hanusch Hospital, Vienna, Austria.
| |
Collapse
|
9
|
Farrell K, Comis LE, Casimir MM, Hodsdon B, Jiménez-Silva R, Dunigan T, Bhattacharyya T, Jha S. Occupational engagement, fatigue, and upper and lower extremity abilities in persons with melorheostosis. PM R 2023; 15:587-595. [PMID: 35403375 PMCID: PMC9548523 DOI: 10.1002/pmrj.12817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION Melorheostosis is a rare bone disorder with limited literature that describes the effect of this disease on functional and motor abilities. As part of a natural history study, four outcome measures were administered to better understand the burden this disease has on a person's ability to engage in basic and instrumental activities of daily living. OBJECTIVE To investigate the relationship between functional engagement, fatigue, and motor ability in patients with melorheostosis. DESIGN Cross-sectional data gathered from a longitudinal natural history observational study. SETTING Rehabilitation department within a single institution. PARTICIPANTS Forty-seven adult volunteers with melorheostosis were enrolled. Two participants were removed for failure to meet diagnosis eligibility. Thirty patients had lower extremity (LE) osteosclerotic bone lesions, 14 had upper extremity (UE) lesions, and one had lesions in both UEs and LEs. INTERVENTIONS Not applicable. MAIN OUTCOME MEASURES Activity Card Sort, Second Edition (ACS); Multi-Dimensional Fatigue Inventory; Lower Extremity Functional Scale; Upper Extremity Functional Index. RESULTS On the ACS, high-demand leisure (HDL) activities were the least retained (p < .001). Of the activities rated most important, HDL activities were the most likely to have been given up (27%). General fatigue (μ = 11.8) and physical fatigue (μ = 11.0) were the two most limiting fatigue constructs. There were moderate negative correlations with HDL activities compared to physical fatigue (r = -0.524, p < .001) and reduced activity fatigue (r = -0.58, p = .001). LE lesions had a large effect on completing LE tasks (d = 0.95) and UE lesions had a medium effect on completing tasks involving the UE (d = 0.69). CONCLUSIONS Patients with melorheostosis experience fatigue and low engagement in HDL activities. The results of this study underscore the importance of acknowledging activity domain, fatigue constructs, and lesion location to support and provide targeted evidence-based rehabilitative therapy. CLINICAL TRIAL REGISTRATION NUMBER NCT02504879.
Collapse
Affiliation(s)
- Kathleen Farrell
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Leora E. Comis
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Morgan M. Casimir
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Bonnie Hodsdon
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Rafael Jiménez-Silva
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Tiara Dunigan
- Rehabilitation Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Timothy Bhattacharyya
- Clinical and Investigative Orthopedics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Smita Jha
- Clinical and Investigative Orthopedics Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
- Section on Congenital Disorders, Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
10
|
Iordache S, Cursaru A, Serban B, Costache M, Spiridonica R, Cretu B, Cirstoiu C. Melorheostosis: A Review of the Literature and a Case Report. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59050869. [PMID: 37241101 DOI: 10.3390/medicina59050869] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023]
Abstract
Background and Objectives: Melorheostosis, also referred to in the literature as Leri's disease, is an unusual mesenchymal dysplasia with the clinical appearance of benign sclerosing bone dysplasia; it frequently occurs in late adolescence. Any bone in the skeletal system can be affected by this disease, though the long bones of the lower extremities are the most common, at any age. Melorheostosis has a chronic evolution, and symptoms are usually absent in the early stages. The etiopathogenesis is still unknown, however, numerous theories have been proposed that could explain the appearance of this lesion formation. An association with other benign or malignant bone lesions is also possible, and associations with osteosarcoma, malignant fibrous histiocytoma, or Buschke-Ollendorff syndrome have also been reported. There have also been reported cases of the malignant transformation of a pre-existing melorheostosis lesion into malignant fibrous histiocytoma or osteosarcoma. The diagnosis of melorheostosis can be made only based on radiological images, but, due to its polymorphism, additional imaging investigations are often necessary and sometimes only a biopsy can establish a definite diagnosis. Because there are currently no guidelines for treatment based on scientific evidence, due to the low number of cases diagnosed worldwide, our objective was to highlight the early recognition and specific surgical treatments for better prognosis and outcomes. Materials and Methods: We conducted a review of the literature consisting of original papers, case reports, and case series and presented the clinical and paraclinical characteristics of melorheostosis. We aimed to synthesize the treatment methods available in the literature as well as determine possible future directions related to the treatment of melorheostosis. Furthermore, we presented the results of a case of femoral melorheostosis admitted to the orthopedics department of the University Emergency Hospital of Bucharest in a 46-year-old female patient with severe pain in the left thigh and limitation of joint mobility. Following the clinical examination, the patient complained of pain in the middle third of the left thigh in the antero-medial compartment; the pain appeared spontaneously and was aggravated during physical activity. The pain started about two years prior, but the patient experienced complete pain relief after the administration of non-steroidal anti-inflammatory drugs. In the last six months, the patient presented an increase in pain intensity without significant improvement following the administration of non-steroidal anti-inflammatory drugs. The patient's symptoms were mainly determined by the increase in the volume of the tumor and the mass effect on the adjacent tissues, especially on the vessels and the femoral nerve. The CT examination and bone scintigraphy showed a unique lesion in the middle third of the left femur and no oncological changes in the thoracic, abdominal, and pelvic regions; however, at the level of the femoral shaft, there was a localized cortical and pericortical bone lesion formation that surrounded approximately 180 degrees of the femoral shaft (anterior, medial, and lateral). It had a predominantly sclerotic structure but was associated with lytic areas with thickening of the bone cortex and areas of periosteal reaction. The next therapeutic gesture was to perform an incisional biopsy using a lateral approach at the level of the thigh. The histopathological result supported the diagnosis of melorheostosis. Additionally, immunohistochemical tests completed the data obtained after the microscopic examination through the classic histopathological technique The patient was discharged and included in a full medical recovery program for eight weeks in a specialized medical center, during which she also received analgesic treatment in maximum doses, but without improvement regarding her symptoms. Taking into account the chronic evolution of the pain, the complete lack of response to conservative treatment after eight weeks, and the lack of treatment guidelines in the case of melorheostosis, a surgical approach needed to be considered. The surgical option in this case, considering the circumferential location of the lesion at the level of the femoral diaphysis, was a radical resection. The surgical approach consisted of segmental resection to healthy bone tissue and reconstruction of the remaining defect with a modular tumoral prosthesis. At the 45-day postoperative control, the patient no longer complained of pain in the operated-on limb and was mobile with full support without gait difficulties. The follow-up period was one year, and the patient presented complete pain relief and a very good functional outcome. Results: In the case of asymptomatic patients, conservative treatment seems to be a good option with optimal results. However, for benign tumors, it remains unclear whether radical surgery is a viable option. Conclusions: Melorheostosis remains an incompletely understood disease, given the limited number of cases worldwide, and thus, there is a lack of clinical guidelines regarding specialized treatment.
Collapse
Affiliation(s)
- Sergiu Iordache
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| | - Adrian Cursaru
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| | - Bogdan Serban
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| | - Mihai Costache
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| | - Razvan Spiridonica
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| | - Bogdan Cretu
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| | - Catalin Cirstoiu
- Department Orthopedic & Traumatology, Carol Davila University Medicine & Pharmacy, University Emergency Hospital, 050098 Bucharest, Romania
| |
Collapse
|
11
|
Zhang QY, Tan J, Huang K, Nie R, Feng ZY, Zou CY, Li QJ, Chen J, Sheng N, Qin BQ, Gu ZP, Liu LM, Xie HQ. Polyphenolic-modified cellulose acetate membrane for bone regeneration through immunomodulation. Carbohydr Polym 2023; 305:120546. [PMID: 36737196 DOI: 10.1016/j.carbpol.2023.120546] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/27/2022] [Accepted: 01/02/2023] [Indexed: 01/07/2023]
Abstract
To enhance the bioactivity of cellulosic derivatives has become an important strategy to promote their value for clinical applications. Herein, protocatechualdehyde (PCA), a polyphenolic molecule, was used to modify a cellulose acetate (CA) membrane by combining with metal ions to confer an immunomodulatory activity. The PCA-modified CA membrane has shown a significant radical scavenging activity, thereby suppressed the inflammatory response and created a favorable immune microenvironment for osteogenesis and mineralization. Moreover, addition of metal ions could further stimulate the osteogenic differentiation of stem cells and accelerate bone regeneration both in vitro and in vivo. This study may provide a strategy to promote the immunomodulatory activity of cellulose-based biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jie Tan
- Department of Spine Surgery, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen 518052, PR China
| | - Kai Huang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Rong Nie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zi-Yuan Feng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Jun Chen
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Ning Sheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Bo-Quan Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Zhi-Peng Gu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, PR China
| | - Li-Min Liu
- Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, PR China.
| |
Collapse
|
12
|
Bergen DJM, Maurizi A, Formosa MM, McDonald GLK, El-Gazzar A, Hassan N, Brandi ML, Riancho JA, Rivadeneira F, Ntzani E, Duncan EL, Gregson CL, Kiel DP, Zillikens MC, Sangiorgi L, Högler W, Duran I, Mäkitie O, Van Hul W, Hendrickx G. High Bone Mass Disorders: New Insights From Connecting the Clinic and the Bench. J Bone Miner Res 2023; 38:229-247. [PMID: 36161343 PMCID: PMC10092806 DOI: 10.1002/jbmr.4715] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 02/04/2023]
Abstract
Monogenic high bone mass (HBM) disorders are characterized by an increased amount of bone in general, or at specific sites in the skeleton. Here, we describe 59 HBM disorders with 50 known disease-causing genes from the literature, and we provide an overview of the signaling pathways and mechanisms involved in the pathogenesis of these disorders. Based on this, we classify the known HBM genes into HBM (sub)groups according to uniform Gene Ontology (GO) terminology. This classification system may aid in hypothesis generation, for both wet lab experimental design and clinical genetic screening strategies. We discuss how functional genomics can shape discovery of novel HBM genes and/or mechanisms in the future, through implementation of omics assessments in existing and future model systems. Finally, we address strategies to improve gene identification in unsolved HBM cases and highlight the importance for cross-laboratory collaborations encompassing multidisciplinary efforts to transfer knowledge generated at the bench to the clinic. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Dylan J M Bergen
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK.,Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Antonio Maurizi
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Melissa M Formosa
- Department of Applied Biomedical Science, Faculty of Health Sciences, University of Malta, Msida, Malta.,Center for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Georgina L K McDonald
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Neelam Hassan
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | | | - José A Riancho
- Department of Internal Medicine, Hospital U M Valdecilla, University of Cantabria, IDIVAL, Santander, Spain
| | - Fernando Rivadeneira
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, Medical School, University of Ioannina, Ioannina, Greece.,Center for Evidence Synthesis in Health, Policy and Practice, Center for Research Synthesis in Health, School of Public Health, Brown University, Providence, RI, USA.,Institute of Biosciences, University Research Center of loannina, University of Ioannina, Ioannina, Greece
| | - Emma L Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.,Department of Endocrinology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Celia L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Douglas P Kiel
- Marcus Institute for Aging Research, Hebrew SeniorLife and Department of Medicine Beth Israel Deaconess Medical Center and Harvard Medical School, Broad Institute of MIT & Harvard, Cambridge, MA, USA
| | - M Carola Zillikens
- Department of Internal Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Luca Sangiorgi
- Department of Rare Skeletal Diseases, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| | | | - Outi Mäkitie
- Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.,Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Folkhälsan Research Centre, Folkhälsan Institute of Genetics, Helsinki, Finland
| | - Wim Van Hul
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
13
|
O'Shea JJ, Gadina M, Sciumè, G, Meylan F. Cytokines and Cytokine Receptors. Clin Immunol 2023. [DOI: 10.1016/b978-0-7020-8165-1.00014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
14
|
Vo TT, To K, Dang TN, Vo TP, Nguyen DT, Nguyen DC, Nguyen MK, Nguyen VT. Late-Onset Melorheostosis: A Case Report. Case Rep Oncol 2023; 16:1237-1244. [PMID: 38130895 PMCID: PMC10736180 DOI: 10.1159/000534241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/12/2023] [Indexed: 12/23/2023] Open
Abstract
Melorheostosis is a rare benign bone pathology involving bone dysplasia and hyperostosis. The disease can be recognized with a characteristic radiographic feature of radiopaque lesions dripping along a long bone's diaphysis. The aberrant bone formation and development manifests mainly as pain, edema, and paresthesia of the affected limb. Severe cases may report limb deformity as well as limited range of motion. Until now, there have been approximately 300 cases reported about melorheostosis worldwide and its diverse clinical picture and age distribution. In Vietnam, there is only one known case of melorheostosis discovered incidentally via radiography. The scarcity of cases presents a challenge within the medical community in recognizing and diagnosing the condition, and a delayed diagnosis can lead to severe contracture and compromised limb motility. In this article, we reported an 82-year-old case of polyostotic melorheostosis with late onset and predominant edema, affecting the sternum, the ribs, and multiple bones of the right extremities and presented our clinical approach for a geriatric patient with chronic limb edema. Our case is distinctive in terms of anatomical location as well as the predominant 20-year non-pitting edema. A prompt diagnosis was made upon the classic dripping candle wax radiographic features emphasizing the role of plain X-ray in establishing the diagnosis without extraneous utilization of other modalities and invasive procedures. Exclusion of other causes of chronic edema such as lymphadenopathy, malignancy as well as parasitic infection is of clinical importance.
Collapse
Affiliation(s)
- Thanh Toan Vo
- Trauma and Orthopedics Department, Thong Nhat Hospital, Ho Chi Minh City, Vietnam
| | - Kha To
- Trauma and Orthopedics Department, Thong Nhat Hospital, Ho Chi Minh City, Vietnam
- Division of Surgery and Interventional Science, University College London, London, UK
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
- Institute of Sport, Exercise and Health, University College London, London, UK
| | - Thanh Nghia Dang
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Duc Thien Nguyen
- Trauma and Orthopedics Department, Thong Nhat Hospital, Ho Chi Minh City, Vietnam
- School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Duc Cong Nguyen
- Department of Geriatrics, Pham Ngoc Thach Medical University, Ho Chi Minh City, Vietnam
| | - Manh Khanh Nguyen
- Department of Orthopaedics and Trauma, Vietduc University Hospital, Hanoi, Vietnam
| | - Van Thai Nguyen
- Department of Orthopaedics and Trauma, Pham Ngoc Thach Medical University, Ho Chi Minh City, Vietnam
| |
Collapse
|
15
|
El-Gazzar A, Kang H, Fratzl-Zelman N, Webb E, Barnes AM, Jovanovic M, Mehta SG, Datta V, Saraff V, Dale RK, Rauch F, Marini JC, Högler W. SMAD3 mutation in LDS3 causes bone fragility by impairing the TGF-β pathway and enhancing osteoclastogenesis. Bone Rep 2022; 17:101603. [PMID: 35874167 PMCID: PMC9301510 DOI: 10.1016/j.bonr.2022.101603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
Loss-of-function mutations in SMAD3 cause Loeys-Dietz syndrome type 3 (LDS3), a rare autosomal-dominant connective tissue disorder characterized by vascular pathology and skeletal abnormalities. Dysregulation of TGF-β/SMAD signaling is associated with abnormal skeletal features and bone fragility. To date, histomorphometric and ultrastructural characteristics of bone with SMAD3 mutations have not been reported in humans and the exact mechanism by which SMAD3 mutations cause the LDS3 phenotype is poorly understood. Here, we investigated bone histomorphometry and matrix mineralization in human bone with a SMAD3 mutation and explored the associated cellular defect in the TGF-β/SMAD pathway in vitro. The index patient had recurrent fractures, mild facial dysmorphism, arachnodactyly, pectus excavatum, chest asymmetry and kyphoscoliosis. Bone histomorphometry revealed markedly reduced cortical thickness (−68 %), trabecular thickness (−32 %), bone formation rate (−50 %) and delayed mineralization. Quantitative backscattered electron imaging demonstrated undermineralized bone matrix with increased heterogeneity in mineralization. The patient's SMAD3 mutation (c.200 T > G; p.I67S), when expressed from plasmid vectors in HEK293 cells, showed reduced phosphorylation and transcription factor activity compared to normal control and SMAD3 (p.S264Y), a gain-of-function mutation, somatic mosaicism of which causes melorheostosis. Transfection study of the patients' SMAD3 (p.I67S) mutation displayed lower luciferase reporter activity than normal SMAD3 and reduced expression of TGF-β signaling target genes. Patient fibroblasts also demonstrated impaired SMAD3 protein stability. Osteoclastogenic differentiation significantly increased and osteoclast-associated genes, including ACP5 (encoding TRAP), ATP6V0D2, and DCSTAMP, were up-regulated in CD14 (+) peripheral blood mononuclear cells (PBMCs) with the SMAD3 (p.I67S) mutation. Upregulation of osteoclastogenic genes was associated with decreased expression of TGF-β signaling target genes. We conclude that bone with the SMAD3 (p.I67S) mutation features reduced bone formation, and our functional studies revealed decreased SMAD3 activation and protein stability as well as increased osteoclastogenesis. These findings enhance our understanding of the pathophysiology of LDS3 caused by SMAD3 mutations. Emerging therapies targeting in the TGF-β/SMAD pathway also raise hope for treatment of LDS3. Increased bone fragility Low bone matrix mineralization SMAD3 (p.I67S) decreased TGF-b signaling and SMAD3 activity. SMAD3 (p.I67S) reduced SMAD3 protein stability. SMAD3 (p.I67S) mediated osteoclastogenesis.
Collapse
Affiliation(s)
- Ahmed El-Gazzar
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria
| | - Heeseog Kang
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1 Medical Department Hanusch Hospital, Vienna, Austria.,Vienna Bone and Growth Center, Vienna, Austria
| | - Emma Webb
- Department of Paediatrics, Jenny Lind Children's Hospital, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK.,Norwich Medical School, University of East Anglia, Norwich, UK
| | - Aileen M Barnes
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Milena Jovanovic
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sarju G Mehta
- East Anglian Regional Medical Genetics Service, Addenbrookes Hospital, Cambridge, UK
| | - Vipan Datta
- Department of Paediatrics, Jenny Lind Children's Hospital, Norfolk and Norwich University Hospital NHS Foundation Trust, Norwich, UK
| | - Vrinda Saraff
- Department of Endocrinology and Diabetes, Birmingham Women's and Children's Hospital NHS Foundation Trust, Birmingham, UK
| | - Ryan K Dale
- Bioinformatics and Scientific Programming Core, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Frank Rauch
- Shriners Hospital for Children-Canada, Montreal, QC H4A 0A9, Canada.,Department of Human Genetics, McGill University, Montreal, QC H3A 0C7, Canada
| | - Joan C Marini
- Section on Heritable Disorders of Bone and Extracellular Matrix, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Wolfgang Högler
- Department of Paediatrics and Adolescent Medicine, Johannes Kepler University Linz, Linz, Austria.,Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Han X, Xu Y, Wei Z, Wang C, Yue H, Zhang Z. Clinical characteristics of 10 Chinese patients with melorheostosis and identification of a somatic MAP2K1 variant in one case. Mol Genet Genomic Med 2022; 10:e2043. [PMID: 36004822 PMCID: PMC9544224 DOI: 10.1002/mgg3.2043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 11/20/2022] Open
Abstract
Background Melorheostosis (MEL) is an exceptionally rare sclerosing bone dysplasia with asymmetrically exuberant bone formation and soft tissue lesions in a segmental distribution. We aimed to summarize the clinical characteristics of Chinese MEL patients and identify their pathogenic cause. Methods In total, 10 Chinese MEL patients were recruited, and clinical manifestations and radiological characteristics were recorded. Sanger sequencing of the LEMD3 gene was performed on peripheral blood samples of all patients, while the exome sequencing of matched peripheral blood, melorheostotic bone, and skin lesion samples was conducted on one patient who provided affected bone and skin tissues. Micro‐computed tomography (micro‐CT) was also used to scan the melorheostotic bone tissue. Results We found the average age of the 10 MEL patients was 29.5 years (range 11–40 years), and the major symptoms were bone pain, restricted movement, and bone deformity. The lesions sites were mainly located in femur (8/10), tibia (8/10), fibula (6/10), and foot (7/10), the next was pelvis (4/10), and the last were patella (1/10), hand (1/10) and spine (1/10). Radiological examinations showed a mixture of hyperostosis consisting of classic “dripping candle wax,” “osteoma‐like,” or “myositis ossificans‐like” patterns in most patients. No germline pathogenic variants in the LEMD3 gene were found in all patients, but a disease‐causing somatic variant of MAP2K1 (c.167A > C, p.Gln56Pro) was detected in melorheostotic bone from one patient. Moreover, the micro‐CT analysis showed increased porosity in the melorheostotic bone with somatic MAP2K1 variant. Conclusion This is a summary of the clinical characteristics of Chinese MEL patients and we first identify the somatic MAP2K1 variant in Chinese patients. Our findings validate the molecular genetic mechanism of MEL and broaden its phenotype spectrum in the Chinese population.
Collapse
Affiliation(s)
- Xiaojun Han
- Department of Orthopedics, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Yang Xu
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhanying Wei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Chun Wang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hua Yue
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Disease, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
17
|
Wasilewska K, Gambin T, Rydzanicz M, Szczałuba K, Płoski R. Postzygotic mutations and where to find them - Recent advances and future implications in the field of non-neoplastic somatic mosaicism. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 790:108426. [PMID: 35690331 DOI: 10.1016/j.mrrev.2022.108426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 01/01/2023]
Abstract
The technological progress of massively parallel sequencing (MPS) has triggered a remarkable development in the research on postzygotic mutations. Although the overwhelming majority of studies in the field focus on oncogenesis, non-neoplastic diseases are attracting more and more attention. The aim of this review was to summarize some of the most recent findings in the field of somatic mosaicism in diseases other than neoplastic events. We discuss the abundance and role of postzygotic mutations, with a special emphasis on disorders which occur only in a mosaic form (obligatory mosaic diseases; OMDs). Based on the list of OMDs compiled from the published literature and three databases (OMIM, Orphanet and MosaicBase), we demonstrate the prevalence of cancer-related genes across OMDs and suggest other sources to further explore OMDs and OMD-related genes. Additionally, we comment on some practical aspects related to mosaic diseases, such as approaches to tissue sampling, the MPS coverage required to detect variants at a very low frequency, as well as on bioinformatic and molecular tools dedicated to detect somatic mutations in MPS data.
Collapse
Affiliation(s)
- Krystyna Wasilewska
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Tomasz Gambin
- Institute of Computer Science, Warsaw University of Technology, Nowowiejska 15/19, 00-665 Warsaw, Poland
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Krzysztof Szczałuba
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, ul. Pawińskiego 3c, 02-106 Warsaw, Poland.
| |
Collapse
|
18
|
Notch4 affects the proliferation and differentiation of deer antler chondrocytes through the Smad3/lncRNA27785.1 axis. Cell Signal 2022; 98:110429. [DOI: 10.1016/j.cellsig.2022.110429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
|
19
|
Zhang Y, Wang J, Yu C, Xia K, Yang B, Zhang Y, Ying L, Wang C, Huang X, Chen Q, Shen L, Li F, Liang C. Advances in single-cell sequencing and its application to musculoskeletal system research. Cell Prolif 2022; 55:e13161. [PMID: 34888976 PMCID: PMC8780907 DOI: 10.1111/cpr.13161] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 10/30/2021] [Accepted: 11/12/2021] [Indexed: 11/30/2022] Open
Abstract
In recent years, single-cell sequencing (SCS) technologies have continued to advance with improved operating procedures and reduced cost, leading to increasing practical adoption among researchers. These emerging technologies have superior abilities to analyse cell heterogeneity at a single-cell level, which have elevated multi-omics research to a higher level. In some fields of research, application of SCS has enabled many valuable discoveries, and musculoskeletal system offers typical examples. This article reviews some major scientific issues and recent advances in musculoskeletal system. In addition, combined with SCS technologies, the research of cell or tissue heterogeneity in limb development and various musculoskeletal system clinical diseases also provides new possibilities for treatment strategies. Finally, this article discusses the challenges and future development potential of SCS and recommends the direction of future applications of SCS to musculoskeletal medicine.
Collapse
Affiliation(s)
- Yongxiang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Jingkai Wang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chao Yu
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Kaishun Xia
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Biao Yang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Yuang Zhang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Liwei Ying
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chenggui Wang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Xianpeng Huang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Qixin Chen
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Li Shen
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- The MOE Key Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouChina
- Hangzhou Innovation CenterZhejiang UniversityHangzhouChina
| | - Fangcai Li
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| | - Chengzhen Liang
- Department of Orthopedics SurgeryThe Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Zhejiang Key Laboratory of Bone and Joint Precision and Department of OrthopedicsResearch Institute of Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
20
|
Chia KK, Haron J, Nik Malek NFS. Atypical presentation of melorheostosis with soft tissues involvement: a case report. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2021. [DOI: 10.1186/s43055-021-00412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Melorheostosis is a skeletal disorder giving rise to a dripping wax appearance. The exact cause is still unclear, and the diagnosis is always challenging due to its wide differential diagnoses. Soft tissue involvement of melorheostosis has been reported in previous literatures but it is a rare phenomenon.
Case presentation
A 10-year-old child with melorheostosis presented with hematuria. Ultrasonography (USG) identified a cystic lesion in the right hemipelvis adjacent to the urinary bladder which was initially regarded as an ovarian cyst. Computed tomography (CT) confirmed the cystic lesion as a fusiform right internal iliac artery aneurysm, as well as multiple right retroperitoneal and right lower limb capillary hemangiomas with uterine involvement. Hence, the final diagnosis was atypical melorheostosis with vascular malformations. The patient was managed conservatively with Sirolimus therapy for the vascular anomalies.
Conclusion
Albeit the rare involvement of soft tissues, careful search for vascular malformation is recommended in melorheostosis.
Collapse
|
21
|
Hartmann MA, Blouin S, Misof BM, Fratzl-Zelman N, Roschger P, Berzlanovich A, Gruber GM, Brugger PC, Zwerina J, Fratzl P. Quantitative Backscattered Electron Imaging of Bone Using a Thermionic or a Field Emission Electron Source. Calcif Tissue Int 2021; 109:190-202. [PMID: 33837801 PMCID: PMC8273060 DOI: 10.1007/s00223-021-00832-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/25/2021] [Indexed: 12/21/2022]
Abstract
Quantitative backscattered electron imaging is an established method to map mineral content distributions in bone and to determine the bone mineralization density distribution (BMDD). The method we applied was initially validated for a scanning electron microscope (SEM) equipped with a tungsten hairpin cathode (thermionic electron emission) under strongly defined settings of SEM parameters. For several reasons, it would be interesting to migrate the technique to a SEM with a field emission electron source (FE-SEM), which, however, would require to work with different SEM parameter settings as have been validated for DSM 962. The FE-SEM has a much better spatial resolution based on an electron source size in the order of several 100 nanometers, corresponding to an about [Formula: see text] to [Formula: see text] times smaller source area compared to thermionic sources. In the present work, we compare BMDD between these two types of instruments in order to further validate the methodology. We show that a transition to higher pixel resolution (1.76, 0.88, and 0.57 μm) results in shifts of the BMDD peak and BMDD width to higher values. Further the inter-device reproducibility of the mean calcium content shows a difference of up to 1 wt% Ca, while the technical variance of each device can be reduced to [Formula: see text] wt% Ca. Bearing in mind that shifts in calcium levels due to diseases, e.g., high turnover osteoporosis, are often in the range of 1 wt% Ca, both the bone samples of the patients as well as the control samples have to be measured on the same SEM device. Therefore, we also constructed new reference BMDD curves for adults to be used for FE-SEM data comparison.
Collapse
Affiliation(s)
- Markus A. Hartmann
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Stéphane Blouin
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Barbara M. Misof
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Nadja Fratzl-Zelman
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Paul Roschger
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Andrea Berzlanovich
- Unit of Forensic Gerontology, Center of Forensic Science, Medical University of Vienna, Sensengasse 2, 1090 Vienna, Austria
| | - Gerlinde M. Gruber
- Department of Anatomy and Biomechanics, Karl Landsteiner University of Health Sciences, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria
| | - Peter C. Brugger
- Center for Anatomy and Cell Biology, Department of Anatomy, Medical University of Vienna, Währingerstrasse 13, 1090 Vienna, Austria
| | - Jochen Zwerina
- Ludwig Boltzmann Institute of Osteology at Hanusch Hospital of OEGK and AUVA Trauma Centre Meidling, 1st Medical Department Hanusch Hospital, Heinrich Collin Strasse 30, 1140 Vienna, Austria
| | - Peter Fratzl
- Department of Biomaterials, Max-Planck-Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
22
|
Giardullo L, Altomare A, Rotondo C, Corrado A, Cantatore FP. Osteoblast Dysfunction in Non-Hereditary Sclerosing Bone Diseases. Int J Mol Sci 2021; 22:ijms22157980. [PMID: 34360745 PMCID: PMC8348499 DOI: 10.3390/ijms22157980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/20/2021] [Accepted: 07/21/2021] [Indexed: 01/02/2023] Open
Abstract
A review of the available literature was performed in order to summarize the existing evidence between osteoblast dysfunction and clinical features in non-hereditary sclerosing bone diseases. It has been known that proliferation and migration of osteoblasts are concerted by soluble factors such as fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), transforming growth factor (TGF), bone morphogenetic protein (BMP) but also by signal transduction cascades such as Wnt signaling pathway. Protein kinases play also a leading role in triggering the activation of osteoblasts in this group of diseases. Post-zygotic changes in mitogen-activated protein kinase (MAPK) have been shown to be associated with sporadic cases of Melorheostosis. Serum levels of FGF and PDGF have been shown to be increased in myelofibrosis, although studies focusing on Sphingosine-1-phosphate receptor was shown to be strongly expressed in Paget disease of the bone, which may partially explain the osteoblastic hyperactivity during this condition. Pathophysiological mechanisms of osteoblasts in osteoblastic metastases have been studied much more thoroughly than in rare sclerosing syndromes: striking cellular mechanisms such as osteomimicry or complex intercellular signaling alterations have been described. Further research is needed to describe pathological mechanisms by which rare sclerosing non hereditary diseases lead to osteoblast dysfunction.
Collapse
|
23
|
Yoshitomi Y, Ikeda T, Saito-Takatsuji H, Yonekura H. Emerging Role of AP-1 Transcription Factor JunB in Angiogenesis and Vascular Development. Int J Mol Sci 2021; 22:ijms22062804. [PMID: 33802099 PMCID: PMC8000613 DOI: 10.3390/ijms22062804] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
Blood vessels are essential for the formation and maintenance of almost all functional tissues. They play fundamental roles in the supply of oxygen and nutrition, as well as development and morphogenesis. Vascular endothelial cells are the main factor in blood vessel formation. Recently, research findings showed heterogeneity in vascular endothelial cells in different tissue/organs. Endothelial cells alter their gene expressions depending on their cell fate or angiogenic states of vascular development in normal and pathological processes. Studies on gene regulation in endothelial cells demonstrated that the activator protein 1 (AP-1) transcription factors are implicated in angiogenesis and vascular development. In particular, it has been revealed that JunB (a member of the AP-1 transcription factor family) is transiently induced in endothelial cells at the angiogenic frontier and controls them on tip cells specification during vascular development. Moreover, JunB plays a role in tissue-specific vascular maturation processes during neurovascular interaction in mouse embryonic skin and retina vasculatures. Thus, JunB appears to be a new angiogenic factor that induces endothelial cell migration and sprouting particularly in neurovascular interaction during vascular development. In this review, we discuss the recently identified role of JunB in endothelial cells and blood vessel formation.
Collapse
|
24
|
Hurley-Novatny A, Karantanas AH, Papadakis GZ, Bhattacharyya T, Jha S. Cross-Sectional Imaging Useful in Melorheostosis. JBMR Plus 2021; 5:e10472. [PMID: 33869990 PMCID: PMC8046147 DOI: 10.1002/jbm4.10472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/16/2021] [Accepted: 01/27/2021] [Indexed: 11/08/2022] Open
Abstract
Melorheostosis is a rare disease of bone overgrowth that is primarily diagnosed based on imaging studies. Recently, the association of different radiological patterns of the disease with distinct genetic cause was reported. Several case reports have described the radiological findings in patients with melorheostosis. However, the added value of cross‐sectional imaging with CT and MRI beyond X‐rays has not been investigated. The aim of the current study was to investigate this existing gap in knowledge. Forty patients with melorheostosis seen at the National Institute of Health Clinical Center were included in the study, and all their imaging studies were analyzed. The sequence of interpretation was X‐ray followed by CT and then MRI. CT images were extracted from whole‐body 18F‐sodium fluoride positron emission tomography/CT studies. The information from CT reclassified the initial X‐rays based radiological pattern in 13 patients. Additionally, CT comprehensively identified joint involvement and disease extent. In 76% of patients (n = 29) who underwent MRI, additional findings were noted, ranging from soft tissue edema to identification of soft tissue masses and incidental findings. MRI did not provide additional information on skeletal lesions beyond CT scans. However, it revealed the extension of soft tissue ossification into ischiofemoral space in four patients who complained of deep gluteal pain consistent with ischiofemoral impingement syndrome. In addition, MRI revealed soft tissue edema in 20 patients, 9 of whom had bone marrow edema and periosteal edema in the tibias consistent with shin splints. These findings suggest that select patients with melorheostosis should be evaluated with both CT and MRI, particularly patients in whom the distribution of pain does not correlate with the anatomic location of the disease in plain radiographs. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC. on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Amelia Hurley-Novatny
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health Bethesda Maryland USA.,Medical Scientist Training Program, Carver College of Medicine University of Iowa Iowa City Iowa USA
| | - Apostolos H Karantanas
- Department of Medical Imaging University Hospital, School of Medicine, University of Crete Heraklion Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science (ICS) Foundation for Research and Technology Hellas (FORTH) Heraklion Greece
| | - Georgios Z Papadakis
- Department of Medical Imaging University Hospital, School of Medicine, University of Crete Heraklion Greece.,Advanced Hybrid Imaging Systems, Institute of Computer Science (ICS) Foundation for Research and Technology Hellas (FORTH) Heraklion Greece
| | - Timothy Bhattacharyya
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health Bethesda Maryland USA
| | - Smita Jha
- Clinical and Investigative Orthopedics Surgery Unit, National Institute of Arthritis and Musculoskeletal and Skin Diseases National Institutes of Health Bethesda Maryland USA.,Metabolic Diseases Branch National Institutes of Diabetes and Digestive and Kidney Diseases Bethesda Maryland USA
| |
Collapse
|
25
|
Guo Q, Guo Q, Xiao Y, Li C, Huang Y, Luo X. Regulation of bone marrow mesenchymal stem cell fate by long non-coding RNA. Bone 2020; 141:115617. [PMID: 32853852 DOI: 10.1016/j.bone.2020.115617] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/20/2022]
Abstract
Bone mesenchymal stem cells (BMSCs) are progenitor cells isolated from bone marrow, which keep potential to differentiate into several kinds of cells including osteoblasts and adipocytes. A dynamic mutual regulation exists between osteogenesis and adipogenesis processes. Long non-coding RNA (lncRNA) performs diverse functions in biological activities including regulation of BMSCs commitment. Evidence has shown that lncRNA regulates key signaling pathways including TGFβ/BMP, Wnt and Notch pathways, and several transcription factors in BMSCs differention. Dysregulation of lncRNA in BMSCs leads to disruption of osteo-adipogenesis difffrentiation and results in impairment of bone homeostasis. In this review, we focus on the role of lncRNA in several critical signaling pathways that involved in regulation of osteo-adipogenesis of BMSC and prospects the potential clinical application of lncRNA.
Collapse
Affiliation(s)
- Qiaoyue Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Qi Guo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Ye Xiao
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Changjun Li
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Yan Huang
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, 87# Xiangya Road, Changsha, Hunan, PR China.
| |
Collapse
|
26
|
Abstract
The phenotypic trait of high bone mass (HBM) is an excellent example of the nexus between common and rare disease genetics. HBM may arise from carriage of many 'high bone mineral density [BMD]'-associated alleles, and certainly the genetic architecture of individuals with HBM is enriched with high BMD variants identified through genome-wide association studies of BMD. HBM may also arise as a monogenic skeletal disorder, due to abnormalities in bone formation, bone resorption, and/or bone turnover. Individuals with monogenic disorders of HBM usually, though not invariably, have other skeletal abnormalities (such as mandible enlargement) and thus are best regarded as having a skeletal dysplasia rather than just isolated high BMD. A binary etiological division of HBM into polygenic vs. monogenic, however, would be excessively simplistic: the phenotype of individuals carrying rare variants of large effect can still be modified by their common variant polygenic background, and by the environment. HBM disorders-whether predominantly polygenic or monogenic in origin-are not only interesting clinically and genetically: they provide insights into bone processes that can be exploited therapeutically, with benefits both for individuals with these rare bone disorders and importantly for the many people affected by the commonest bone disease worldwide-i.e., osteoporosis. In this review we detail the genetic architecture of HBM; we provide a conceptual framework for considering HBM in the clinical context; and we discuss monogenic and polygenic causes of HBM with particular emphasis on anabolic causes of HBM.
Collapse
Affiliation(s)
- Celia L. Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, United Kingdom
| | - Emma L. Duncan
- Department of Twin Research & Genetic Epidemiology, School of Life Course Sciences, Faculty of Life Sciences and Medicine, King’s College London, London, United Kingdom
| |
Collapse
|
27
|
Influence of the TGF-β Superfamily on Osteoclasts/Osteoblasts Balance in Physiological and Pathological Bone Conditions. Int J Mol Sci 2020; 21:ijms21207597. [PMID: 33066607 PMCID: PMC7589189 DOI: 10.3390/ijms21207597] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 12/19/2022] Open
Abstract
The balance between bone forming cells (osteoblasts/osteocytes) and bone resorbing cells (osteoclasts) plays a crucial role in tissue homeostasis and bone repair. Several hormones, cytokines, and growth factors-in particular the members of the TGF-β superfamily such as the bone morphogenetic proteins-not only regulate the proliferation, differentiation, and functioning of these cells, but also coordinate the communication between them to ensure an appropriate response. Therefore, this review focuses on TGF-β superfamily and its influence on bone formation and repair, through the regulation of osteoclastogenesis, osteogenic differentiation of stem cells, and osteoblasts/osteoclasts balance. After introducing the main types of bone cells, their differentiation and cooperation during bone remodeling and fracture healing processes are discussed. Then, the TGF-β superfamily, its signaling via canonical and non-canonical pathways, as well as its regulation by Wnt/Notch or microRNAs are described and discussed. Its important role in bone homeostasis, repair, or disease is also highlighted. Finally, the clinical therapeutic uses of members of the TGF-β superfamily and their associated complications are debated.
Collapse
|
28
|
|
29
|
Abstract
In the current issue of JEM, Kang et al. (https://doi.org/10.1084/jem.20191499) describe somatic mutations in the SMAD3 gene causing endosteal melorheostosis. Using osteoblast models, the identified mutations are demonstrated to exert a gain-of-function mechanism, augmenting transforming growth factor (TGF) β signaling. These findings provide further insights into the genetic etiology of melorheostosis and consolidate the importance of the TGFβ pathway in skeletal disorders.
Collapse
Affiliation(s)
- Joe Davis Velchev
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Aline Verstraeten
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
| | - Bart Loeys
- Center for Medical Genetics, University of Antwerp/Antwerp University Hospital, Antwerp, Belgium
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|