1
|
Wang X, Liu Q, Cheng P, Yang T, Zhao T, Liu M, Dai E, Sha W, Yuan J, Rong J, Qu H, Zhou H. LuQi formula ameliorates pressure overload-induced heart failure by regulating macrophages and regulatory T cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156527. [PMID: 40118747 DOI: 10.1016/j.phymed.2025.156527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Inflammatory macrophages in failing myocardium secrete CCL17, which targets CCR4 in immunosuppressive Tregs and inhibits the intracellular second messenger ARRB2-mediated cardiac chemotaxis. Traditional Chinese medicine (TCM) LuQi formula (LQF) is safe and effective in treating heart failure (HF). This study aims to elucidate the cardioprotective mechanism of LQF through its modulation of cardiac macrophages and Tregs. METHODS In vivo, the HF mouse model was established via transverse aortic constriction (TAC), with the superagonistic anti-CD28 monoclonal antibody (CD28-SA)-induced Tregs expansion as a positive control. Proteomics analysis elucidated the core link of LQF in anti-HF. In vitro, bone marrow-derived macrophages (BMDMs) were isolated, and Naive CD4+T cells were sorted and stimulated to differentiate into Tregs. The pharmacological mechanism of LQF was confirmed through histological and molecular biology experiments. RESULTS Proteomics reveals that LQF modulates the immune microenvironment of failing myocardium. We revealed that LQF inhibited cardiac inflammatory macrophage infiltration and NF-κB (p50, p65)/CCL17 axis expression, and promoted cardiac Tregs recruitment against HF, with the comparable efficacy of CD-SA28-induced Tregs expansion. Mechanistically, LQF inhibited the NF-κB activator 1-induced NF-κB (p50, p65)/CCL17 axis overexpression, and JSH-23 (NF-κB Inhibitor) abolished NF-κB (p50, p65)/CCL17 axis expression in inflammatory macrophages. Furthermore, the inhibition of CCL17 expression in inflammatory macrophages by LQF was found to be mediated by NF-κB (p50, p65). LQF concentration-dependently promoted Tregs CD73/Foxp3 axis expression, enhancing Tregs immunosuppressive function. LQF activated CCR4-ARRB2 complex and CCR4/ARRB2 axis expression in Tregs. Although AZD2098 (CCR4 Inhibitor) blocked CCR4 expression and CCR4-ARRB2 complex, LQF promoted ARRB2-mediated Tregs cardiac chemotaxis independent of the CCR4. We revealed that NF-κB p50SEP337-CCL17, NF-κB p65SEP536-CCL17, and CCR4-ARRB2 highly bound subunit interface targets. Molecular docking analysis demonstrated that the LQF's active ingredients exhibit good binding affinity with the NF-κB (p50, p65) /CCL17 axis in macrophages and Foxp3 in Tregs. CONCLUSION LQF has the potential to enhance the cardiac immune microenvironment and effectively prevent and treat HF by modulating both innate and adaptive immune responses. It achieves this by inhibiting the infiltration of inflammatory macrophages, suppressing the NF-κB (p50, p65)/CCL17 axis, and promoting Tregs recruitment. The active ingredients of LQF provide valuable candidate compounds for developing new anti-HF drugs. Furthermore, CD-28SA-induced Tregs expansion showed cardioprotective effects in TAC-induced non-ischemic HF models.
Collapse
Affiliation(s)
- Xinting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peipei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tianshu Yang
- Department of Cardiovascular Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, ShangHai 200040, China
| | - Tingyao Zhao
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Meng Liu
- Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200050, China
| | - Enrui Dai
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Wanjing Sha
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinfeng Yuan
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jingfeng Rong
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Huiyan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
2
|
Zhao S, Zhang Y, Zhao Y, Lu X. Cellular senescence as a key player in chronic heart failure pathogenesis: Unraveling mechanisms and therapeutic opportunities. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:8-18. [PMID: 39961550 DOI: 10.1016/j.pbiomolbio.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 02/09/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Chronic heart failure (CHF) is the final stage of heart disease and is caused by various factors. Unfortunately, CHF has a poor prognosis and a high mortality rate. Recent studies have found that aging is a significant risk factor for the development of CHF and that cellular senescence plays a vital role in its development. This article reviews different types of cellular senescence, mitochondrial dysfunction in senescent cells, autophagy in senescent cells, and senescence-associated secretory phenotype (SASP), and epigenetic regulation, to provide new perspectives on the research and treatment of CHF.
Collapse
Affiliation(s)
- Shuqing Zhao
- The First Clinical College of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yu Zhang
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ying Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, China.
| | - Xiaohui Lu
- The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China.
| |
Collapse
|
3
|
Chaudhary JK, Danga AK, Kumari A, Bhardwaj A, Rath PC. Role of chemokines in aging and age-related diseases. Mech Ageing Dev 2025; 223:112009. [PMID: 39631472 DOI: 10.1016/j.mad.2024.112009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 11/21/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Chemokines (chemotactic cytokines) play essential roles in developmental process, immune cell trafficking, inflammation, immunity, angiogenesis, cellular homeostasis, aging, neurodegeneration, and tumorigenesis. Chemokines also modulate response to immunotherapy, and consequently influence the therapeutic outcome. The mechanisms underlying these processes are accomplished by interaction of chemokines with their cognate cell surface G protein-coupled receptors (GPCRs) and subsequent cellular signaling pathways. Chemokines play crucial role in influencing aging process and age-related diseases across various tissues and organs, primarily through inflammatory responses (inflammaging), recruitment of macrophages, and orchestrated trafficking of other immune cells. Chemokines are categorized in four distinct groups based on the position and number of the N-terminal cysteine residues; namely, the CC, CXC, CX3C, and (X)C. They mediate inflammatory responses, and thereby considerably impact aging process across multiple organ-systems. Therefore, understanding the underlying mechanisms mediated by chemokines may be of crucial importance in delaying and/or modulating the aging process and preventing age-related diseases. In this review, we highlight recent progress accomplished towards understanding the role of chemokines and their cellular signaling pathways involved in aging and age-relaed diseases of various organs. Moreover, we explore potential therapeutic strategies involving anti-chemokines and chemokine receptor antagonists aimed at reducing aging and mitigating age-related diseases. One of the modern methods in this direction involves use of chemokine receptor antagonists and anti-chemokines, which suppress the pro-inflammatory response, thereby helping in resolution of inflammation. Considering the wide-spectrum of functional involvements of chemokines in aging and associated diseases, several clinical trials are being conducted to develop therapeutic approaches using anti-chemokine and chemokine receptor antagonists to improve life span and promote healthy aging.
Collapse
Affiliation(s)
- Jitendra Kumar Chaudhary
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Zoology, Shivaji College, University of Delhi, New Delhi 110027, India.
| | - Ajay Kumar Danga
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Anita Kumari
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Akshay Bhardwaj
- Regional Centre for Biotechnology, 3rd Milestone, Faridabad-Gurugram Expressway, Faridabad Road, Faridabad, Haryana 121001, India.
| | - Pramod C Rath
- Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
4
|
Zhang J, Yue Z, Zhu N, Zhao N. Identification of potential biomarkers associated with cuproptosis and immune microenvironment analysis in acute myocardial infarction: A diagnostic accuracy study. Medicine (Baltimore) 2025; 104:e40817. [PMID: 39889200 PMCID: PMC11789903 DOI: 10.1097/md.0000000000040817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/24/2024] [Accepted: 11/15/2024] [Indexed: 02/02/2025] Open
Abstract
Acute myocardial infarction (AMI), a critical cardiovascular condition, is often associated with serious health risks. Recent studies suggest a link between copper-induced apoptosis and immune cell infiltration. Specifically, abnormal accumulation of copper ions can lead to intracellular oxidative stress and apoptosis, while also affecting immune cell function and infiltration. Nevertheless, studies exploring this relationship in the context of AMI are notably scarce, underscoring the necessity of identifying biomarkers associated with cuproptosis in AMI. Consensus clustering analysis was employed to classify distinct subtypes of AMI in the GSE66360 dataset. Concurrently, differential expression analysis was performed to identify differentially expressed genes (DEGs) across subtypes and between AMI and control samples. We employed Venn diagrams to validate the selection of cuproptosis-related DEGs in patients with AMI. A protein-protein interaction network was constructed to pinpoint potential candidate genes. Receiver operating characteristic curves were generated to identify promising biomarkers. The immune infiltration milieu was analyzed using CIBERSORT algorithms. Finally, the expression levels of identified cuproptosis-related biomarkers were validated at the transcriptional level. We classified AMI into 2 distinct cuproptosis-related subtypes, leading to the identification of 157 cuproptosis-related DEGs. Further analysis refined this list to 10 potential candidate genes. Among these, 5 emerged as significant biomarkers for AMI: granzyme A (GZMA), GTPase immunity-associated proteins (GIMPAs) GIMAP7, GIMAP5, GIMAP6, and TRAF3 interacting protein 3 (TRAF3IP3). A comprehensive examination of immune infiltration in AMI samples revealed significant differences in the levels of 11 types of immune cells, with GZMA displaying the highest correlation with activated mast cells and CD8 + T cells. We observed markedly lower expression levels of GZMA, GIMAP6, and TRAF3IP3 in the AMI group compared to controls. This study identified 5 cuproptosis-related biomarkers (GZMA, GIMAP7, GIMAP5, GIMAP6, and TRAF3IP3) associated with AMI, laying a theoretical foundation for the treatment of AMI.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Cardiovascular Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Zhijie Yue
- Department of Cardiovascular Internal Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Zhu
- Department of Medical Record Management, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Na Zhao
- Department of Imaging and Nuclear Medicine, The Second Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
5
|
Zhang Z, Wang Y, Chen X, Wu C, Zhou J, Chen Y, Liu X, Tang X. The aging heart in focus: The advanced understanding of heart failure with preserved ejection fraction. Ageing Res Rev 2024; 101:102542. [PMID: 39396676 DOI: 10.1016/j.arr.2024.102542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for 50 % of heart failure (HF) cases, making it the most common type of HF, and its prevalence continues to increase in the aging society. HFpEF is a systemic syndrome resulting from many risk factors, such as aging, metabolic syndrome, and hypertension, and its clinical features are highly heterogeneous in different populations. HFpEF syndrome involves the dysfunction of multiple organs, including the heart, lung, muscle, and vascular system. The heart shows dysfunction of various cells, including cardiomyocytes, endothelial cells, fibroblasts, adipocytes, and immune cells. The complex etiology and pathobiology limit experimental research on HFpEF in animal models, delaying a comprehensive understanding of the mechanisms and making treatment difficult. Recently, many scientists and cardiologists have attempted to improve the clinical outcomes of HFpEF. Recent advances in clinically related animal models and systemic pathology studies have improved our understanding of HFpEF, and clinical trials involving sodium-glucose cotransporter 2 inhibitors have significantly enhanced our confidence in treating HFpEF. This review provides an updated comprehensive discussion of the etiology and pathobiology, molecular and cellular mechanisms, preclinical animal models, and therapeutic trials in animals and patients to enhance our understanding of HFpEF and improve clinical outcomes.
Collapse
Affiliation(s)
- Zhewei Zhang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yu Wang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China; West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiangqi Chen
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chuan Wu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China
| | - Yan Chen
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaojing Liu
- Department of Cardiology and Laboratory of Cardiovascular Diseases, Institute of Cardiovascular Diseases, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, National Health Commission Key Laboratory of Chronobiology, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, Children's Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.2222 Xinchuan Road, Chengdu 610041, China.
| |
Collapse
|
6
|
Wu X, Wang Z, Liang Z, Li N, Chen J, Liu Q, Lei W, Wu X, Lu C, Deng C, Chen Y, Wang X, Wei J, Yang Y. Pleiotropic role of CCR9/CCL25 signaling in adriamycin-induced cardiomyopathy. J Adv Res 2024:S2090-1232(24)00473-9. [PMID: 39442876 DOI: 10.1016/j.jare.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/30/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION Adriamycin (ADR)-induced cardiomyopathy is a common problem in many cancer survivors. Recently, specific chemokine receptors have garnered interest as therapeutic targets in cardiovascular diseases. OBJECTIVES This study aim to report the role of C-C chemokine receptor 9 (CCR9)/C-C chemokine ligand 25 (CCL25) and its therapeutic potential in ADR-induced cardiomyopathy. METHODS Functional gene knockout and overexpression mouse models were utilized to investigate the role of CCR9 against ADR-induced cardiomyopathy. Transcriptome sequencing was also performed to identify the downstream molecular mechanisms of CCR9. RESULTS This study revealed that CCR9 and CCL25 levels were increased in mice and HL-1 cells injured by ADR, consistent with the results of patients with heart failure. Both in vivo and in vitro, CCR9 overexpression overtly aggravated cardiac dysfunction, accompanied by decreased AMPK activity and increased mitochondrial dysfunction, fibrosis, oxidative stress, and apoptosis. However, the cardiac harmful effects of ADR were reserved by CCR9 knockdown, as well as CCR9 overexpression aggravated cardiotoxicity were reserved by AMPK agonist GSK621. By constructing different domain-missing CCR9 mutants, we suspected that the △4 region of CCR9 is important for AMPK activity. Furthermore, transcriptome sequencing further illustrated the mechanism of CCR9 overexpression aggravated ADR-induced cardiotoxicity, which was associated with CYP1A1. Finally, lithospermic acid (LA) was screened and alleviated ADR-induced cardiotoxicity through regulation of CCR9/CCL25-AMPK signaling, bolstering CCR9-targeted potential clinical application. CONCLUSION These findings present a promising target and drug for treating chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Xue Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, China
| | - Zhenxing Liang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Zhengzhou University, 1 Jianshe East, Zhengzhou 450052, China
| | - Ning Li
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Junmin Chen
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Qiong Liu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Wangrui Lei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Xiaopeng Wu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chenxi Lu
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China
| | - Chao Deng
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ying Chen
- Department of Hematology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xue Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinhong Wei
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Yang Yang
- Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| |
Collapse
|
7
|
Shi L, Li G, Hou N, Tu L, Li J, Luo J, Hu S. APOB and CCL17 as mediators in the protective effect of SGLT2 inhibition against myocardial infarction: Insights from proteome-wide mendelian randomization. Eur J Pharmacol 2024; 976:176619. [PMID: 38679119 DOI: 10.1016/j.ejphar.2024.176619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
AIMS Sodium-glucose cotransporter 2 (SGLT2) inhibitors offer a novel therapeutic avenue for myocardial infarction (MI). However, the exact nature of this relationship and the underlying mechanisms are not fully understood. METHODS Utilizing a two-sample Mendelian Randomization (MR) analysis, we elucidated the causal effects stemming from the inhibition of SGLT2 on MI. Then, The pool of 4907 circulating proteins within the plasma proteome were utilized to explore the mediators of SGLT2 inhibitors on MI. Protein-protein network and enrichment analysis were conducted to clarify the potential mechanism. Finally, employing MR analysis and meta-analysis techniques, we systematically assessed the causal associations between SGLT2 inhibition and coronary heart diseases (CHD). RESULTS SGLT2 inhibition (per 1 SD decrement in HbA1c) was associated with reduced risk of MI (odds ratio [OR] = 0.462, [95% CI 0.222, 0.958], P = 0.038). Among 4907 circulating proteins, we identified APOB and CCL17 which were related to both SGLT2 inhibition and MI. Mediation analysis showed evidence of the indirect effect of SGLT2 inhibition on MI through APOB (β = -0.557, 95%CI [-1.098, -0.155]) with a mediated proportion of 72%, and CCL17 (β = -0.176, 95%CI [-0.332, -0.056]) with a mediated proportion of 17%. The meta-analysis result showed that SGLT2 inhibition was associated with a lower risk of CHD. CONCLUSION Based on proteome-wide mendelian randomization, APOB and CCL17 were seen as mediators in the protective effect of SGLT2 inhibition against myocardial infarction.
Collapse
Affiliation(s)
- Lili Shi
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Gen Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ningxin Hou
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ling Tu
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China
| | - Jun Li
- Department of Cardiothoracic and Vascular Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jinlan Luo
- Department of Geriatric Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China.
| | - Shuiqing Hu
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Wuhan, 430030, China; Division of Cardiology and Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
8
|
Yu T, Gao Q, Zhang G, Li T, Liu X, Li C, Zheng L, Sun X, Wu J, Cao H, Bi F, Wang R, Liang H, Li X, Zhou Y, Lv L, Shan H. lncRNA Gm20257 alleviates pathological cardiac hypertrophy by modulating the PGC-1α-mitochondrial complex IV axis. Front Med 2024; 18:664-677. [PMID: 38926249 DOI: 10.1007/s11684-024-1065-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/17/2024] [Indexed: 06/28/2024]
Abstract
Pathological cardiac hypertrophy, a major contributor to heart failure, is closely linked to mitochondrial function. The roles of long noncoding RNAs (lncRNAs), which regulate mitochondrial function, remain largely unexplored in this context. Herein, a previously unknown lncRNA, Gm20257, was identified. It markedly increased under hypertrophic stress in vivo and in vitro. The suppression of Gm20257 by using small interfering RNAs significantly induced cardiomyocyte hypertrophy. Conversely, the overexpression of Gm20257 through plasmid transfection or adeno-associated viral vector-9 mitigated angiotensin II-induced hypertrophic phenotypes in neonatal mouse ventricular cells or alleviated cardiac hypertrophy in a mouse TAC model respectively, thus restoring cardiac function. Importantly, Gm20257 restored mitochondrial complex IV level and enhanced mitochondrial function. Bioinformatics prediction showed that Gm20257 had a high binding score with peroxisome proliferator-activated receptor coactivator-1 (PGC-1α), which could increase mitochondrial complex IV. Subsequently, Western blot analysis results revealed that Gm20257 substantially affected the expression of PGC-1α. Further analyses through RNA immunoprecipitation and immunoblotting following RNA pull-down indicated that PGC-1α was a direct downstream target of Gm20257. This interaction was demonstrated to rescue the reduction of mitochondrial complex IV induced by hypertrophic stress and promote the generation of mitochondrial ATP. These findings suggest that Gm20257 improves mitochondrial function through the PGC-1α-mitochondrial complex IV axis, offering a novel approach for attenuating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Tong Yu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Qiang Gao
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Guofang Zhang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Tianyu Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xiaoshan Liu
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Chao Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lan Zheng
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China
| | - Xiang Sun
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Jianbo Wu
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Huiying Cao
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Fangfang Bi
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Ruifeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Haihai Liang
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Xuelian Li
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Yuhong Zhou
- State Key Laboratory of Frigid Zone Cardiovascular Disease, Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, 150081, China
| | - Lifang Lv
- Department of Physiology, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
- The Center of Functional Experiment Teaching, School of Basic Medicine, Harbin Medical University, Harbin, 150081, China.
| | - Hongli Shan
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, Shanghai University of Engineering Science, Shanghai, 201620, China.
| |
Collapse
|
9
|
Zhao L, Tang P, Lin Y, Du M, Li H, Jiang L, Xu H, Sun H, Han J, Sun Z, Xu R, Lou H, Chen Z, Kopylov P, Liu X, Zhang Y. MiR-203 improves cardiac dysfunction by targeting PARP1-NAD + axis in aging murine. Aging Cell 2024; 23:e14063. [PMID: 38098220 PMCID: PMC10928583 DOI: 10.1111/acel.14063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/26/2023] [Indexed: 03/13/2024] Open
Abstract
Heart aging is a prevalent cause of cardiovascular diseases among the elderly. NAD+ depletion is a hallmark feature of aging heart, however, the molecular mechanisms that affect NAD+ depletion remain unclear. In this study, we identified microRNA-203 (miR-203) as a senescence-associated microRNA that regulates NAD+ homeostasis. We found that the blood miR-203 level negatively correlated with human age and its expression significantly decreased in the hearts of aged mice and senescent cardiomyocytes. Transgenic mice with overexpressed miR-203 (TgN (miR-203)) showed resistance to aging-induced cardiac diastolic dysfunction, cardiac remodeling, and myocardial senescence. At the cellular level, overexpression of miR-203 significantly prevented D-gal-induced cardiomyocyte senescence and mitochondrial damage, while miR-203 knockdown aggravated these effects. Mechanistically, miR-203 inhibited PARP1 expression by targeting its 3'UTR, which helped to reduce NAD+ depletion and improve mitochondrial function and cell senescence. Overall, our study first identified miR-203 as a genetic tool for anti-heart aging by restoring NAD+ function in cardiomyocytes.
Collapse
Affiliation(s)
- Limin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Pingping Tang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Yuan Lin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Menghan Du
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Huimin Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Lintong Jiang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Henghui Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Heyang Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Jingjing Han
- Department of Pharmacy, Caoxian People's Hospital, Heze, China
| | - Zeqi Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Run Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Han Lou
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Zhouxiu Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
| | - Philipp Kopylov
- Department of Preventive and Emergency Cardiology, Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | - Xin Liu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
| | - Yong Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine- Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin, China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone, Chinese Academy of Medical Sciences, Harbin, China
- Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Harbin, China
| |
Collapse
|
10
|
Chai CJ, Sun Y, Chi RF, Yang HY, Yang B, Li B. Astragaloside IV alleviates LPS-induced cardiomyocyte hypertrophy and collagen expression associated with CCL2-mediated activation of NF-κB signaling pathway. Biochem Biophys Res Commun 2024; 693:149367. [PMID: 38091841 DOI: 10.1016/j.bbrc.2023.149367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/10/2024]
Abstract
Cardiac remodeling (CR), characterized by cardiac hypertrophy and fibrosis, leads to the development and progression of heart failure (HF). Nowadays, emerging evidence implicated that inflammation plays a vital role in the pathogenesis of CR and HF. Astragaloside IV (AS-IV), an effective component of Astragalus membranaceus, exerts cardio-protective and anti-inflammatory effects, but the underlying mechanism remains not fully elucidated. This present study aimed to investigate the effects of AS-IV on cardiac hypertrophy and fibrosis in cultured H9C2 cells stimulated with LPS, as well as explore its underlying mechanisms. As a result, we found AS-IV could reduce the cell surface size, ameliorate cardiac hypertrophy and fibrosis in LPS-induced H9C2 cells. To specify which molecules or signaling pathways play key roles in the process, RNA-seq analysis was performed. After analyzing the transcriptome data, CCL2 has captured our attention, of which expression was sharply increased in model group and reversed by AS-IV treatment. The results also indicated that AS-IV could ameliorate the inflammatory response by down-regulating NF-κB signaling pathway. Additionally, a classical inhibitor of CCL2 (bindarit) were used to further explore whether the anti-inflammatory effect of AS-IV was dependent on this chemokine. Our results indicated that AS-IV could exert a potent inhibitory effect on CCL2 expression and down-regulated NF-κB signaling pathway in a CCL2-dependent manner. These findings provided a scientific basis for promoting the treatment of HF with AS-IV.
Collapse
Affiliation(s)
- Chan-Juan Chai
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Yao Sun
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Rui-Fang Chi
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Hui-Yu Yang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Bin Yang
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China
| | - Bao Li
- Department of Cardiology, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, PR China.
| |
Collapse
|
11
|
Dinh QN, Lo C, Zhang DW, Tran V, Gibson-Hughes T, Sheriff A, Diep H, Kim HA, Zhang SR, Barreto-Arce LJ, Jelinic M, Vinh A, Arumugam TV, Chan ST, Lim R, Drummond GR, Sobey CG, De Silva TM. Human amnion epithelial cell therapy reduces hypertension-induced vascular stiffening and cognitive impairment. Sci Rep 2024; 14:1837. [PMID: 38246932 PMCID: PMC10800338 DOI: 10.1038/s41598-024-52214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
Vascular inflammation and fibrosis are hallmarks of hypertension and contribute to the development of cardiovascular disease and cognitive impairment. However, current anti-hypertensive drugs do not treat the underlying tissue damage, such as inflammation-associated fibrosis. Human amnion epithelial cells have several properties amenable for treating vascular pathology. This study tested the effect of amnion epithelial cells on vascular pathology and cognitive impairment during hypertension. Male C57Bl6 mice (8-12 weeks) were administered vehicle (saline; n = 58) or angiotensin II (0.7 mg/kg/d, n = 56) subcutaneously for 14 d. After surgery, a subset of mice were injected with 106 amnion epithelial cells intravenously. Angiotensin II infusion increased systolic blood pressure, aortic pulse wave velocity, accumulation of aortic leukocytes, and aortic mRNA expression of collagen subtypes compared to vehicle-infused mice (n = 9-11, P < 0.05). Administration of amnion epithelial cells attenuated these effects of angiotensin II (P < 0.05). Angiotensin II-induced cognitive impairment was prevented by amnion epithelial cell therapy (n = 7-9, P < 0.05). In the brain, amnion epithelial cells modulated some of the inflammatory genes that angiotensin II promoted differential expression of (n = 6, p-adjusted < 0.05). These findings suggest that amnion epithelial cells could be explored as a potential therapy to inhibit vascular pathology and cognitive impairment during hypertension.
Collapse
Affiliation(s)
- Quynh Nhu Dinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Cecilia Lo
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - David Wong Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Vivian Tran
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Tayla Gibson-Hughes
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Ashleigh Sheriff
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Henry Diep
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Hyun Ah Kim
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Shenpeng R Zhang
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Liz J Barreto-Arce
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Maria Jelinic
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Antony Vinh
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Thiruma V Arumugam
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Siow Teng Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Grant R Drummond
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Christopher G Sobey
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - T Michael De Silva
- Department of Microbiology, Anatomy, Physiology and Pharmacology, Centre for Cardiovascular Biology and Disease Research, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, 3086, Australia.
| |
Collapse
|
12
|
Li S, Xin Q, Fang G, Deng Y, Yang F, Qiu C, Yang Y, Lan C. Upregulation of mitochondrial telomerase reverse transcriptase mediates the preventive effect of physical exercise on pathological cardiac hypertrophy via improving mitochondrial function and inhibiting oxidative stress. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166859. [PMID: 37643691 DOI: 10.1016/j.bbadis.2023.166859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 08/31/2023]
Abstract
Physical exercise is a non-pharmacological intervention that helps prevent pathological cardiac hypertrophy. However, the underlying molecular mechanisms remain unclear. Telomerase reverse transcriptase (TERT) has non-telomeric functions such as protection against mitochondrial dysfunction and oxidative stress, and its myocardial expression is upregulated by physical exercise. Here, we found that physical exercise caused myocardial upregulation of mitochondrial TERT and sustenance during transverse aortic constriction (TAC)-induced cardiac hypertrophy. Overexpression of mitochondrial-targeted TERT (mito-TERT) via adeno-associated virus serotype 9 carrying the TERT-coding sequence fused with N-terminal mitochondrial-targeting sequence improved cardiac function and attenuated cardiac hypertrophy. Mechanistically, mito-TERT ameliorated mitochondrial dysfunction and oxidative stress, which were associated with improving the activity and subunit composition of complex I. Remarkably, the telomerase activator TA-65 also exhibited an antihypertrophic effect. Collectively, our results reveal a significant role for mito-TERT in mediating the antihypertrophic effect of physical exercise and demonstrate that TERT is a potential drug target for treating cardiac hypertrophy.
Collapse
Affiliation(s)
- Shuang Li
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Qian Xin
- Department of Cardiology, Sixth Medical Center of Chinese PLA General Hospital, Beijing, PR China
| | - Guangyao Fang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China
| | - Yi Deng
- Department of General Practice, General Hospital of Western Theater Command, Chengdu, PR China
| | - Fengyuan Yang
- Department of Nephrology, General Hospital of Western Theater Command, Chengdu, PR China
| | - Chenming Qiu
- Department of Burn and Plastic Surgery, General Hospital of Western Theater Command, Chengdu, PR China
| | - Yongjian Yang
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| | - Cong Lan
- Department of Cardiology, General Hospital of Western Theater Command, Chengdu, PR China; School of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, PR China.
| |
Collapse
|
13
|
Raíssa-Oliveira B, Lara-Ribeiro AC, Rezende-Ribeiro J, Bahia ABQ, Verano-Braga T. Cardioproteomics: Insights on Cardiovascular Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:159-171. [PMID: 38409420 DOI: 10.1007/978-3-031-50624-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Cardiovascular diseases (CVDs) remain a global health challenge and are the leading cause of deaths worldwide. Proteomics has emerged as a valuable tool for unraveling the complex molecular mechanisms underlying CVDs, offering insights into biomarker discovery, drug targets, and personalized medicine. This review explores key breakthroughs in proteomic applications related to CVDs, mainly coronary artery disease (CAD), ischemic heart diseases such as myocardial infarction (MI), and cardiomyopathies. Notable findings include potential biomarkers, therapeutic targets, and insights into disease pathogenesis. The review highlights the importance of proteomics in advancing our understanding of CVDs and shaping future therapeutic approaches.
Collapse
Affiliation(s)
- Brenda Raíssa-Oliveira
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Carolina Lara-Ribeiro
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Júlia Rezende-Ribeiro
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Beatriz Queiroz Bahia
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Núcleo de Proteômica Funcional (NPF), Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
- INCT-Nanobiofar, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
14
|
Mazidi M, Wright N, Yao P, Kartsonaki C, Millwood IY, Fry H, Said S, Pozarickij A, Pei P, Chen Y, Avery D, Du H, Schmidt DV, Yang L, Lv J, Yu C, Chen J, Hill M, Holmes MV, Howson JMM, Peto R, Collins R, Bennett DA, Walters RG, Li L, Clarke R, Chen Z. Plasma Proteomics to Identify Drug Targets for Ischemic Heart Disease. J Am Coll Cardiol 2023; 82:1906-1920. [PMID: 37940228 PMCID: PMC10641761 DOI: 10.1016/j.jacc.2023.09.804] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/11/2023] [Accepted: 09/05/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Integrated analyses of plasma proteomic and genetic markers in prospective studies can clarify the causal relevance of proteins and discover novel targets for ischemic heart disease (IHD) and other diseases. OBJECTIVES The purpose of this study was to examine associations of proteomics and genetics data with IHD in population studies to discover novel preventive treatments. METHODS We conducted a nested case-cohort study in the China Kadoorie Biobank (CKB) involving 1,971 incident IHD cases and 2,001 subcohort participants who were genotyped and free of prior cardiovascular disease. We measured 1,463 proteins in the stored baseline samples using the OLINK EXPLORE panel. Cox regression yielded adjusted HRs for IHD associated with individual proteins after accounting for multiple testing. Moreover, cis-protein quantitative loci (pQTLs) identified for proteins in genome-wide association studies of CKB and of UK Biobank were used as instrumental variables in separate 2-sample Mendelian randomization (MR) studies involving global CARDIOGRAM+C4D consortium (210,842 IHD cases and 1,378,170 controls). RESULTS Overall 361 proteins were significantly associated at false discovery rate <0.05 with risk of IHD (349 positively, 12 inversely) in CKB, including N-terminal prohormone of brain natriuretic peptide and proprotein convertase subtilisin/kexin type 9. Of these 361 proteins, 212 had cis-pQTLs in CKB, and MR analyses of 198 variants in CARDIOGRAM+C4D identified 13 proteins that showed potentially causal associations with IHD. Independent MR analyses of 307 cis-pQTLs identified in Europeans replicated associations for 4 proteins (FURIN, proteinase-activated receptor-1, Asialoglycoprotein receptor-1, and matrix metalloproteinase-3). Further downstream analyses showed that FURIN, which is highly expressed in endothelial cells, is a potential novel target and matrix metalloproteinase-3 a potential repurposing target for IHD. CONCLUSIONS Integrated analyses of proteomic and genetic data in Chinese and European adults provided causal support for FURIN and multiple other proteins as potential novel drug targets for treatment of IHD.
Collapse
Affiliation(s)
- Mohsen Mazidi
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Neil Wright
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Pang Yao
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Christiana Kartsonaki
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Iona Y Millwood
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Hannah Fry
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Saredo Said
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Alfred Pozarickij
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Pei Pei
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China
| | - Yiping Chen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Daniel Avery
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Huaidong Du
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Dan Valle Schmidt
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Ling Yang
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Jun Lv
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China; Key Laboratory of Epidemiology of Major (Peking University), Ministry of Education, Beijing, China
| | - Canqing Yu
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China; Key Laboratory of Epidemiology of Major (Peking University), Ministry of Education, Beijing, China
| | - Junshi Chen
- China National Center for Food Risk Assessment, Beijing, China
| | - Michael Hill
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Michael V Holmes
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | | | - Richard Peto
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Rory Collins
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Derrick A Bennett
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Robin G Walters
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom
| | - Liming Li
- Peking University Center for Public Health and Epidemic Preparedness and Response, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center, Beijing, China; Key Laboratory of Epidemiology of Major (Peking University), Ministry of Education, Beijing, China
| | - Robert Clarke
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| | - Zhengming Chen
- Clinical Trial Service Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom; Medical Research Council Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
15
|
Ren X, Wu L, Zhang L, Liu Y, Wang G, Lu H. Discovery of age-related early-stage glycated proteins based on deep quantitative serum glycated proteome analysis. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1659-1667. [PMID: 37654074 PMCID: PMC10577472 DOI: 10.3724/abbs.2023222] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 08/15/2023] [Indexed: 09/02/2023] Open
Abstract
Aging is a pressing global health issue that is linked to various diseases, such as diabetes and Alzheimer's disease. It is well known that glycation plays a pathological role in the aging process and age-related diseases. Thus, it is of great significance to discover protein glycation at an early stage for monitoring and intervention in the aging process. However, the endogenous age-related early-stage glycated proteome remains insufficiently profiled. To address this research gap, our study focuses on assessing glycated proteomics profiles in the serum of mice. We employ a robust and quantitative strategy previously developed by our team, to analyze endogenous glycated proteome in serum samples of 4 age groups of mice (10 weeks, 16 weeks, 48 weeks and 80 weeks). In total, 2959 endogenous glycated peptides corresponding to 296 serum proteins are identified from 48 runs of serum samples from 16 mice across the four age groups. By comparing these glycated peptides between adjacent age groups, we discover 49 glycated peptides from 35 proteins that show significant upregulation between the 48-week and 80-week age groups. Furthermore, we identify 10 glycated proteins (or protein groups) that are significantly upregulated only between the 48-week and 80-week age groups, including lecithin-cholesterol acyltransferase (LCAT) and apolipoprotein A-II (Apo A-II). These novel findings provide unique signatures for understanding the aging process and age-related diseases. By shedding light on the early-stage glycated proteome, our study contributes valuable insights that may have implications for future interventions and therapeutic approaches.
Collapse
Affiliation(s)
- Xinyue Ren
- Shanghai Medical CollegeFudan UniversityShanghai200032China
| | - Linlin Wu
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Lei Zhang
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Yang Liu
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Guoli Wang
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| | - Haojie Lu
- Shanghai Medical CollegeFudan UniversityShanghai200032China
- Institutes of Biomedical Sciences and Department of Chemistry and NHC Key Laboratory of Glycoconjugates ResearchFudan UniversityShanghai200032China
| |
Collapse
|
16
|
Aging Biomarker Consortium, Zhang W, Che Y, Tang X, Chen S, Song M, Wang L, Sun AJ, Chen HZ, Xu M, Wang M, Pu J, Li Z, Xiao J, Cao CM, Zhang Y, Lu Y, Zhao Y, Wang YJ, Zhang C, Shen T, Zhang W, Tao L, Qu J, Tang YD, Liu GH, Pei G, Li J, Cao F. A biomarker framework for cardiac aging: the Aging Biomarker Consortium consensus statement. LIFE MEDICINE 2023; 2:lnad035. [PMID: 39872891 PMCID: PMC11749273 DOI: 10.1093/lifemedi/lnad035] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/26/2023] [Indexed: 01/30/2025]
Abstract
Cardiac aging constitutes a significant risk factor for cardiovascular diseases prevalent among the elderly population. Urgent attention is required to prioritize preventive and management strategies for age-related cardiovascular conditions to safeguard the well-being of elderly individuals. In response to this critical challenge, the Aging Biomarker Consortium (ABC) of China has formulated an expert consensus on cardiac aging biomarkers. This consensus draws upon the latest scientific literature and clinical expertise to provide a comprehensive assessment of biomarkers associated with cardiac aging. Furthermore, it presents a standardized methodology for characterizing biomarkers across three dimensions: functional, structural, and humoral. The functional dimension encompasses a broad spectrum of markers that reflect diastolic and systolic functions, sinus node pacing, neuroendocrine secretion, coronary microcirculation, and cardiac metabolism. The structural domain emphasizes imaging markers relevant to concentric cardiac remodeling, coronary artery calcification, and epicardial fat deposition. The humoral aspect underscores various systemic (N) and heart-specific (X) markers, including endocrine hormones, cytokines, and other plasma metabolites. The ABC's primary objective is to establish a robust foundation for assessing cardiac aging, thereby furnishing a dependable reference for clinical applications and future research endeavors. This aims to contribute significantly to the enhancement of cardiovascular health and overall well-being among elderly individuals.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| | - Yang Che
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Siqi Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| | - Li Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Ai-Jun Sun
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai 200433, China
- Key Laboratory of Viral Heart Diseases, National Health Commission, Shanghai 200433, China
- Key Laboratory of Viral Heart Diseases, Chinese Academy of Medical Sciences, Shanghai 200433, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hou-Zao Chen
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, China
| | - Ming Xu
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
| | - Miao Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
- Clinical Pharmacology Center, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Jun Pu
- State Key Laboratory for Oncogenes and Related Genes, Department of Cardiology, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Zijian Li
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Beijing 100191, China
- Beijing Key Laboratory of Cardiovascular Receptors Research, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
- Department of Pharmacy, Peking University Third Hospital, Beijing 100191, China
| | - Junjie Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai 200444, China
| | - Chun-Mei Cao
- Laboratory of Cardiovascular Science, Beijing Clinical Research Institute, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
- Capital Institute of Pediatrics, Beijing 100020, China
- Graduate School of Peking Union Medical College, Beijing 100730, China
| | - Yan Zhang
- State Key Laboratory of Membrane Biology, Institute of Molecular Medicine, College of Future Technology, Peking University, Beijing 100871, China
- Institute of Cardiovascular Sciences and Key Laboratory of Molecular Cardiovascular Sciences, School of Basic Medical Sciences, Ministry of Education, Peking University Health Science Center, Beijing 100191, China
| | - Yao Lu
- Clinical Research Center, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Yingxin Zhao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing 100029, China
| | - Yan-Jiang Wang
- Department of Neurology and Centre for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing 400042, China
- Institute of Brain and Intelligence, Third Military Medical University, Chongqing 400042, China
- Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing 400016, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Weiqi Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China
| | - Ling Tao
- Department of Cardiology, Xijing Hospital, the Fourth Military Medical University, Xi’an 710032, China
| | - Jing Qu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yi-Da Tang
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai 200070, China
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing 100730, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing 100853, China
| |
Collapse
|
17
|
Nedergaard RB, Scott M, Wegeberg AM, Okdahl T, Størling J, Brock B, Drewes AM, Brock C. Features characterising cardiac autonomic neuropathy in diabetes using ensembled classification. Clin Neurophysiol 2023; 154:200-208. [PMID: 37442682 DOI: 10.1016/j.clinph.2023.06.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 07/15/2023]
Abstract
OBJECTIVE Using supervised machine learning to classify the severity of cardiovascular autonomic neuropathy (CAN). The aims were 1) to investigate which features contribute to characterising CAN 2) to generate an ensembled set of features that best describes the variation in CAN classification. METHODS Eighty-two features from demographic, beat-to-beat, biochemical, and inflammation were obtained from 204 people with diabetes and used in three machine-learning-classifiers, these are: support vector machine, decision tree, and random forest. All data were ensembled using a weighted mean of the features from each classifier. RESULTS The 10 most important features derived from the domains: Beat-to-beat, inflammation markers, disease-duration, and age. CONCLUSIONS Beat-to-beat measures associate with CAN as diagnosis is mainly based on cardiac reflex responses, disease-duration and age are also related to CAN development throughout disease progression. The inflammation markers may reflect the underlying disease process, and therefore, new treatment modalities targeting systemic low-grade inflammation should potentially be tested to prevent the development of CAN. SIGNIFICANCE Cardiac reflex responses should be monitored closely to diagnose and classify severity levels of CAN accurately. Standard clinical biochemical analytes, such as glycaemic level, lipidic level, or kidney function were not included in the ten most important features. Beat-to-beat measures accounted for approximately 60% of the features in the ensembled data.
Collapse
Affiliation(s)
- Rasmus Bach Nedergaard
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Matthew Scott
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Anne-Marie Wegeberg
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Thisted Research Unit, Aalborg University Hospital Thisted, Thisted, Denmark.
| | - Tina Okdahl
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark.
| | - Joachim Størling
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| | - Birgitte Brock
- Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark.
| | - Asbjørn Mohr Drewes
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Thisted Research Unit, Aalborg University Hospital Thisted, Thisted, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Steno Diabetes Center Nordjylland, Aalborg, Denmark.
| | - Christina Brock
- Mech-Sense, Department of Gastroenterology and Hepatology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; Steno Diabetes Center Nordjylland, Aalborg, Denmark.
| |
Collapse
|
18
|
Lupancu TJ, Eivazitork M, Hamilton JA, Achuthan AA, Lee KMC. CCL17/TARC in autoimmunity and inflammation-not just a T-cell chemokine. Immunol Cell Biol 2023; 101:600-609. [PMID: 36975092 DOI: 10.1111/imcb.12644] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/21/2023] [Accepted: 03/26/2023] [Indexed: 03/29/2023]
Abstract
Chemokine (C-C) ligand 17 (CCL17) was first identified as thymus- and activation-regulated chemokine when it was found to be constitutively expressed in the thymus and identified as a T-cell chemokine. This chemoattractant molecule has subsequently been found at elevated levels in a range of autoimmune and inflammatory diseases, as well as in cancer. CCL17 is a C-C chemokine receptor type 4 (CCR4) ligand, with chemokine (C-C) ligand 22 being the other major ligand and, as CCR4 is highly expressed on helper T cells, CCL17 can play a role in T-cell-driven diseases, usually considered to be via its chemotactic activity on T helper 2 cells; however, given that CCR4 is also expressed by other cell types and there is elevated expression of CCL17 in many diseases, a broader CCL17 biology is suggested. In this review, we summarize the biology of CCL17, its regulation and its potential contribution to the pathogenesis of various preclinical models. Reference is made, for example, to recent literature indicating a role for CCL17 in the control of pain as part of a granulocyte macrophage-colony-stimulating factor/CCL17 pathway in lymphocyte-independent models and thus not as a T-cell chemokine. The review also discusses the potential for CCL17 to be a biomarker and a therapeutic target in human disorders.
Collapse
Affiliation(s)
- Tanya J Lupancu
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Mahtab Eivazitork
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - John A Hamilton
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), The University of Melbourne and Western Health, St Albans, VIC, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Kevin M-C Lee
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
19
|
Li Y, Tam WW, Yu Y, Zhuo Z, Xue Z, Tsang C, Qiao X, Wang X, Wang W, Li Y, Tu Y, Gao Y. The application of Aptamer in biomarker discovery. Biomark Res 2023; 11:70. [PMID: 37468977 DOI: 10.1186/s40364-023-00510-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/29/2023] [Indexed: 07/21/2023] Open
Abstract
Biomarkers are detectable molecules that can reflect specific physiological states of cells, organs, and organisms and therefore be regarded as indicators for specific diseases. And the discovery of biomarkers plays an essential role in cancer management from the initial diagnosis to the final treatment regime. Practically, reliable clinical biomarkers are still limited, restricted by the suboptimal methods in biomarker discovery. Nucleic acid aptamers nowadays could be used as a powerful tool in the discovery of protein biomarkers. Nucleic acid aptamers are single-strand oligonucleotides that can specifically bind to various targets with high affinity. As artificial ssDNA or RNA, aptamers possess unique advantages compared to conventional antibodies. They can be flexible in design, low immunogenicity, relative chemical/thermos stability, as well as modifying convenience. Several SELEX (Systematic Evolution of Ligands by Exponential Enrichment) based methods have been generated recently to construct aptamers for discovering new biomarkers in different cell locations. Secretome SELEX-based aptamers selection can facilitate the identification of secreted protein biomarkers. The aptamers developed by cell-SELEX can be used to unveil those biomarkers presented on the cell surface. The aptamers from tissue-SELEX could target intracellular biomarkers. And as a multiplexed protein biomarker detection technology, aptamer-based SOMAScan can analyze thousands of proteins in a single run. In this review, we will introduce the principle and workflow of variations of SELEX-based methods, including secretome SELEX, ADAPT, Cell-SELEX and tissue SELEX. Another powerful proteome analyzing tool, SOMAScan, will also be covered. In the second half of this review, how these methods accelerate biomarker discovery in various diseases, including cardiovascular diseases, cancer and neurodegenerative diseases, will be discussed.
Collapse
Affiliation(s)
- Yongshu Li
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| | - Winnie Wailing Tam
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Yuanyuan Yu
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases (TMBJ), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR, China
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomic, Peking University Shenzhen Graduate School, Shenzhen, China
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Zhichao Xue
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China
| | - Chiman Tsang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoting Qiao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Xiaokang Wang
- Department of Pharmacy, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Weijing Wang
- Shantou University Medical College, Shantou, China
| | - Yongyi Li
- Laboratory Animal Center, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yanyang Tu
- Research Center, Huizhou Central People's Hospital, Guangdong Medical University, Huizhou City, China.
| | - Yunhua Gao
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.
- Shenzhen Institute for Technology Innovation, National Institute of Metrology, Shenzhen, China.
| |
Collapse
|
20
|
Yuan W, Zhang X, Fan X. The Role of the Piezo1 Mechanosensitive Channel in Heart Failure. Curr Issues Mol Biol 2023; 45:5830-5848. [PMID: 37504285 PMCID: PMC10378680 DOI: 10.3390/cimb45070369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
Mechanotransduction (MT) is inseparable from the pathobiology of heart failure (HF). However, the effects of mechanical forces on HF remain unclear. This review briefly describes how Piezo1 functions in HF-affected cells, including endothelial cells (ECs), cardiac fibroblasts (CFs), cardiomyocytes (CMs), and immune cells. Piezo1 is a mechanosensitive ion channel that has been extensively studied in recent years. Piezo1 responds to different mechanical forces and converts them into intracellular signals. The pathways that modulate the Piezo1 switch have also been briefly described. Experimental drugs that specifically activate Piezo1-like proteins, such as Yoda1, Jedi1, and Jedi2, are available for clinical studies to treat Piezo1-related diseases. The only mechanosensitive ion-channel-specific inhibitor available is GsMTx4, which can turn off Piezo1 by modulating the local membrane tension. Ultrasound waves can modulate Piezo1 switching in vitro with the assistance of microbubbles. This review provides new possible targets for heart failure therapy by exploring the cellular functions of Piezo1 that are involved in the progression of the disease. Modulation of Piezo1 activity may, therefore, effectively delay the progression of heart failure.
Collapse
Affiliation(s)
- Weihua Yuan
- National Clinical Research Center for Child Health, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Rd, Hangzhou 310052, China
| | - Xicheng Zhang
- National Clinical Research Center for Child Health, Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Rd, Hangzhou 310052, China
| | - Xiangming Fan
- National Clinical Research Center for Child Health, Department of Cardiac Surgery, Children's Hospital, Zhejiang University School of Medicine, 3333 Binsheng Rd, Hangzhou 310052, China
| |
Collapse
|
21
|
Zhang Y, Wang X, Li XK, Lv SJ, Wang HP, Liu Y, Zhou J, Gong H, Chen XF, Ren SC, Zhang H, Dai Y, Cai H, Yan B, Chen HZ, Tang X. Sirtuin 2 deficiency aggravates ageing-induced vascular remodelling in humans and mice. Eur Heart J 2023:ehad381. [PMID: 37377116 PMCID: PMC10393077 DOI: 10.1093/eurheartj/ehad381] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 06/29/2023] Open
Abstract
AIMS The mechanisms underlying ageing-induced vascular remodelling remain unclear. This study investigates the role and underlying mechanisms of the cytoplasmic deacetylase sirtuin 2 (SIRT2) in ageing-induced vascular remodelling. METHODS AND RESULTS Transcriptome and quantitative real-time PCR data were used to analyse sirtuin expression. Young and old wild-type and Sirt2 knockout mice were used to explore vascular function and pathological remodelling. RNA-seq, histochemical staining, and biochemical assays were used to evaluate the effects of Sirt2 knockout on the vascular transcriptome and pathological remodelling and explore the underlying biochemical mechanisms. Among the sirtuins, SIRT2 had the highest levels in human and mouse aortas. Sirtuin 2 activity was reduced in aged aortas, and loss of SIRT2 accelerated vascular ageing. In old mice, SIRT2 deficiency aggravated ageing-induced arterial stiffness and constriction-relaxation dysfunction, accompanied by aortic remodelling (thickened vascular medial layers, breakage of elastin fibres, collagen deposition, and inflammation). Transcriptome and biochemical analyses revealed that the ageing-controlling protein p66Shc and metabolism of mitochondrial reactive oxygen species (mROS) contributed to SIRT2 function in vascular ageing. Sirtuin 2 repressed p66Shc activation and mROS production by deacetylating p66Shc at lysine 81. Elimination of reactive oxygen species by MnTBAP repressed the SIRT2 deficiency-mediated aggravation of vascular remodelling and dysfunction in angiotensin II-challenged and aged mice. The SIRT2 coexpression module in aortas was reduced with ageing across species and was a significant predictor of age-related aortic diseases in humans. CONCLUSION The deacetylase SIRT2 is a response to ageing that delays vascular ageing, and the cytoplasm-mitochondria axis (SIRT2-p66Shc-mROS) is important for vascular ageing. Therefore, SIRT2 may serve as a potential therapeutic target for vascular rejuvenation.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoman Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xun-Kai Li
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Shuang-Jie Lv
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - He-Ping Wang
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Yang Liu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- Division of Vascular Surgery, Department of General Surgery, and Laboratory of Cardiovascular Diseases, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| | - Jingyue Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| | - Hui Gong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| | - Xiao-Feng Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, 1166 Liutai Avenue, Chengdu, Sichuan 611137, China
| | - Si-Chong Ren
- Department of Nephrology, First Affiliated Hospital of Chengdu Medical College, 783 Xindu Avenue, Chengdu, Sichuan 610500, China
| | - Huina Zhang
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, No. 2 Anzhen Road, Beijing 10029, China
| | - Yuxiang Dai
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, National Clinical Research Center for Interventional Medicine, 180 Fenglin Road, Shanghai 200032, China
| | - Hua Cai
- Division of Molecular Medicine, Department of Anesthesiology, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bo Yan
- Institute of Precision Medicine, Jining Medical University, 133 Hehua Road, Taibaihu New District, Jining, Shandong 272067, China
| | - Hou-Zao Chen
- Department of Biochemistry & Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, 5 Dong Dan San Tiao, Beijing 100005, China
- Medical Epigenetics Research Center, Chinese Academy of Medical Sciences, 5 Dong Dan San Tiao, Beijing 100005, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- National Health Commission Key Laboratory of Chronobiology, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
- Development and Related Diseases of Women and Children, Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, No.17 People's South Road, Chengdu, Sichuan 610041, China
| |
Collapse
|
22
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, et alBao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Show More Authors] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
23
|
Zhang Y, Tang X, Wang Z, Wang L, Chen Z, Qian JY, Tian Z, Zhang SY. The chemokine CCL17 is a novel therapeutic target for cardiovascular aging. Signal Transduct Target Ther 2023; 8:157. [PMID: 37072419 PMCID: PMC10113193 DOI: 10.1038/s41392-023-01363-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 01/31/2023] [Accepted: 02/10/2023] [Indexed: 04/20/2023] Open
Affiliation(s)
- Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Zeyuan Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lun Wang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Zhangwei Chen
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Ju-Ying Qian
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, 200032, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Shu-Yang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Thymus transplantation regulates blood pressure and alleviates hypertension-associated heart and kidney damage via transcription factors FoxN1 pathway. Int Immunopharmacol 2023; 116:109798. [PMID: 36738681 DOI: 10.1016/j.intimp.2023.109798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/15/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Previous studies have found that thymus is involved in the process of hypertension. However, whether thymus transplantation alleviates target organ damage in hypertensive mice remains unknown. The aim of this study was to evaluate the effects of thymus transplantation on blood pressure and target organ changes in mice with hypertension. Mice were randomly divided into normal control group (Con), hypertensive group (HTN) and thymus transplantation group (HTN + Trans). Thymus of neonatal mice was transplanted into the renal capsule of the transplantation group. After transplantation, the mouse tail noninvasive pressure was measured and heart function was evaluated weekly. Then mice were euthanized and organs or tissues were harvested at 4 weeks post-transplantation. The blood pressure of HTN + Trans group was lower than that in the HTN group. The expression of FoxN1, Aire, ATRAP, thymosin β4 and the content of sjTREC in thymus of HTN group was decreased and the number of naïve T cells in HTN group was lower compared with other two groups. The ratio of cTEC/mTEC in HTN group was higher than that in Con group and lower than that in HTN + Trans group. Cardiac pathology showed cardiac hypertrophy and fibrosis in HTN group whereas thymus transplantation improved heart function and structure. Altogether, our findings demonstrated thymus transplantation could improve thymus function of hypertensive mice, which increased the expression of thymus transcription factor FoxN1, affected the proportion of T cell subsets, and increased thymosin β4 thereby reducing blood pressure and reversing the progression of target organ damage.
Collapse
|
25
|
Hueso L, Marques P, Morant B, Gonzalez-Navarro H, Ortega J, Real JT, Sanz MJ, Piqueras L. CCL17 and CCL22 chemokines are upregulated in human obesity and play a role in vascular dysfunction. Front Endocrinol (Lausanne) 2023; 14:1154158. [PMID: 37124725 PMCID: PMC10130371 DOI: 10.3389/fendo.2023.1154158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Background/Aims Chemokines are known to play critical roles mediating inflammation in many pathophysiological processes. The aim of this study was to investigate the role of chemokine receptor CCR4 and its ligands CCL17 and CCL22 in human morbid obesity. Methods Circulating levels of CCL17 and CCL22 were measured in 60 morbidly obese patients (mean age, 45 ± 1 years; body mass index/BMI, 44 ± 1 kg/m2) who had undergone bariatric bypass surgery, and 20 control subjects. Paired subcutaneous (SCAT) and visceral adipose tissue (VCAT) from patients were analysed to measure expression of CCR4 and its ligands by RT-PCR, western blot and immunohistochemical analysis. The effects of CCR4 neutralization ex vivo on leukocyte-endothelial cells were also evaluated. Results Compared with controls, morbidly obese patients presented higher circulating levels of CCL17 (p=0.029) and CCL22 (p<0.001) and this increase was positively correlated with BMI (p=0.013 and p=0.0016), and HOMA-IR Index (p=0.042 and p< 0.001). Upregulation of CCR4, CCL17 and CCL22 expression was detected in VCAT in comparison with SCAT (p<0.05). Using the parallel-plate flow chamber model, blockade of endothelial CCR4 function with the neutralizing antibody anti-CCR4 in morbidly obese patients significantly reduced leucocyte adhesiveness to dysfunctional endothelium, a key event in atherogenesis. Additionally, CCL17 and CCL22 increased activation of the ERK1/2 mitogen-activated protein kinase signalling pathway in human aortic endothelial cells, which was significantly reduced by CCR4 inhibition (p=0.016 and p<0.05). Conclusion Based on these findings, pharmacological modulation of the CCR4 axis could represent a new therapeutic approach to prevent adipose tissue dysfunction in obesity.
Collapse
Affiliation(s)
- Luisa Hueso
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | | | - Brenda Morant
- INCLIVA Biomedical Research Institute, Valencia, Spain
| | - Herminia Gonzalez-Navarro
- INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Biochemistry, University of Valencia, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Joaquin Ortega
- Surgery Service, University Clinic Hospital of Valencia, Valencia, Spain
- Department of Surgery, University of Valencia, Valencia, Spain
| | - José T. Real
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Endocrinology and Nutrition Service, University Clinic Hospital of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| | - María J Sanz
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, University of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| | - Laura Piqueras
- INCLIVA Biomedical Research Institute, Valencia, Spain
- CIBERDEM: Diabetes and Associated Metabolic Diseases Networking Biomedical Research- Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Pharmacology, University of Valencia, Valencia, Spain
- *Correspondence: Laura Piqueras, ; María J Sanz, ; José T. Real,
| |
Collapse
|