1
|
Elhadad S, Redmond D, Tan A, Huang J, Rodriguez BL, Racine-Brzostek SE, Subrahmanian S, Ahamed J, Laurence J. Defibrotide mitigates endothelial cell injury induced by plasmas from patients with COVID-19 and related vasculopathies. Thromb Res 2023; 225:47-56. [PMID: 37001283 PMCID: PMC10033153 DOI: 10.1016/j.thromres.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/20/2023] [Indexed: 03/24/2023]
Abstract
Background and objectives COVID-19 progression is characterized by systemic small vessel arterial and venous thrombosis. Microvascular endothelial cell (MVEC) activation and injury, platelet activation, and histopathologic features characteristic of acute COVID-19 also describe certain thrombotic microangiopathies, including atypical hemolytic-uremic syndrome (aHUS), thrombotic thrombocytopenic purpura (TTP), and hematopoietic stem cell transplant (HSCT)-associated veno-occlusive disease (VOD). We explored the effect of clinically relevant doses of defibrotide, approved for HSCT-associated VOD, on MVEC activation/injury. Methods Human dermal MVEC were exposed to plasmas from patients with acute TMAs or acute COVID-19 in the presence and absence of defibrotide (5 μg/ml) and caspase 8, a marker of EC activation and apoptosis, was assessed. RNAseq was used to explore potential mechanisms of defibrotide activity. Results Defibrotide suppressed TMA plasma-induced caspase 8 activation in MVEC (mean 60.2 % inhibition for COVID-19; p = 0.0008). RNAseq identified six major cellular pathways associated with defibrotide's alteration of COVID-19-associated MVEC changes: TNF-α signaling; IL-17 signaling; extracellular matrix (ECM)-EC receptor and platelet receptor interactions; ECM formation; endothelin activity; and fibrosis. Communications across these pathways were revealed by STRING analyses. Forty transcripts showing the greatest changes induced by defibrotide in COVID-19 plasma/MVEC cultures included: claudin 14 and F11R (JAM), important in maintaining EC tight junctions; SOCS3 and TNFRSF18, involved in suppression of inflammation; RAMP3 and transgelin, which promote angiogenesis; and RGS5, which regulates caspase activation and apoptosis. Conclusion Our data, in the context of a recent clinical trial in severe COVID-19, suggest benefits to further exploration of defibrotide and these pathways in COVID-19 and related endotheliopathies.
Collapse
Affiliation(s)
- Sonia Elhadad
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, United States of America
| | - David Redmond
- Division of Regenerative Medicine, Hartman Institute fort Therapeutic Organ Regeneration, Ansary Stem Cell Institute, United States of America
| | - Adrian Tan
- Genomics Resources Core Facility, Weill Cornell Medicine, United States of America
| | - Jenny Huang
- Division of Regenerative Medicine, Hartman Institute fort Therapeutic Organ Regeneration, Ansary Stem Cell Institute, United States of America
| | - Beatriz Lorenzo Rodriguez
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, United States of America
| | | | - Sandeep Subrahmanian
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Jasimuddin Ahamed
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, United States of America
| | - Jeffrey Laurence
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
2
|
Umar S, Palasiewicz K, Meyer A, Kumar P, Prabhakar BS, Volin MV, Rahat R, Al-Awqati M, Chang HJ, Zomorrodi RK, Rehman J, Shahrara S. Inhibition of IRAK4 dysregulates SARS-CoV-2 spike protein-induced macrophage inflammatory and glycolytic reprogramming. Cell Mol Life Sci 2022; 79:301. [PMID: 35588018 PMCID: PMC9118817 DOI: 10.1007/s00018-022-04329-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/26/2022] [Accepted: 04/27/2022] [Indexed: 12/13/2022]
Abstract
Escalated innate immunity plays a critical role in SARS-CoV-2 pathology; however, the molecular mechanism is incompletely understood. Thus, we aim to characterize the molecular mechanism by which SARS-CoV-2 Spike protein advances human macrophage (Mϴ) inflammatory and glycolytic phenotypes and uncover novel therapeutic strategies. We found that human Mϴs exposed to Spike protein activate IRAK4 phosphorylation. Blockade of IRAK4 in Spike protein-stimulated Mϴs nullifies signaling of IRAK4, AKT, and baseline p38 without affecting ERK and NF-κB activation. Intriguingly, IRAK4 inhibitor (IRAK4i) rescues the SARS-CoV-2-induced cytotoxic effect in ACE2+HEK 293 cells. Moreover, the inflammatory reprogramming of Mϴs by Spike protein was blunted by IRAK4i through IRF5 and IRF7, along with the reduction of monokines, IL-6, IL-8, TNFα, and CCL2. Notably, in Spike protein-stimulated Mϴs, suppression of the inflammatory markers by IRAK4i was coupled with the rebalancing of oxidative phosphorylation over metabolic activity. This metabolic adaptation promoted by IRAK4i in Spike protein-activated Mϴs was shown to be in part through constraining PFKBF3, HIF1α, cMYC, LDHA, lactate expression, and reversal of citrate and succinate buildup. IRAK4 knockdown could comparably impair Spike protein-enhanced inflammatory and metabolic imprints in human Mϴs as those treated with ACE2, TLR2, and TLR7 siRNA. Extending these results, in murine models, where human SARS-CoV-2 Spike protein was not recognized by mouse ACE2, TLRs were responsible for the inflammatory and glycolytic responses instigated by Spike protein and were dysregulated by IRAK4i therapy. In conclusion, IRAK4i may be a promising strategy for severe COVID-19 patients by counter-regulating ACE2 and TLR-mediated Mϴ hyperactivation. IRAK4i therapy counteracts Mϴ inflammatory and glycolytic reprogramming triggered by Spike protein. This study illustrates that SARS-CoV-2 Spike protein activates IRAK4 signaling via ACE2 as well as TLR2 and TLR7 sensing in human Mϴs. Remarkably, IRAK4i treatment can dysregulate both ACE-dependent and independent (via TLR sensing) SARS-CoV-2 Spike protein-activated inflammatory and metabolic imprints.
Collapse
Affiliation(s)
- Sadiq Umar
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Karol Palasiewicz
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Anja Meyer
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Prabhakaran Kumar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Bellur S Prabhakar
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Michael V Volin
- Department of Microbiology and Immunology, Midwestern University, Downers Grove, IL, USA
| | - Rani Rahat
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Mina Al-Awqati
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Huan J Chang
- Jesse Brown VA Medical Center, Chicago, IL, USA
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Ryan K Zomorrodi
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, Chicago, IL, USA
- Department of Medicine, Division of Cardiology, University of Illinois at Chicago, Chicago, IL, USA
| | - Shiva Shahrara
- Jesse Brown VA Medical Center, Chicago, IL, USA.
- Department of Medicine, Division of Rheumatology, University of Illinois at Chicago, 840 S Wood Street, CSB suite 1114, Chicago, IL, 60612, USA.
| |
Collapse
|
3
|
Maes M, Tedesco Junior WLD, Lozovoy MAB, Mori MTE, Danelli T, Almeida ERDD, Tejo AM, Tano ZN, Reiche EMV, Simão ANC. In COVID-19, NLRP3 inflammasome genetic variants are associated with critical disease and these effects are partly mediated by the sickness symptom complex: a nomothetic network approach. Mol Psychiatry 2022; 27:1945-1955. [PMID: 35022530 PMCID: PMC8752583 DOI: 10.1038/s41380-021-01431-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/08/2021] [Accepted: 12/23/2021] [Indexed: 12/21/2022]
Abstract
In coronavirus disease (COVID-19), the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Acute infections are accompanied by a sickness symptom complex (SSC) which is highly conserved and protects against infections and hyperinflammation. The aim of this study is to delineate the associations of COVID-19, SSC and NLPR3 rs10157379 T > C and NLPR3 rs10754558 C > G variants; and the protective role of SSC in SARS-CoV-2 infection. We recruited COVID-19 patients, 308 with critical, 63 with moderate and 157 with mild disease. Increased SSC protects against SARS, critical disease, and death due to COVID-19. Increasing age, male sex and rs10754558 CG significantly reduce SSC protection. The rs10157379 CT and rs10754558 GG genotypes are positively associated with SARS. Partial Least Squares analysis shows that a) 41.8% of the variance in critical COVID-19 symptoms is explained by SSC and oxygen saturation (inversely associated), inflammation, chest computed tomography abnormalities, increased body mass index, SARS and age (positively associated); and b) the effects of the NLRP3 rs10157379 and rs10754558 variants on critical COVID-19 are mediated via SSC (protective) and SARS (detrimental). SSC includes anosmia and dysgeusia, and maybe gastrointestinal symptoms. In conclusion, intersections among the rs10754558 variant, age, and sex increase risk towards critical COVID-19 by attenuating SSC. NLRP3 variants play an important role in SARS, and severe and critical COVID-19 especially in elderly male individuals with reduced SSC and with increased BMI, hypertension, and diabetes type 2.
Collapse
Affiliation(s)
- Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, VIC, Australia.
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria.
| | | | - Marcell Alysson Batisti Lozovoy
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | | | - Tiago Danelli
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Elaine Regina Delicato de Almeida
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | | | | | - Edna Maria Vissoci Reiche
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| | - Andréa Name Colado Simão
- Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
- Department of Pathology, Clinical Analysis and Toxicology, Laboratory of Research in Applied Immunology, University of Londrina, Londrina, PR, Brazil
| |
Collapse
|
4
|
Zafar-Mohammadi K, Poursamimi J, Atabaki M. NLRP3 inflammasome activation and its inhibitory drugs in connection with COVID-19 infection. EUR J INFLAMM 2022. [PMCID: PMC9515760 DOI: 10.1177/1721727x221130984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
SARS-CoV-2 virus belongs to the beta coronavirus family that cause the
inflammatory condition, acute pneumonia, and acute respiratory distress syndrome
(ARDS). ARDS is the most important reason of mortality in patients,
characterized as a highly increased levels of pro-inflammatory cytokine
secretion. Inflammasome is a complex, which has an essential role in
inflammatory situation, and NOD, LRR- and pyrin domain-containing protein 3
(NLRP3) is the most studied inflammasome that is considered to play vital roles
in the virus infection and its pathogenesis. Our search language was limited to
English and the search was performed in Web of Science, PubMed and Embase. Based
on published articles, our current narrative review first explains the structure
of the SARS-Cov2 virus and then describes the function of the NLRP3 inflammasome
in relation to COVID-19 and drugs effective in controlling it. The NLRP3
inflammasome activation related to the initiation of inflammatory cascade
including important cytokines production and releases such as IL-6, TNF-α and
IL-1β. Thus, targeting the NLRP3 as a member of the innate immune system may be
helpful for the reduction of ARDS clinical symptoms in COVID-19 patients.
Collapse
Affiliation(s)
| | - Javad Poursamimi
- Department of Immunology, School of Medicine, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahdi Atabaki
- Clinical Immunology Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
5
|
Nagaraja S, Jain D, Kesavardhana S. Inflammasome regulation in driving COVID-19 severity in humans and immune tolerance in bats. J Leukoc Biol 2021; 111:497-508. [PMID: 34057760 PMCID: PMC8242921 DOI: 10.1002/jlb.4covhr0221-093rr] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Coronaviruses (CoVs) are RNA viruses that cause human respiratory infections. Zoonotic transmission of the SARS‐CoV‐2 virus caused the recent COVID‐19 pandemic, which led to over 2 million deaths worldwide. Elevated inflammatory responses and cytotoxicity in the lungs are associated with COVID‐19 severity in SARS‐CoV‐2‐infected individuals. Bats, which host pathogenic CoVs, operate dampened inflammatory responses and show tolerance to these viruses with mild clinical symptoms. Delineating the mechanisms governing these host‐specific inflammatory responses is essential to understand host–virus interactions determining the outcome of pathogenic CoV infections. Here, we describe the essential role of inflammasome activation in determining COVID‐19 severity in humans and innate immune tolerance in bats that host several pathogenic CoVs. We further discuss mechanisms leading to inflammasome activation in human SARS‐CoV‐2 infection and how bats are molecularly adapted to suppress these inflammasome responses. We also report an analysis of functionally important residues of inflammasome components that provide new clues of bat strategies to suppress inflammasome signaling and innate immune responses. As spillover of bat viruses may cause the emergence of new human disease outbreaks, the inflammasome regulation in bats and humans likely provides specific strategies to combat the pathogenic CoV infections.
Collapse
Affiliation(s)
- Sahana Nagaraja
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Disha Jain
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sannula Kesavardhana
- Department of Biochemistry, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
6
|
Signorini C, Pignatti P, Coccini T. How Do Inflammatory Mediators, Immune Response and Air Pollution Contribute to COVID-19 Disease Severity? A Lesson to Learn. Life (Basel) 2021; 11:182. [PMID: 33669011 PMCID: PMC7996623 DOI: 10.3390/life11030182] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/16/2021] [Accepted: 02/21/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory and immune processes are defensive mechanisms that aim to remove harmful agents. As a response to infections, inflammation and immune response contribute to the pathophysiological mechanisms of diseases. Coronavirus disease 2019 (COVID-19), whose underlying mechanisms remain not fully elucidated, has posed new challenges for the knowledge of pathophysiology. Chiefly, the inflammatory process and immune response appear to be unique features of COVID-19 that result in developing a hyper-inflammatory syndrome, and air pollution, the world's largest health risk factor, may partly explain the behaviour and fate of COVID-19. Understanding the mechanisms involved in the progression of COVID-19 is of fundamental importance in order to avoid the late stage of the disease, associated with a poor prognosis. Here, the role of the inflammatory and immune mediators in COVID-19 pathophysiology is discussed.
Collapse
Affiliation(s)
- Cinzia Signorini
- Department of Molecular and Developmental Medicine, University of Siena, Via Aldo Moro, 53100 Siena, Italy
| | - Patrizia Pignatti
- Allergy and Immunology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| | - Teresa Coccini
- Laboratory of Clinical and Experimental Toxicology, Pavia Poison Centre, National Toxicology Information Centre, Toxicology Unit, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy;
| |
Collapse
|