1
|
Shi S, Li X, Alderman C, Wick L, Huang W, Foulon N, Zhang L, Rossi J, Hu W, Cui S, Zheng H, Taylor DJ, Ford HL, Zhao R. Cryo-EM structures reveal the PP2A-B55α and Eya3 interaction that can be disrupted by a peptide inhibitor. J Biol Chem 2025; 301:110287. [PMID: 40414499 DOI: 10.1016/j.jbc.2025.110287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/01/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025] Open
Abstract
We have previously shown that Eya3 recruits PP2A-B55α to dephosphorylate pT58 on Myc, increasing Myc stability and enhancing primary tumor growth of triple-negative breast cancer (TNBC). However, the molecular details of how Eya3 recruits PP2A-B55α remain unclear. Here, we determined the cryo-EM structures of PP2A-B55α bound with Eya3, with an inhibitory peptide B55i, and in its unbound state. These studies demonstrate that Eya3 binds B55α through an extended peptide in the N-terminal domain of Eya3. The Eya3 peptide, PP2A-B55α substrates, and protein-peptide inhibitors including B55i bind to a similar area on the B55α surface, but the molecular details of the binding differ. We further demonstrated that the B55i peptide inhibits the B55α and Eya3 interaction in vitro. The B55i peptide expressed on a plasmid increases Myc pT58 and decreases Myc protein levels in TNBC cells, suggesting the potential of B55i or similar peptides as therapies for TNBC.
Collapse
Affiliation(s)
- Shasha Shi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Xueni Li
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lars Wick
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wei Huang
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - North Foulon
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Wenxin Hu
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shouqing Cui
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Derek J Taylor
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, USA
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
2
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson AL, Wolin A, Hampton D, Shrivastava NM, Turner N, Danis E, Ebmeier C, Spoelstra N, Richer J, Jedlicka P, Costello JC, Zhao R, Ford HL. EYA3 regulation of NF-κB and CCL2 suppresses cytotoxic NK cells in the premetastatic niche to promote TNBC metastasis. SCIENCE ADVANCES 2025; 11:eadt0504. [PMID: 40333987 PMCID: PMC12057687 DOI: 10.1126/sciadv.adt0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Triple-negative breast cancer cells must evade immune surveillance to metastasize to distant sites, yet this process is not well understood. The Eyes absent (EYA) family of proteins, which are crucial for embryonic development, become dysregulated in cancer, where they have been shown to mediate proliferation, migration, and invasion. Our study reveals an unusual mechanism by which EYA3 reduces the presence of cytotoxic natural killer (NK) cells in the premetastatic niche (PMN) to enhance metastasis, independent of its effects on the primary tumor. We find that EYA3 up-regulates nuclear factor κB signaling to enhance CCL2 expression, which, in contrast to previous findings, suppresses cytotoxic NK cell activation in vitro and their infiltration into the PMN in vivo. These findings uncover an unexpected role for CCL2 in inhibiting NK cell responses at the PMN and suggest that targeting EYA3 could be an effective strategy to reactivate antitumor immune responses to inhibit metastasis.
Collapse
Affiliation(s)
- Sheera R. Rosenbaum
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Connor J. Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Kaiah M. Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Stephen Connor Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Annika L. Gustafson
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Arthur Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Drake Hampton
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Natasha M. Shrivastava
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Nicholas Turner
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Etienne Danis
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Christopher Ebmeier
- Department of Biochemistry and BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Nicole Spoelstra
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Jennifer Richer
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Paul Jedlicka
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Pathology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - James C. Costello
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
| | - Heide L. Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Pharmacology and Molecular Medicine Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Molecular Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- Cancer Biology Program, University of Colorado Anschutz Medical Campus (AMC), Aurora, CO, USA
- University of Colorado Cancer Center, Aurora, CO, USA
| |
Collapse
|
3
|
Xiao D, Ran H, Chen L, Li Y, Cai Y, Zhang S, Qi Q, Wu H, Zhang C, Cao S, Mi L, Huang H, Qi J, Han Q, Tu H, Li H, Zhou T, Li F, Li A, Man J. FSD1 inhibits glioblastoma diffuse infiltration through restriction of HDAC6-mediated microtubule deacetylation. SCIENCE CHINA. LIFE SCIENCES 2025; 68:673-688. [PMID: 39808222 DOI: 10.1007/s11427-024-2616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/22/2024] [Indexed: 01/16/2025]
Abstract
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization. This inhibitory interaction is disrupted upon phosphorylation of FSD1 at its Ser317 and Ser324 residues by activated CDK5, leading to FSD1 dissociation from microtubules and facilitating HDAC6-mediated α-tubulin deacetylation. Furthermore, increased expression of FSD1 or interference with FSD1 phosphorylation reduces microtubule deacetylation, suppresses invasion of GBM stem cells, and ultimately mitigates tumor infiltration in orthotopic GBM xenografts. Importantly, GBM tissues exhibit diminished levels of FSD1 expression, correlating with microtubule deacetylation and unfavorable clinical outcomes in GBM patients. These findings elucidate the mechanistic involvement of microtubule deacetylation in driving GBM cell invasion and offer potential avenues for managing GBM infiltration.
Collapse
Affiliation(s)
- Dake Xiao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Haowen Ran
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Lishu Chen
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yuanyuan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Yan Cai
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Songyang Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Qinghui Qi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiran Wu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Cheng Zhang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Shuailiang Cao
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Lanjuan Mi
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- School of Life and Health Sciences, Huzhou College, Huzhou, 313000, China
| | - Haohao Huang
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
- Department of Neurosurgery, General Hospital of Central Theater Command of Chinese PLA, Wuhan, 430070, China
| | - Ji Qi
- Department of Neurosurgery, Beijing Fengtai Hospital, Beijing, 100070, China
| | - Qiuying Han
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Haiqing Tu
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Huiyan Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Tao Zhou
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China
| | - Fangye Li
- Department of Neurosurgery, First Medical Center of PLA General Hospital, Beijing, 100853, China.
| | - Ailing Li
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| | - Jianghong Man
- Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
| |
Collapse
|
4
|
Shi S, Li X, Alderman C, Huang W, Wick L, Foulon N, Rossi J, Hu W, Cui S, Zheng H, Taylor DJ, Ford HL, Zhao R. Cryo-EM structures reveal the PP2A-B55α and Eya3 interaction that can be disrupted by a peptide inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.04.636346. [PMID: 39975004 PMCID: PMC11838537 DOI: 10.1101/2025.02.04.636346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
We have previously shown that Eya3 recruits PP2A-B55α to dephosphorylate pT58 on Myc, increasing Myc stability and enhancing primary tumor growth of triple-negative breast cancer (TNBC). However, the molecular details of how Eya3 recruits PP2A-B55α remain unclear. Here we determined the cryo-EM structures of PP2A-B55α bound with Eya3, with an inhibitory peptide B55i, and in its unbound state. These studies demonstrate that Eya3 binds B55α through an extended peptide in the NTD of Eya3. The Eya3 peptide and other PP2A-B55α substrates and protein/peptide inhibitors including B55i bind to a similar area on the B55α surface but the molecular details of the binding differ. We further demonstrated that the B55i peptide inhibits the B55α and Eya3 interaction in vitro. B55i peptide expressed on a plasmid increases pT58 and decreases Myc protein level in TNBC cells, suggesting the potential of B55i or similar peptides as therapies for TNBC.
Collapse
|
5
|
Wei T, Lin R, Lu Y, Jin DY, Zhang J, Sham MH. Protein phosphatase EYA1 regulates the dephosphorylation and turnover of BCL2L12 to promote glioma development. Int J Biol Sci 2025; 21:1081-1096. [PMID: 39897043 PMCID: PMC11781168 DOI: 10.7150/ijbs.99619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 12/15/2024] [Indexed: 02/04/2025] Open
Abstract
Glioma is the most prevalent and deadly type of intracranial tumor. Understanding the molecular drivers and their underlying mechanisms in glioma development is urgently needed. EYA1 is a unique protein phosphatase that drives gliomagenesis, yet its substrates remain largely uncharacterized. In this study, we identify BCL2L12 (BCL2-like 12), a critical oncoprotein in glioma, as a novel substrate of EYA1 phosphatase in glioma cells. Our findings demonstrate that EYA1 dephosphorylates BCL2L12 at threonine-33 (T33), which in turn protects BCL2L12 from ubiquitination and subsequent proteasomal degradation. Our results indicate that BCL2L12 partially mediates the oncogenic roles of EYA1 in promoting glioma cell proliferation, highlighting the significance of EYA1's dephosphorylation of BCL2L12 in tumor progression. Moreover, we validate a positive correlation between EYA1 and BCL2L12 protein levels in glioma patient samples. In summary, our study reveals how EYA1-BCL2L12 interaction functions in glioma development, implicating EYA1 as a potential therapeutic target for glioma treatment.
Collapse
Affiliation(s)
- Tianzi Wei
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Risheng Lin
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yi Lu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Dong-Yan Jin
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Jian Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Mai Har Sham
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
6
|
Gardner L, Rossi J, Armstrong B, Muse M, LaVeck A, Blevins MA, Zhang L, Ford HL, Zhao R, Wang X. Rational Design of Novel Allosteric EYA2 Inhibitors as Potential Therapeutics for Multiple Brain Cancers. ChemMedChem 2024; 19:e202400179. [PMID: 38861151 PMCID: PMC12061364 DOI: 10.1002/cmdc.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/12/2024]
Abstract
The Eyes Absent (EYA) family of developmental proteins, often in partnership with the sine oculis (SIX) homeobox proteins, promote cancer metastasis and recurrence in numerous tumor types. In addition to being a transcriptional coactivator, EYA2 is a Tyr phosphatase that dephosphorylates H2AX which leads to repair instead of apoptosis upon DNA damage and ERβ which inhibits the anti-tumor transcriptional activity of ERβ. The SIX members of the EYA-SIX complex are difficult to target, therefore, we targeted the EYA2 to promote cell death and prevent cancer progression. We conducted structural optimization of a previously discovered allosteric inhibitor of EYA2, 9987, using the combination of in silico modeling, biochemical and cell-based assays. A new series of compounds was developed with significantly improved cellular activity and physiochemical properties desirable for brain targets. Specifically, compound 2 e showed >30-fold improvement in the medulloblastoma cell line D458, relative to 9987, while maintaining potent and selective inhibitory activity against EYA2 Tyr phosphatase activity and a good multiparameter optimization score for central nervous system drugs.
Collapse
Affiliation(s)
- Lukas Gardner
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
| | - Brock Armstrong
- Department of Pharmacology, University of Colorado Anschutz School of Medicine, 12800 East 19th Avenue, Mailstop 6126, Aurora, CO, 80045
| | - Mia Muse
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| | - Alex LaVeck
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| | - Melanie A Blevins
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
- Department of Research & Development, LICORbio, 4647 Superior St, Lincoln, NE, 68504
| | - Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
- Arnatar Therapeutics, Inc., San Diego, CA, 92121
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz School of Medicine, 12800 East 19th Avenue, Mailstop 6126, Aurora, CO, 80045
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz School of Medicine, 12801 East 17th Avenue, Mailstop 8101, Aurora, CO, 80045
| | - Xiang Wang
- Department of Chemistry, University of Colorado Boulder, 215 UCB, Boulder, CO, 80309
| |
Collapse
|
7
|
Nelson CB, Wells JK, Pickett HA. The Eyes Absent family: At the intersection of DNA repair, mitosis, and replication. DNA Repair (Amst) 2024; 141:103729. [PMID: 39089192 DOI: 10.1016/j.dnarep.2024.103729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/03/2024]
Abstract
The Eyes Absent family (EYA1-4) are a group of dual function proteins that act as both tyrosine phosphatases and transcriptional co-activators. EYA proteins play a vital role in development, but are also aberrantly overexpressed in cancers, where they often confer an oncogenic effect. Precisely how the EYAs impact cell biology is of growing interest, fuelled by the therapeutic potential of an expanding repertoire of EYA inhibitors. Recent functional studies suggest that the EYAs are important players in the regulation of genome maintenance pathways including DNA repair, mitosis, and DNA replication. While the characterized molecular mechanisms have predominantly been ascribed to EYA phosphatase activities, EYA co-transcriptional activity has also been found to impact the expression of genes that support these pathways. This indicates functional convergence of EYA phosphatase and co-transcriptional activities, highlighting the emerging importance of the EYA protein family at the intersection of genome maintenance mechanisms. In this review, we discuss recent progress in defining EYA protein substrates and transcriptional effects, specifically in the context of genome maintenance. We then outline future directions relevant to the field and discuss the clinical utility of EYA inhibitors.
Collapse
Affiliation(s)
- Christopher B Nelson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Jadon K Wells
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Hilda A Pickett
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
8
|
Rosenbaum SR, Hughes CJ, Fields KM, Purdy SC, Gustafson A, Wolin A, Hampton D, Turner N, Ebmeier C, Costello JC, Ford HL. An EYA3/NF-κB/CCL2 signaling axis suppresses cytotoxic NK cells in the pre-metastatic niche to promote triple negative breast cancer metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606072. [PMID: 39211066 PMCID: PMC11360953 DOI: 10.1101/2024.07.31.606072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Patients with Triple Negative Breast Cancer (TNBC) exhibit high rates of metastases and poor prognoses. The Eyes absent (EYA) family of proteins are developmental transcriptional cofactors/phosphatases that are re-expressed and/or upregulated in numerous cancers. Herein, we demonstrate that EYA3 correlates with decreased survival in breast cancer, and that it strongly, and specifically, regulates metastasis via a novel mechanism that involves NF-kB signaling and an altered innate immune profile at the pre-metastatic niche (PMN). Remarkably, restoration of NF-kB signaling downstream of Eya3 knockdown (KD) restores metastasis without restoring primary tumor growth, isolating EYA3/NF-kB effects to the metastatic site. We show that secreted CCL2, regulated downstream of EYA3/NF-kB, specifically decreases cytotoxic NK cells in the PMN and that re-expression of Ccl2 in Eya3 -KD cells is sufficient to rescue activation/levels of cytotoxic NK cells in vitro and at the PMN, where EYA3-mediated decreases in cytotoxic NK cells are required for metastatic outgrowth. Importantly, analysis of public breast cancer datasets uncovers a significant correlation of EYA3 with NF-kB/CCL2, underscoring the relevance of EYA3/NF-kB/CCL2 to human disease. Our findings suggest that inhibition of EYA3 could be a powerful means to re-activate the innate immune response at the PMN, inhibiting TNBC metastasis. Significance EYA3 promotes metastasis of TNBC cells by promoting NF-kB-mediated CCL2 expression and inhibiting cytotoxic NK cells at the pre-metastatic niche, highlighting a potential therapeutic target in this subset of breast cancer.
Collapse
|
9
|
Hughes CJ, Alderman C, Wolin AR, Fields KM, Zhao R, Ford HL. All eyes on Eya: A unique transcriptional co-activator and phosphatase in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189098. [PMID: 38555001 PMCID: PMC11111358 DOI: 10.1016/j.bbcan.2024.189098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
The Eya family of proteins (consisting of Eyas1-4 in mammals) play vital roles in embryogenesis by regulating processes such as proliferation, migration/invasion, cellular survival and pluripotency/plasticity of epithelial and mesenchymal states. Eya proteins carry out such diverse functions through a unique combination of transcriptional co-factor, Tyr phosphatase, and PP2A/B55α-mediated Ser/Thr phosphatase activities. Since their initial discovery, re-expression of Eyas has been observed in numerous tumor types, where they are known to promote tumor progression through a combination of their transcriptional and enzymatic activities. Eya proteins thus reinstate developmental processes during malignancy and represent a compelling class of therapeutic targets for inhibiting tumor progression.
Collapse
Affiliation(s)
- Connor J Hughes
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America
| | - Christopher Alderman
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Kaiah M Fields
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America
| | - Rui Zhao
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| | - Heide L Ford
- Medical Scientist Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America; Department of Pharmacology, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, Aurora, CO 80045, United States of America; Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, United States of America.
| |
Collapse
|
10
|
Nelson CB, Rogers S, Roychoudhury K, Tan YS, Atkinson CJ, Sobinoff AP, Tomlinson CG, Hsu A, Lu R, Dray E, Haber M, Fletcher JI, Cesare AJ, Hegde RS, Pickett HA. The Eyes Absent family members EYA4 and EYA1 promote PLK1 activation and successful mitosis through tyrosine dephosphorylation. Nat Commun 2024; 15:1385. [PMID: 38360978 PMCID: PMC10869800 DOI: 10.1038/s41467-024-45683-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/31/2024] [Indexed: 02/17/2024] Open
Abstract
The Eyes Absent proteins (EYA1-4) are a biochemically unique group of tyrosine phosphatases known to be tumour-promoting across a range of cancer types. To date, the targets of EYA phosphatase activity remain largely uncharacterised. Here, we identify Polo-like kinase 1 (PLK1) as an interactor and phosphatase substrate of EYA4 and EYA1, with pY445 on PLK1 being the primary target site. Dephosphorylation of pY445 in the G2 phase of the cell cycle is required for centrosome maturation, PLK1 localization to centrosomes, and polo-box domain (PBD) dependent interactions between PLK1 and PLK1-activation complexes. Molecular dynamics simulations support the rationale that pY445 confers a structural impairment to PBD-substrate interactions that is relieved by EYA-mediated dephosphorylation. Depletion of EYA4 or EYA1, or chemical inhibition of EYA phosphatase activity, dramatically reduces PLK1 activation, causing mitotic defects and cell death. Overall, we have characterized a phosphotyrosine signalling network governing PLK1 and mitosis.
Collapse
Affiliation(s)
- Christopher B Nelson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Samuel Rogers
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Kaushik Roychoudhury
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yaw Sing Tan
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Caroline J Atkinson
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Alexander P Sobinoff
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Christopher G Tomlinson
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Anton Hsu
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Robert Lu
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Eloise Dray
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Kensington, NSW, Australia
| | - Anthony J Cesare
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia
| | - Rashmi S Hegde
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Hilda A Pickett
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, NSW, Australia.
| |
Collapse
|
11
|
Rossi S, Barresi S, Colafati GS, Genovese S, Tancredi C, Costabile V, Patrizi S, Giovannoni I, Asioli S, Poliani PL, Gardiman MP, Cardoni A, Del Baldo G, Antonelli M, Gianno F, Piccirilli E, Catino G, Martucci L, Quacquarini D, Toni F, Melchionda F, Viscardi E, Zucchelli M, Dal Pos S, Gatti E, Liserre R, Schiavello E, Diomedi-Camassei F, Carai A, Mastronuzzi A, Gessi M, Giannini C, Novelli A, Onetti Muda A, Miele E, Alesi V, Alaggio R. PATZ1-Rearranged Tumors of the Central Nervous System: Characterization of a Pediatric Series of Seven Cases. Mod Pathol 2024; 37:100387. [PMID: 38007157 DOI: 10.1016/j.modpat.2023.100387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/27/2023]
Abstract
PATZ1-rearranged sarcomas are well-recognized tumors as part of the family of round cell sarcoma with EWSR1-non-ETS fusions. Whether PATZ1-rearranged central nervous system (CNS) tumors are a distinct tumor type is debatable. We thoroughly characterized a pediatric series of PATZ1-rearranged CNS tumors by chromosome microarray analysis (CMA), DNA methylation analysis, gene expression profiling and, when frozen tissue is available, optical genome mapping (OGM). The series consisted of 7 cases (M:F=1.3:1, 1-17 years, median 12). On MRI, the tumors were supratentorial in close relation to the lateral ventricles (intraventricular or iuxtaventricular), preferentially located in the occipital lobe. Two major histologic groups were identified: one (4 cases) with an overall glial appearance, indicated as "neuroepithelial" (NET) by analogy with the corresponding methylation class (MC); the other (3 cases) with a predominant spindle cell sarcoma morphology, indicated as "sarcomatous" (SM). A single distinct methylation cluster encompassing both groups was identified by multidimensional scaling analysis. Despite the epigenetic homogeneity, unsupervised clustering analysis of gene expression profiles revealed 2 distinct transcriptional subgroups correlating with the histologic phenotypes. Interestingly, genes implicated in epithelial-mesenchymal transition and extracellular matrix composition were enriched in the subgroup associated to the SM phenotype. The combined use of CMA and OGM enabled the identification of chromosome 22 chromothripsis in all cases suitable for the analyses, explaining the physical association of PATZ1 to EWSR1 or MN1. Six patients are currently disease-free (median follow-up 30 months, range 12-92). One patient of the SM group developed spinal metastases at 26 months from diagnosis and is currently receiving multimodal therapy (42 months). Our data suggest that PATZ1-CNS tumors are defined by chromosome 22 chromothripsis as causative of PATZ1 fusion, show peculiar MRI features (eg, relation to lateral ventricles, supratentorial frequently posterior site), and, although epigenetically homogenous, encompass 2 distinct histologic and transcriptional subgroups.
Collapse
Affiliation(s)
- Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giovanna Stefania Colafati
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Silvia Genovese
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Chantal Tancredi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Valentino Costabile
- Multimodal Research Area, Unit of Microbiology and Diagnostics in Immunology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sara Patrizi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM)-Surgical Pathology Section-Alma Mater Studiorum - University of Bologna, Bologna, Italy
| | - Pietro Luigi Poliani
- Pathology Unit, San Raffaele Hospital Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| | - Marina Paola Gardiman
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University Hospital of Padua, Padua, Italy
| | - Antonello Cardoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Giada Del Baldo
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Manila Antonelli
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy
| | - Francesca Gianno
- Department of Radiology, Oncology and Anatomic Pathology, University La Sapienza, Rome, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Eleonora Piccirilli
- Imaging Department, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Neuroscience, Imaging and Clinical Sciences (DNISC), University "Gabriele D'Annunzio" of Chieti-Pescara, Chieti, Italy
| | - Giorgia Catino
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Licia Martucci
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Denise Quacquarini
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Francesco Toni
- Neuroradiology Unit, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Fraia Melchionda
- SSD Oncoematologia Pediatrica, IRCCS AOU Policlinico S.Orsola, Bologna, Italy
| | - Elisabetta Viscardi
- Department of Pediatrics, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Mino Zucchelli
- Paediatric Neurosurgery, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Sandro Dal Pos
- Department of Radiology, Azienda Ospedale-Università di Padova, Padova, Italy
| | - Enza Gatti
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | | | - Andrea Carai
- Neurosurgery Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Marco Gessi
- Neuropathology Unit, Pathology Division, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica S.Cuore, Rome, Italy
| | - Caterina Giannini
- Department of Biomedical and Neuromotor Sciences (DIBINEM)-Surgical Pathology Section-Alma Mater Studiorum - University of Bologna, Bologna, Italy; Department of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota
| | - Antonio Novelli
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Evelina Miele
- Onco-Hematology, Cell Therapy, Gene Therapies and Hemopoietic Transplant, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.
| | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy; Department of Medico-surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy
| |
Collapse
|
12
|
Alderman C, Krueger A, Rossi J, Ford HL, Zhao R. In Vitro Phosphatase Assays for the Eya2 Tyrosine Phosphatase. Methods Mol Biol 2024; 2743:285-300. [PMID: 38147222 DOI: 10.1007/978-1-0716-3569-8_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Protein tyrosine phosphatases (PTP), such as the Eyes Absent (Eya) family of proteins, play important roles in diverse biological processes. In vitro phosphatase assays are essential tools for characterizing the enzymatic activity as well as discovering inhibitors and regulators of these phosphatases. Two common types of in vitro phosphatase assays use either a small molecule substrate that produces a fluorescent or colored product, or a peptide substrate that produces a colorimetric product in a malachite green assay. In this chapter, we describe detailed protocols of a phosphatase assay using small molecule 3-O-methylfluorescein phosphate (OMFP) as a substrate and a malachite green assay using the pH2AX peptide as a substrate to evaluate the phosphatase activity of EYA2 and the effect of small molecule inhibitors of EYA2. These protocols can be easily adapted to study other protein tyrosine phosphatases.
Collapse
Affiliation(s)
- Christopher Alderman
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Aaron Krueger
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- KBI Biopharma, Inc., Boulder, CO, USA
| | - John Rossi
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Rui Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
13
|
Wolin AR, Vincent MY, Hotz T, Purdy SC, Rosenbaum SR, Hughes CJ, Hsu JY, Oliphant MUJ, Armstrong B, Wessells V, Varella-Garcia M, Galbraith MD, Pierce A, Wang D, Venkataraman S, Danis E, Veo B, Serkova N, Espinosa JM, Gustafson DL, Vibhakar R, Ford HL. EYA2 tyrosine phosphatase inhibition reduces MYC and prevents medulloblastoma progression. Neuro Oncol 2023; 25:2287-2301. [PMID: 37486991 PMCID: PMC10708924 DOI: 10.1093/neuonc/noad128] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 07/26/2023] Open
Abstract
BACKGROUND Medulloblastoma is the most common pediatric brain malignancy. Patients with the Group 3 subtype of medulloblastoma (MB) often exhibit MYC amplification and/or overexpression and have the poorest prognosis. While Group 3 MB is known to be highly dependent on MYC, direct targeting of MYC remains elusive. METHODS Patient gene expression data were used to identify highly expressed EYA2 in Group 3 MB samples, assess the correlation between EYA2 and MYC, and examine patient survival. Genetic and pharmacological studies were performed on EYA2 in Group 3 derived MB cell models to assess MYC regulation and viability in vitro and in vivo. RESULTS EYA2 is more highly expressed in Group 3 MB than other MB subgroups and is essential for Group 3 MB growth in vitro and in vivo. EYA2 regulates MYC expression and protein stability in Group 3 MB, resulting in global alterations of MYC transcription. Inhibition of EYA2 tyrosine phosphatase activity, using a novel small molecule inhibitor (NCGC00249987, or 9987), significantly decreases Group 3 MB MYC expression in both flank and intracranial growth in vivo. Human MB RNA-seq data show that EYA2 and MYC are significantly positively correlated, high EYA2 expression is significantly associated with a MYC transcriptional signature, and patients with high EYA2 and MYC expression have worse prognoses than those that do not express both genes at high levels. CONCLUSIONS Our data demonstrate that EYA2 is a critical regulator of MYC in Group 3 MB and suggest a novel therapeutic avenue to target this highly lethal disease.
Collapse
Affiliation(s)
- Arthur R Wolin
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Melanie Y Vincent
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Taylor Hotz
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Stephen C Purdy
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Cancer Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Sheera R Rosenbaum
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Connor J Hughes
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Pharmacology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Medical Scientist Training Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Jessica Y Hsu
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Pharmacology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Michael U J Oliphant
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Integrated Physiology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| | - Brock Armstrong
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Veronica Wessells
- Department of Medicine, Division of Medical Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Marileila Varella-Garcia
- Department of Medicine, Division of Medical Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Matthew D Galbraith
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado AMC, Aurora, Colorado, USA
| | - Angela Pierce
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Dong Wang
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Sujatha Venkataraman
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Etienne Danis
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
| | - Bethany Veo
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Natalie Serkova
- Department of Radiology, University of Colorado AMC, Aurora, Colorado, USA
| | - Joaquin M Espinosa
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Linda Crnic Institute for Down Syndrome, University of Colorado AMC, Aurora, Colorado, USA
| | - Daniel L Gustafson
- Clinical Sciences Department, Colorado State University, Fort Collins, Colorado, USA
| | - Rajeev Vibhakar
- Department of Pediatrics, Division of Hematology and Oncology, University of Colorado AMC, Aurora, Colorado, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado Anschutz Medical Campus (AMC), Aurora, Colorado, USA
- Molecular Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Cancer Biology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Pharmacology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
- Medical Scientist Training Program, University of Colorado AMC, Aurora, Colorado, USA
- Integrated Physiology Graduate Program, University of Colorado AMC, Aurora, Colorado, USA
| |
Collapse
|
14
|
Glycolytic flux control by drugging phosphoglycolate phosphatase. Nat Commun 2022; 13:6845. [PMID: 36369173 PMCID: PMC9652372 DOI: 10.1038/s41467-022-34228-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 10/14/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting the intrinsic metabolism of immune or tumor cells is a therapeutic strategy in autoimmunity, chronic inflammation or cancer. Metabolite repair enzymes may represent an alternative target class for selective metabolic inhibition, but pharmacological tools to test this concept are needed. Here, we demonstrate that phosphoglycolate phosphatase (PGP), a prototypical metabolite repair enzyme in glycolysis, is a pharmacologically actionable target. Using a combination of small molecule screening, protein crystallography, molecular dynamics simulations and NMR metabolomics, we discover and analyze a compound (CP1) that inhibits PGP with high selectivity and submicromolar potency. CP1 locks the phosphatase in a catalytically inactive conformation, dampens glycolytic flux, and phenocopies effects of cellular PGP-deficiency. This study provides key insights into effective and precise PGP targeting, at the same time validating an allosteric approach to control glycolysis that could advance discoveries of innovative therapeutic candidates.
Collapse
|
15
|
Shen JZ, Qiu Z, Wu Q, Zhang G, Harris R, Sun D, Rantala J, Barshop WD, Zhao L, Lv D, Won KA, Wohlschlegel J, Sangfelt O, Laman H, Rich JN, Spruck C. A FBXO7/EYA2-SCF FBXW7 axis promotes AXL-mediated maintenance of mesenchymal and immune evasion phenotypes of cancer cells. Mol Cell 2022; 82:1123-1139.e8. [PMID: 35182481 PMCID: PMC8934274 DOI: 10.1016/j.molcel.2022.01.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/25/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022]
Abstract
A mesenchymal tumor phenotype associates with immunotherapy resistance, although the mechanism is unclear. Here, we identified FBXO7 as a maintenance regulator of mesenchymal and immune evasion phenotypes of cancer cells. FBXO7 bound and stabilized SIX1 co-transcriptional regulator EYA2, stimulating mesenchymal gene expression and suppressing IFNα/β, chemokines CXCL9/10, and antigen presentation machinery, driven by AXL extracellular ligand GAS6. Ubiquitin ligase SCFFBXW7 antagonized this pathway by promoting EYA2 degradation. Targeting EYA2 Tyr phosphatase activity decreased mesenchymal phenotypes and enhanced cancer cell immunogenicity, resulting in attenuated tumor growth and metastasis, increased infiltration of cytotoxic T and NK cells, and enhanced anti-PD-1 therapy response in mouse tumor models. FBXO7 expression correlated with mesenchymal and immune-suppressive signatures in patients with cancer. An FBXO7-immune gene signature predicted immunotherapy responses. Collectively, the FBXO7/EYA2-SCFFBXW7 axis maintains mesenchymal and immune evasion phenotypes of cancer cells, providing rationale to evaluate FBXO7/EYA2 inhibitors in combination with immune-based therapies to enhance onco-immunotherapy responses.
Collapse
Affiliation(s)
- Jia Z Shen
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Zhixin Qiu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Guoxin Zhang
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA
| | - Rebecca Harris
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Dahui Sun
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | | | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Deguan Lv
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm 171 77, Sweden
| | - Heike Laman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA 15213, USA; Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, CA 92037, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Charles Spruck
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
16
|
Anantharajan J, Baburajendran N, Lin G, Loh YY, Xu W, Ahmad NHB, Liu S, Jansson AE, Kuan JWL, Ng EY, Yeo YK, Hung AW, Joy J, Hill J, Ford HL, Zhao R, Keller TH, Kang C. Structure-activity relationship studies of allosteric inhibitors of EYA2 tyrosine phosphatase. Protein Sci 2022; 31:422-431. [PMID: 34761455 PMCID: PMC8819961 DOI: 10.1002/pro.4234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 02/03/2023]
Abstract
Human eyes absent (EYA) proteins possess Tyr phosphatase activity, which is critical for numerous cancer and metastasis promoting activities, making it an attractive target for cancer therapy. In this work, we demonstrate that the inhibitor-bound form of EYA2 does not favour binding to Mg2+ , which is indispensable for the Tyr phosphatase activity. We further describe characterization and optimization of this class of allosteric inhibitors. A series of analogues were synthesized to improve potency of the inhibitors and to elucidate structure-activity relationships. Two co-crystal structures confirm the binding modes of this class of inhibitors. Our medicinal chemical, structural, biochemical, and biophysical studies provide insight into the molecular interactions of EYA2 with these allosteric inhibitors. The compounds derived from this study are useful for exploring the function of the Tyr phosphatase activity of EYA2 in normal and cancerous cells and serve as reference compounds for screening or developing allosteric phosphatase inhibitors. Finally, the co-crystal structures reported in this study will aid in structure-based drug discovery against EYA2.
Collapse
Affiliation(s)
- Jothi Anantharajan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nithya Baburajendran
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Grace Lin
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yong Yao Loh
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Weijun Xu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Nur Huda Binte Ahmad
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Shuang Liu
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
- Chemical Biology and Therapeutics ScienceBroad Institute of MIT and HarvardCambridgeMassachusettsUSA
| | - Anna E. Jansson
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - John Wee Liang Kuan
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Elizabeth Yihui Ng
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Yee Khoon Yeo
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Alvin W. Hung
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Joma Joy
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Jeffrey Hill
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - Heide L. Ford
- Department of Obstetrics and GynecologyUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Rui Zhao
- Department of Biochemistry and Molecular GeneticsUniversity of Colorado Anschutz Medical CampusAuroraColoradoUSA
| | - Thomas H. Keller
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| | - CongBao Kang
- Experimental Drug Development CentreAgency for Science, Technology and Research (A*STAR)Singapore
| |
Collapse
|
17
|
Lindquist RA, Weiss WA. All eyes on a phosphatase in glioma stem cells. J Exp Med 2021; 218:e20211605. [PMID: 34637499 PMCID: PMC8517169 DOI: 10.1084/jem.20211605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In this issue of JEM, Zhang et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20202669) identify a dependency of glioma stem cells on tyrosine phosphatase activity of EYA2 and a new role for this phosphatase at the centrosome, offering a new therapeutic approach to target mitotic activity.
Collapse
Affiliation(s)
- Robert A. Lindquist
- Division of Pediatric Hematology/Oncology, University of California, San Francisco, San Francisco, CA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
| | - William A. Weiss
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Departments of Neurology and Neurosurgery, University of California, San Francisco, San Francisco, CA
- Brain Tumor Research Center, University of California, San Francisco, San Francisco, CA
| |
Collapse
|