1
|
Incontro S, Musella ML, Sammari M, Di Scala C, Fantini J, Debanne D. Lipids shape brain function through ion channel and receptor modulations: physiological mechanisms and clinical perspectives. Physiol Rev 2025; 105:137-207. [PMID: 38990068 DOI: 10.1152/physrev.00004.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/28/2024] [Accepted: 07/01/2024] [Indexed: 07/12/2024] Open
Abstract
Lipids represent the most abundant molecular type in the brain, with a fat content of ∼60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid, and endocannabinoids finely regulate both synaptic receptors and ion channels that ensure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, and functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.
Collapse
Affiliation(s)
| | | | - Malika Sammari
- UNIS, INSERM, Aix-Marseille Université, Marseille, France
| | | | | | | |
Collapse
|
2
|
Yu X, Jin X, Wang N, Yu Y, Zhu X, Chen M, Zhong Y, Sun J, Zhu L. Transformation of sulfamethoxazole by sulfidated nanoscale zerovalent iron activated persulfate: Mechanism and risk assessment using environmental metabolomics. JOURNAL OF HAZARDOUS MATERIALS 2022; 428:128244. [PMID: 35032952 DOI: 10.1016/j.jhazmat.2022.128244] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/29/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The threat caused by the misuse of antibiotics to ecology and human health has been aroused an extensive attention. Developing cost-effective techniques for removing antibiotics needs to put on the agenda. In current research, the degradation mechanism of sulfamethoxazole (SMX) by sulfidated nanoscale zerovalent iron (S-nZVI) driven persulfate, together with the potential risk of intermediates were studied. The degradation of SMX followed a pseudo-first order kinetics reaction with kobs at 0.1176 min-1. Both SO4•- and •OH were responsible for the degradation of SMX, and SO4•- was the predominant free radical. XPS analysis demonstrated that reduced sulfide species promoted the conversion of Fe (III) to Fe (II), resulting in the higher transformation rate of SMX. Six intermediates products were generated through hydroxylation, dehydration condensation, nucleophilic reaction, and hydrolysis. The risk of intermediates products is subsequently assessed using E. coli as a model microorganism. After E.coli exposure to intermediates for 24 h, the upmetabolism of carbohydrate, nucleotide, citrate acid cycle and downmetabolism of glutathione, sphingolipid, galactose by metabolomics analysis identified that SMX was effectively detoxified by oxidation treatment. These findings not only clarified the superiority of S-nZVI/persulfate, but also generated a novel insight into the security of advanced oxidation processes.
Collapse
Affiliation(s)
- Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xu Jin
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Nan Wang
- Department of Physics, Jinan University, Guangzhou, Guangdong 510632, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Meiqin Chen
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Yongming Zhong
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
3
|
Duttaroy AK, Basak S. Maternal Fatty Acid Metabolism in Pregnancy and Its Consequences in the Feto-Placental Development. Front Physiol 2022; 12:787848. [PMID: 35126178 PMCID: PMC8811195 DOI: 10.3389/fphys.2021.787848] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
During pregnancy, maternal plasma fatty acids are critically required for cell growth and development, cell signaling, and the development of critical structural and functional aspects of the feto-placental unit. In addition, the fatty acids modulate the early stages of placental development by regulating angiogenesis in the first-trimester human placenta. Preferential transport of maternal plasma long-chain polyunsaturated fatty acids during the third trimester is critical for optimal fetal brain development. Maternal status such as obesity, diabetes, and dietary intakes may affect the functional changes in lipid metabolic processes in maternal-fetal lipid transport and metabolism. Fatty acids traverse the placental membranes via several plasma membrane fatty acid transport/binding proteins (FAT, FATP, p-FABPpm, and FFARs) and cytoplasmic fatty acid-binding proteins (FABPs). This review discusses the maternal metabolism of fatty acids and their effects on early placentation, placental fatty acid transport and metabolism, and their roles in feto-placental growth and development. The review also highlights how maternal fat metabolism modulates lipid processing, including transportation, esterification, and oxidation of fatty acids.
Collapse
Affiliation(s)
- Asim K. Duttaroy
- Department of Nutrition, Faculty of Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Asim K. Duttaroy,
| | - Sanjay Basak
- Molecular Biology Division, ICMR-National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| |
Collapse
|
4
|
Li Y, Li C, Qin H, Yang M, Ye J, Long Y, Ou H. Proteome and phospholipid alteration reveal metabolic network of Bacillus thuringiensis under triclosan stress. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:508-516. [PMID: 28988086 DOI: 10.1016/j.scitotenv.2017.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/30/2017] [Accepted: 10/01/2017] [Indexed: 06/07/2023]
Abstract
Triclosan is a common antibacterial agent widely applied in various household and personal care products. The molecule, cell, organ and organism-level understanding of its toxicity pose to some target organisms has been investigated, whereas, the alteration of a single metabolic reaction, gene or protein cannot reflect the impact of triclosan on metabolic network. To clarify the interaction between triclosan stress and metabolism at network and system levels, phospholipid synthesis, and cellular proteome and metabolism of Bacillus thuringiensis under 1μM of triclosan stress were investigated through omics approaches. The results showed that C14:0, C16:1ω7, C16:0 and C18:2ω6 were significantly up-produced, and 19 proteins were differentially expressed. Whereas, energy supply, protein repair and the synthesis of DNA, RNA and protein were down-regulated. PyrH and Eno could be biomarkers to reflect triclosan stress. At network level, the target proteins ACOX1, AHR, CAR, CYP1A, CYP1B1, DNMT1, ENO, HSP60, HSP70, SLC5A5, TPO and UGT expressed in different species shared high sequence homology with the same function proteins found in Homo sapiens not only validated their role as biomarkers but also implied the potential impact of triclosan on the metabolic pathways and network of humans. These findings provided novel insights into the metabolic influence of triclosan at network levels, and developed an omics approach to evaluate the safety of target compound.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Chongshu Li
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huaming Qin
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Meng Yang
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jinshao Ye
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China; Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek 94598, CA, USA.
| | - Yan Long
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huase Ou
- Key Laboratory of Environmental Exposure and Health of Guangdong Province, School of Environment, Jinan University, Guangzhou 510632, China
| |
Collapse
|
5
|
Dadak S, Beall C, Vlachaki Walker JM, Soutar MPM, McCrimmon RJ, Ashford MLJ. Oleate induces K ATP channel-dependent hyperpolarization in mouse hypothalamic glucose-excited neurons without altering cellular energy charge. Neuroscience 2017; 346:29-42. [PMID: 28087336 PMCID: PMC5346158 DOI: 10.1016/j.neuroscience.2016.12.053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 12/29/2016] [Indexed: 11/29/2022]
Abstract
Oleate and low glucose hyperpolarize and inhibit GT1-7 and mouse GE neurons by activation of KATP. Oleate inhibition of GT1-7 neuron activity is not mediated by AMPK or fatty acid oxidation. Activation of KATP by oleate requires ATP hydrolysis but does not reduce the levels ATP or the ATP:ADP ratio. GT1-7 hyperpolarization by oleate is not dependent on UCP2. Oleate and low glucose depolarize a subpopulation of hypothalamic GI neurons.
The unsaturated fatty acid, oleate exhibits anorexigenic properties reducing food intake and hepatic glucose output. However, its mechanism of action in the hypothalamus has not been fully determined. This study investigated the effects of oleate and glucose on GT1-7 mouse hypothalamic cells (a model of glucose-excited (GE) neurons) and mouse arcuate nucleus (ARC) neurons. Whole-cell and perforated patch-clamp recordings, immunoblotting and cell energy status measures were used to investigate oleate- and glucose-sensing properties of mouse hypothalamic neurons. Oleate or lowered glucose concentration caused hyperpolarization and inhibition of firing of GT1-7 cells by the activation of ATP-sensitive K+ channels (KATP). This effect of oleate was not dependent on fatty acid oxidation or raised AMP-activated protein kinase activity or prevented by the presence of the UCP2 inhibitor genipin. Oleate did not alter intracellular calcium, indicating that CD36/fatty acid translocase may not play a role. However, oleate activation of KATP may require ATP metabolism. The short-chain fatty acid octanoate was unable to replicate the actions of oleate on GT1-7 cells. Although oleate decreased GT1-7 cell mitochondrial membrane potential there was no change in total cellular ATP or ATP/ADP ratios. Perforated patch and whole-cell recordings from mouse hypothalamic slices demonstrated that oleate hyperpolarized a subpopulation of ARC GE neurons by KATP activation. Additionally, in a separate small population of ARC neurons, oleate application or lowered glucose concentration caused membrane depolarization. In conclusion, oleate induces KATP-dependent hyperpolarization and inhibition of firing of a subgroup of GE hypothalamic neurons without altering cellular energy charge.
Collapse
Affiliation(s)
- Selma Dadak
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Craig Beall
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Julia M Vlachaki Walker
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building, Barrack Road, Exeter EX2 5DW, UK
| | - Marc P M Soutar
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Rory J McCrimmon
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | - Michael L J Ashford
- Division of Molecular and Clinical Medicine, School of Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK.
| |
Collapse
|
6
|
Bai J, Ding W, Kojima A, Seto T, Matsuura H. Putative binding sites for arachidonic acid on the human cardiac Kv 1.5 channel. Br J Pharmacol 2015; 172:5281-92. [PMID: 26292661 PMCID: PMC5341216 DOI: 10.1111/bph.13314] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/01/2015] [Accepted: 08/18/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND AND PURPOSE In human heart, the Kv 1.5 channel contributes to repolarization of atrial action potentials. This study examined the electrophysiological and molecular mechanisms underlying arachidonic acid (AA)-induced inhibition of the human Kv 1.5 (hKv 1.5) channel. EXPERIMENTAL APPROACH Site-directed mutagenesis was conducted to mutate amino acids that reside within the pore domain of the hKv 1.5 channel. Whole-cell patch-clamp method was used to record membrane currents through wild type and mutant hKv 1.5 channels heterologously expressed in CHO cells. Computer docking simulation was conducted to predict the putative binding site(s) of AA in an open-state model of the Kv 1.5 channel. KEY RESULTS The hKv 1.5 current was minimally affected at the onset of depolarization but was progressively reduced during depolarization by the presence of AA, suggesting that AA acts as an open-channel blocker. AA itself affected the channel at extracellular sites independently of its metabolites and signalling pathways. The blocking effect of AA was attenuated at pH 8.0 but not at pH 6.4. The blocking action of AA developed rather rapidly by co-expression of Kv β1.3. The AA-induced block was significantly attenuated in H463C, T480A, R487V, I502A, I508A, V512A and V516A, but not in T462C, A501V and L510A mutants of the hKv 1.5 channel. Docking simulation predicted that H463, T480, R487, I508, V512 and V516 are potentially accessible for interaction with AA. CONCLUSIONS AND IMPLICATIONS AA itself interacts with multiple amino acids located in the pore domain of the hKv 1.5 channel. These findings may provide useful information for future development of selective blockers of hKv 1.5 channels.
Collapse
Affiliation(s)
- Jia‐Yu Bai
- Department of PhysiologyShiga University of Medical ScienceOtsuJapan
| | - Wei‐Guang Ding
- Department of PhysiologyShiga University of Medical ScienceOtsuJapan
| | - Akiko Kojima
- Department of AnesthesiologyShiga University of Medical ScienceOtsuJapan
| | - Tomoyoshi Seto
- Department of AnesthesiologyShiga University of Medical ScienceOtsuJapan
| | - Hiroshi Matsuura
- Department of PhysiologyShiga University of Medical ScienceOtsuJapan
| |
Collapse
|
7
|
Yoo S, Lim JY, Hwang SW. Sensory TRP channel interactions with endogenous lipids and their biological outcomes. Molecules 2014; 19:4708-44. [PMID: 24739932 PMCID: PMC6271031 DOI: 10.3390/molecules19044708] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 04/08/2014] [Accepted: 04/08/2014] [Indexed: 01/30/2023] Open
Abstract
Lipids have long been studied as constituents of the cellular architecture and energy stores in the body. Evidence is now rapidly growing that particular lipid species are also important for molecular and cellular signaling. Here we review the current information on interactions between lipids and transient receptor potential (TRP) ion channels in nociceptive sensory afferents that mediate pain signaling. Sensory neuronal TRP channels play a crucial role in the detection of a variety of external and internal changes, particularly with damaging or pain-eliciting potentials that include noxiously high or low temperatures, stretching, and harmful substances. In addition, recent findings suggest that TRPs also contribute to altering synaptic plasticity that deteriorates chronic pain states. In both of these processes, specific lipids are often generated and have been found to strongly modulate TRP activities, resulting primarily in pain exacerbation. This review summarizes three standpoints viewing those lipid functions for TRP modulations as second messengers, intercellular transmitters, or bilayer building blocks. Based on these hypotheses, we discuss perspectives that account for how the TRP-lipid interaction contributes to the peripheral pain mechanism. Still a number of blurred aspects remain to be examined, which will be answered by future efforts and may help to better control pain states.
Collapse
Affiliation(s)
- Sungjae Yoo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Ji Yeon Lim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| | - Sun Wook Hwang
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul 136-705, Korea.
| |
Collapse
|
8
|
Salvador-Montañés O, Gómez-Gallanti A, Garofalo D, Noujaim SF, Peinado R, Filgueiras-Rama D. Polyunsaturated Fatty acids in atrial fibrillation: looking for the proper candidates. Front Physiol 2012; 3:370. [PMID: 23015791 PMCID: PMC3449334 DOI: 10.3389/fphys.2012.00370] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 08/28/2012] [Indexed: 12/19/2022] Open
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia encountered in clinical practice with growing prevalence in developed countries. Several medical and interventional therapies, such as atrial specific drugs and pulmonary vein isolation, have demonstrated prevention of recurrences. However, their suboptimal long-term success and significant rate of secondary effects have led to intensive research in the last decade focused on novel alternative and supplemental therapies. One such candidate is polyunsaturated fatty acids (PUFAs). Because of their biological properties, safety, simplicity, and relatively cheap cost, there is a special clinical interest in omega-3 PUFAs as a possible antiarrhythmic agent. Obtained from diets rich in fish, they represent one of the current supplemental therapies. At the cellular level, an increasing body of evidence has shown that n-3 PUFAs exert a variety of effects on cardiac ion channels, membrane dynamic properties, inflammatory cascade, and other targets related to AF prevention. In this article, we review the current basic and clinical evidence pertinent to n-3 PUFAs in AF treatment and prevention. We also discuss controversial outcomes among clinical studies and propose specific subsets of AF patients who will benefit most from n-3 PUFAs.
Collapse
Affiliation(s)
- Oscar Salvador-Montañés
- Cardiac Electrophysiology Unit, Department of Cardiology, Hospital Universitario la Paz Madrid, Spain
| | | | | | | | | | | |
Collapse
|
9
|
Bang S, Yoo S, Yang TJ, Cho H, Kim YG, Hwang SW. Resolvin D1 attenuates activation of sensory transient receptor potential channels leading to multiple anti-nociception. Br J Pharmacol 2011; 161:707-20. [PMID: 20880407 DOI: 10.1111/j.1476-5381.2010.00909.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND AND PURPOSE Temperature-sensitive transient receptor potential ion channels (thermoTRPs) expressed in primary sensory neurons and skin keratinocytes play a crucial role as peripheral pain detectors. Many natural and synthetic ligands have been found to act on thermoTRPs, but little is known about endogenous compounds that inhibit these TRPs. Here, we asked whether resolvin D1 (RvD1), a naturally occurring anti-inflammatory and pro-resolving lipid molecule is able to affect the TRP channel activation. EXPERIMENTAL APPROACH We examined the effect of RvD1 on the six thermoTRPs using Ca(2+) imaging and whole cell electrophysiology experiments using the HEK cell heterologous expression system, cultured sensory neurons and HaCaT keratinocytes. We also checked changes in agonist-specific acute licking/flicking or flinching behaviours and TRP-related mechanical and thermal pain behaviours using Hargreaves, Randall-Selitto and von Frey assay systems with or without inflammation. KEY RESULTS RvD1 inhibited the activities of TRPA1, TRPV3 and TRPV4 at nanomolar and micromolar levels. Consistent attenuations in agonist-specific acute pain behaviours by immediate peripheral administration with RvD1 were also observed. Furthermore, local pretreatment with RvD1 significantly reversed mechanical and thermal hypersensitivity in inflamed tissues. CONCLUSIONS AND IMPLICATIONS RvD1 was a novel endogenous inhibitor for several sensory TRPs. The results of our behavioural studies suggest that RvD1 has an analgesic potential via these TRP-related mechanisms.
Collapse
Affiliation(s)
- S Bang
- Korea University Graduate School of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
10
|
Laus MN, Soccio M, Trono D, Liberatore MT, Pastore D. Activation of the plant mitochondrial potassium channel by free fatty acids and acyl-CoA esters: a possible defence mechanism in the response to hyperosmotic stress. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:141-54. [PMID: 20801915 DOI: 10.1093/jxb/erq256] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The effect of free fatty acids (FFAs) and acyl-CoA esters on K(+) uptake was studied in mitochondria isolated from durum wheat (Triticum durum Desf.), a species that has adapted well to the semi-arid Mediterranean area and possessing a highly active mitochondrial ATP-sensitive K(+) channel (PmitoK(ATP)), that may confer resistance to environmental stresses. This was made by swelling experiments in KCl solution under experimental conditions in which PmitoK(ATP) activity was monitored. Linoleate and other FFAs (laurate, palmitate, stearate, palmitoleate, oleate, arachidonate, and the non-physiological 1-undecanesulphonate and 5-phenylvalerate), used at a concentration (10 μM) unable to damage membranes of isolated mitochondria, stimulated K(+) uptake by about 2-4-fold. Acyl-CoAs also promoted K(+) transport to a much larger extent with respect to FFAs (about 5-12-fold). In a different experimental system based on safranin O fluorescence measurements, the dissipation of electrical membrane potential induced by K(+) uptake via PmitoK(ATP) was found to increase in the presence of 5-phenylvalerate and palmitoyl-CoA, both unable to elicit the activity of the Plant Uncoupling Protein. This result suggests a direct activation of PmitoK(ATP). Stimulation of K(+) transport by FFAs/acyl-CoAs resulted in a widespread phenomenon in plant mitochondria from different mono/dicotyledonous species (bread wheat, barley, triticale, maize, lentil, pea, and topinambur) and from different organs (root, tuber, leaf, and shoot). Finally, an increase in mitochondrial FFAs up to a content of 50 nmol mg(-1) protein, which was able to activate PmitoK(ATP) strongly, was observed under hyperosmotic stress conditions. Since PmitoK(ATP) may act against environmental/oxidative stress, its activation by FFAs/acyl-CoAs is proposed to represent a physiological defence mechanism.
Collapse
Affiliation(s)
- Maura N Laus
- Dipartimento di Scienze Agro-ambientali, Chimica e Difesa Vegetale, Facoltà di Agraria, Università degli Studi di Foggia, Via Napoli, 25-71122 Foggia, Italy
| | | | | | | | | |
Collapse
|
11
|
Endogenous lipid-derived ligands for sensory TRP ion channels and their pain modulation. Arch Pharm Res 2010; 33:1509-20. [DOI: 10.1007/s12272-010-1004-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 10/18/2022]
|
12
|
Panickar K, Bhathena S. Control of Fatty Acid Intake and the Role of Essential Fatty Acids in Cognitive Function and Neurological Disorders. Front Neurosci 2009. [DOI: 10.1201/9781420067767-c18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
13
|
Federici M, Nisticò R, Giustizieri M, Bernardi G, Mercuri NB. Ethanol enhances GABAB-mediated inhibitory postsynaptic transmission on rat midbrain dopaminergic neurons by facilitating GIRK currents. Eur J Neurosci 2009; 29:1369-77. [DOI: 10.1111/j.1460-9568.2009.06700.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
14
|
Abstract
Arachidonic acid (AA), a polyunsaturated fatty acid with four double bonds, has multiple actions on living cells. Many of these effects are mediated by an action of AA or its metabolites on ion channels. During the last 10 years, new types of ion channels, transient receptor potential (TRP) channels, store-operated calcium entry (SOCE) channels and non-SOCE channels have been studied. This review summarizes our current knowledge about the effects of AA on TRP and non-SOCE channels as well as classical ion channels. It aims to distinguish between effects of AA itself and effects of AA metabolites. Lipid mediators are of clinical interest because some of them (for example, leukotrienes) play a role in various diseases, others (such as prostaglandins) are targets for pharmacological therapeutic intervention.
Collapse
|
15
|
Székely A, Kitajka K, Panyi G, Márián T, Gáspár R, Krasznai Z. Nutrition and immune system: certain fatty acids differently modify membrane composition and consequently kinetics of KV1.3 channels of human peripheral lymphocytes. Immunobiology 2007; 212:213-27. [PMID: 17412288 DOI: 10.1016/j.imbio.2007.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Revised: 11/21/2006] [Accepted: 01/16/2007] [Indexed: 10/23/2022]
Abstract
Potassium (K(+)) channels of human peripheral lymphocytes play a considerable role in the signalling processes required for immune responses. Modification of the fatty acid composition of the membrane influences the functions of various membrane enzymes and ion channels. We set out to establish how the incorporation of fatty acids with different carbon chain lengths and degrees of unsaturation into the cell membrane influences the function of K(V)1.3 channels of lymphocytes, thereby potentially modifying the immune responses of the cells. The incorporation of the fatty acids into the cell membrane was monitored by gas chromatography. Whole-cell patch-clamp experiments demonstrated that the polyunsaturated linoleic acid, arachidonic acid and docosahexaenoic acid all decreased the activation and inactivation time constants of the K(V)1.3 channels, but did not affect the voltage-dependence of steady-state activation and steady-state inactivation of the channels. Treatment with the saturated palmitic acid, stearic acid and the monounsaturated oleic acid did not result in significant changes in the biophysical parameters of K(V)1.3 gating studied. We conclude that the incorporation of fatty acids unsaturated to different degrees into the cell membrane of lymphocytes influenced the rate of gating transitions but not the equilibrium distribution of the channels between different states. This effect depended on the degree of unsaturation and the chain length of the fatty acids: no effects of saturated and monounsaturated fatty acids (16:0, 18:0 and 18:1) were observed whereas treatment with polyunsaturated fatty acids (18:2, 20:4 and 22:6) resulted in significant changes in the channel kinetics.
Collapse
Affiliation(s)
- Andrea Székely
- Faculty of Medicine, Department of Biophysics and Cell Biology, Medical and Health Science Centre, University of Debrecen, H-4032 Debrecen, Nagyerdei krt, 98, Hungary
| | | | | | | | | | | |
Collapse
|
16
|
Sohn JW, Lee D, Cho H, Lim W, Shin HS, Lee SH, Ho WK. Receptor-specific inhibition of GABAB-activated K+ currents by muscarinic and metabotropic glutamate receptors in immature rat hippocampus. J Physiol 2007; 580:411-22. [PMID: 17255165 PMCID: PMC2075565 DOI: 10.1113/jphysiol.2006.125914] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
It has been shown that the activation of G(q)-coupled receptors (G(q)PCRs) in cardiac myocytes inhibits the G protein-gated inwardly rectifying K(+) current (I(GIRK)) via receptor-specific depletion of phosphatidylinositol 4,5-bisphosphate (PIP(2)). In this study, we investigated the mechanism of the receptor-mediated regulation of I(GIRK) in acutely isolated hippocampal CA1 neurons by the muscarinic receptor agonist, carbachol (CCh), and the group I metabotropic glutamate receptor (mGluR) agonist, 3,5-dihydroxyphenylglycine (DHPG). I(GIRK) was activated by the GABA(B) receptor agonist, baclofen. When baclofen was repetitively applied at intervals of 2-3 min, the amplitude of the second I(GIRK) was 92.3 +/- 1.7% of the first I(GIRK) in control. Pretreatment of neurons with CCh or DHPG prior to the second application of baclofen caused a reduction in the amplitude of the second I(GIRK) to 54.8 +/- 1.3% and 51.4 +/- 0.6%, respectively. In PLCbeta1 knockout mice, the effect of CCh on I(GIRK) was significantly reduced, whereas the effect of DHPG remained unchanged. The CCh-mediated inhibition of I(GIRK) was almost completely abolished by PKC inhibitors and pipette solutions containing BAPTA. The DHPG-mediated inhibition of I(GIRK) was attenuated by the inhibition of phospholipase A(2) (PLA(2)), or the sequestration of arachidonic acid. We confirmed that DHPG eliminated the inhibition of I(GIRK) by arachidonic acid. These results indicate that muscarinic inhibition of I(GIRK) is mediated by the PLC/PKC signalling pathway, while group I mGluR inhibition of I(GIRK) occurs via the PLA(2)-dependent production of arachidonic acid. These results present a novel receptor-specific mechanism for crosstalk between G(q)PCRs and GABA(B) receptors.
Collapse
Affiliation(s)
- Jong-Woo Sohn
- Department of Physiology, Seoul National University College of Medicine, 28 Yonkeun-Dong, Jongno-gu, Seoul 110-799, Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD. Arachidonic acid cascade in endothelial pathobiology. Microvasc Res 2005; 69:107-27. [PMID: 15896353 DOI: 10.1016/j.mvr.2005.01.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2004] [Revised: 01/21/2005] [Accepted: 01/26/2005] [Indexed: 01/26/2023]
Abstract
Arachidonic acid (AA) and its metabolites (eicosanoids) represent powerful mediators, used by organisms to induce and suppress inflammation as a part of the innate response to disturbances. Several cell types participate in the synthesis and release of AA metabolites, while many cell types represent the targets for eicosanoid action. Endothelial cells (EC), forming a semi-permeable barrier between the interior space of blood vessels and underlying tissues, are of particular importance for the development of inflammation, since endothelium controls such diverse processes as vascular tone, homeostasis, adhesion of platelets and leukocytes to the vascular wall, and permeability of the vascular wall for cells and fluids. Proliferation and migration of endothelial cells contribute significantly to new vessel development (angiogenesis). This review discusses endothelial-specific synthesis and action of arachidonic acid derivatives with a particular focus on the mechanisms of signal transduction and associated intracellular protein targets.
Collapse
Affiliation(s)
- Natalia V Bogatcheva
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
18
|
Zheng HF, Li XL, Jin ZY, Sun JB, Li ZL, Xu WX. Effects of unsaturated fatty acids on calcium-activated potassium current in gastric myocytes of guinea pigs. World J Gastroenterol 2005; 11:672-5. [PMID: 15655819 PMCID: PMC4250736 DOI: 10.3748/wjg.v11.i5.672] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of exogenous unsaturated fatty acids on calcium-activated potassium current [IK(Ca)] in gastric antral circular myocytes of guinea pigs.
METHODS: Gastric myocytes were isolated by collagenase from the antral circular layer of guinea pig stomach. The whole-cell patch clamp technique was used to record IK(Ca) in the isolated single smooth muscle cells with or without different concentrations of arachidonic acid (AA), linoleic acid (LA), and oleic acid (OA).
RESULTS: AA at concentrations of 2,5 and 10 μmol/L markedly increased IK(Ca) in a dose-dependent manner. LA at concentrations of 5, 10 and 20 μmol/L also enhanced IK(Ca) in a dose-dependent manner. The increasing potency of AA, LA, and oleic acid (OA) on IK(Ca) at the same concentration (10 μmol/L) was in the order of AA>LA>OA. AA (10 μmol/L)-induced increase of IK(Ca) was not blocked by H-7 (10 μmol/L), an inhibitor of protein kinase C (PKC), or indomethacin (10 μmol/L), an inhibitor of the cyclooxygenase pathway, and 17-octadecynoic acid (10 μmol/L), an inhibitor of the cytochrome P450 pathway, but weakened by nordihydroguaiaretic acid (10 μmol/L), an inhibitor of the lipoxygenase pathway.
CONCLUSION: Unsaturated fatty acids markedly increase IK(Ca), and the enhancing potencies are related to the number of double bonds in the fatty acid chain. The lipoxygenase pathway of unsaturated fatty acid metabolism is involved in the unsaturated fatty acid-induced increase of IK(Ca) in gastric antral circular myocytes of guinea pigs.
Collapse
Affiliation(s)
- Hai-Feng Zheng
- Shanghai Jiaotong University School of Medicine, Shanghai 200030, China
| | | | | | | | | | | |
Collapse
|
19
|
Nikolov EN, Ivanova-Nikolova TT. Coordination of Membrane Excitability through a GIRK1 Signaling Complex in the Atria. J Biol Chem 2004; 279:23630-6. [PMID: 15037627 DOI: 10.1074/jbc.m312861200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of heart rate is a complex process that integrates the function of multiple G protein-coupled receptors and ion channels. Among them, the G protein-regulated inwardly rectifying K+ (GIRK or KACh) channels of sinoatrial node and atria play a major role in beat-to-beat regulation of the heart rate. The atrial KACh channels are heterotetrameric proteins that consist of two pore-forming subunits, GIRK1 and GIRK4. Following m2-muscarinic acetylcholine receptor (M2R) stimulation, KACh channel activation is conferred by the direct binding of G protein betagamma subunits (Gbetagamma) to the channel. Here we show that atrial KACh channels are assembled in a signaling complex with Gbetagamma, G protein-coupled receptor kinase, cyclic adenosine monophosphate-dependent protein kinase, two protein phosphatases, PP1 and PP2A, receptor for activated C kinase 1, and actin. This complex would enable the KACh channels to rapidly integrate beta-adrenergic and M2R signaling in the membrane, and it provides insight into general principles governing spatial integration of different transduction pathways. Furthermore, the same complex might recruit protein kinase C (PKC) to the KACh channel following alpha-adrenergic receptor stimulation. Our electro-physiological recordings from single atrial KACh channels revealed a potent inhibition of Gbetagamma-induced channel activity by PKC, thus validating the physiological significance of the observed complex as interconnecting site where signaling molecules congregate to execute a coordinated control of membrane excitability.
Collapse
Affiliation(s)
- Emil N Nikolov
- Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, North Carolina 27858, USA
| | | |
Collapse
|
20
|
Han J, Kang D, Kim D. Properties and modulation of the G protein-coupled K+ channel in rat cerebellar granule neurons: ATP versus phosphatidylinositol 4,5-bisphosphate. J Physiol 2003; 550:693-706. [PMID: 12807991 PMCID: PMC2343084 DOI: 10.1113/jphysiol.2003.042119] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cerebellar granule (CG) neurons express a G protein-gated K+ current (GIRK) that is involved in the neurotransmitter regulation of the excitatory input to the Purkinje fibres of the cerebellum. Here, we characterized the single-channel behaviour of GIRK in CG neurons, and examined the effects of several known modulators of GIRK and their putative physiological roles. Whole-cell GIRKs were activated by baclofen, a GABAB receptor agonist. In cell-attached patches, baclofen activated GIRK with a single-channel conductance of 34 pS and a mean open time of 0.5 ms. In inside-out patches, application of GTPgammaS to the cytoplasmic side activated GIRK with similar kinetic properties. Addition of 2 mM ATP resulted in a marked increase in GIRK activity and induced longer-lived openings with a mean open time of 2.3 ms (ATP-dependent gating). Brain cytosolic fraction or free fatty acids inhibited this effect of ATP, and this was reversed by addition of purified recombinant brain fatty acid binding protein. Applying phosphatidylinositol 4,5-bisphosphate (PIP2) to inside-out patches in place of ATP also increased GIRK activity; however, only an increase in the frequency of opening was observed. The stimulatory effect of PIP2 on GIRK activity was not inhibited by the cytosolic fraction. Following maximal activation by PIP2, ATP caused an additional 2.2-fold increase in GIRK activity. These results show that GIRKs in CG neurons are regulated by positive and negative modulators that affect frequency as well as open time duration. The net effect is that the ligand-activated GIRK is in the 'low activity' state associated with short-lived openings, mainly due to strong action of the cytosolic inhibitor of ATP-dependent gating. Our results also show that intracellular ATP modulates GIRK via pathways different from that of PIP2 in CG neurons.
Collapse
Affiliation(s)
- Jaehee Han
- Department of Physiology, Gyeonsang National University School of Medicine, Chinju, Korea
| | | | | |
Collapse
|
21
|
Müllner C, Yakubovich D, Dessauer CW, Platzer D, Schreibmayer W. Single channel analysis of the regulation of GIRK1/GIRK4 channels by protein phosphorylation. Biophys J 2003; 84:1399-409. [PMID: 12547819 PMCID: PMC1302715 DOI: 10.1016/s0006-3495(03)74954-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G-Protein activated, inwardly rectifying potassium channels (GIRKs) are important effectors of G-protein beta/gamma-subunits, playing essential roles in the humoral regulation of cardiac activity and also in higher brain functions. G-protein activation of channels of the GIRK1/GIRK4 heterooligomeric composition is controlled via phosphorylation by cyclic AMP dependent protein kinase (PKA) and dephosphorylation by protein phosphatase 2A (PP(2)A). To study the molecular mechanism of this unprecedented example of G-protein effector regulation, single channel recordings were performed on isolated patches of plasma membranes of Xenopus laevis oocytes. Our study shows that: (i) The open probability (P(o)) of GIRK1/GIRK4 channels, stimulated by coexpressed m(2)-receptors, was significantly increased upon addition of the catalytic subunit of PKA to the cytosolic face of an isolated membrane patch. (ii) At moderate concentrations of recombinant G(beta1/gamma2), used to activate the channel, P(o) was significantly reduced in patches treated with PP(2)A, when compared to patches with PKA-cs. (iii) Several single channel gating parameters, including modal gating behavior, were significantly different between phosphorylated and dephosphorylated channels, indicating different gating behavior between the two forms of the protein. Most of these changes were, however, not responsible for the marked difference in P(o) at moderate G-protein concentrations. (iv) An increase of the frequency of openings (f(o)) and a reduction of dwell time duration of the channel in the long-lasting C(5) state was responsible for facilitation of GIRK1/GIRK4 channels by protein phosphorylation. Dephosphorylation by PP(2)A led to an increase of G(beta1/gamma2) concentration required for full activation of the channel and hence to a reduction of the apparent affinity of GIRK1/GIRK4 for G(beta1/gamma2). (v) Although possibly not directly the target of protein phosphorylation/dephosphorylation, the last 20 C-terminal amino acids of the GIRK1 subunit are required for the reduction of apparent affinity for the G-protein by PP(2)A, indicating that they constitute an essential part of the off-switch.
Collapse
Affiliation(s)
- Carmen Müllner
- Institute for Medical Physics and Biophysics, Graz University, Austria
| | | | | | | | | |
Collapse
|
22
|
Hilgemann DW, Feng S, Nasuhoglu C. The Complex and Intriguing Lives of PIP2 with Ion Channels and Transporters. Sci Signal 2001. [DOI: 10.1126/scisignal.1112001re19] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Hilgemann DW, Feng S, Nasuhoglu C. The complex and intriguing lives of PIP2 with ion channels and transporters. SCIENCE'S STKE : SIGNAL TRANSDUCTION KNOWLEDGE ENVIRONMENT 2001; 2001:re19. [PMID: 11734659 DOI: 10.1126/stke.2001.111.re19] [Citation(s) in RCA: 375] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Phosphatidylinositol-4,5-bisphosphate (PIP(2)), the precursor of several signaling molecules in eukayotic cells, is itself also used by cells to signal to membrane-associated proteins. PIP(2) anchors numerous signaling molecules and cytoskeleton at the cell membrane, and the metabolism of PIP(2) is closely connected to membrane trafficking. Recently, ion transporters and channels have been discovered to be regulated by PIP(2). Systems reported to be activated by PIP(2) include (i) plasmalemmal calcium pumps (PMCA), (ii) cardiac sodium-calcium exchangers (NCX1), (iii) sodium-proton exchangers (NHE1-4), (iv) a sodium-magnesium exchanger of unknown identity, (v) all inward rectifier potassium channels (KATP, IRK, GIRK, and ROMK channels), (vi) epithelial sodium channels (ENaC), and (vii) ryanodine-sensitive calcium release channels (RyR). Systems reported to be inhibited by PIP(2) include (i) cyclic nucleotide-gated channels of the rod (CNG), (ii) transient receptor potential-like (TRPL) Drosophila phototransduction channels, (iii) capsaicin-activated transient receptor potential (TRP) channels (VR1), and (iv) IP(3)-gated calcium release channels (IP3R). Systems that appear to be completely insensitive to PIP(2) include (i) voltage-gated sodium channels, (ii) most voltage-gated potassium channels, (iii) sodium-potassium pumps, (iv) several neurotransmitter transporters, and (v) cystic fibrosis transmembrane receptor (CFTR)-type chloride channels. Presumably, local changes of the concentration of PIP(2) in the plasma membrane represent cell signals to those mechanisms sensitive to PIP(2) changes. Unfortunately, our understanding of how local PIP(2) concentrations are regulated remains very limited. One important complexity is the probable existence of phospholipid microdomains, or lipid rafts. Such domains may serve to localize PIP(2) and thereby PIP(2) signaling, as well as to organize PIP(2) binding partners into signaling complexes. A related biological role of PIP(2) may be to control the activity of ion transporters and channels during biosynthesis or vesicle trafficking. Low PIP(2) concentrations in the secretory pathway would inactivate all of the systems that are stimulated by PIP(2). How, in detail, is PIP(2) used by cells to control ion channel and transporter activities? Further progress requires an improved understanding of lipid kinases and phosphatases, how they are regulated, where they are localized in cells, and with which ion channels and transporters they might localize.
Collapse
Affiliation(s)
- D W Hilgemann
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA.
| | | | | |
Collapse
|
24
|
Liu GX, Hanley PJ, Ray J, Daut J. Long-chain acyl-coenzyme A esters and fatty acids directly link metabolism to K(ATP) channels in the heart. Circ Res 2001; 88:918-24. [PMID: 11349001 DOI: 10.1161/hh0901.089881] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
ATP-sensitive K (K(ATP)) channels are inhibited by cytosolic ATP, a defining property that implicitly links these channels to cellular metabolism. Here we report a direct link between fatty acid metabolism and K(ATP) channels in cardiac muscle cells. Long-chain (LC) acyl-coenzyme A (CoA) esters are synthesized from fatty acids and serve as the principal metabolic substrates of the heart. We have studied the effects of LC acyl-CoA esters and LC fatty acids on K(ATP) channels of isolated guinea pig ventricular myocytes and compared them with the effects of phosphatidylinositol 4,5-bisphosphate (PIP(2)). Application of oleoyl-CoA (0.2 or 1 micromol/L), a naturally occurring acyl-CoA ester, to the cytosolic side of excised patches completely prevented rundown of K(ATP) channels, but not of Kir2 channels. The open probability of K(ATP) channels measured in the presence of oleoyl-CoA or PIP(2) was voltage dependent, increasing with depolarization. Oleoyl-CoA greatly reduced the ATP sensitivity of K(ATP) channels. At a concentration of 2 micromol/L, oleoyl-CoA increased the half-maximal inhibitory concentration of ATP >200-fold. The time course of the decrease in ATP sensitivity was much faster during application of oleoyl-CoA than during application of PIP(2). The effects of PIP(2), but not of oleoyl-CoA, were inhibited by increasing Ca(2+) to 1 mmol/L. Oleate (C18:1; 10 micromol/L), the precursor of oleoyl-CoA, inhibited K(ATP) channels activated by oleoyl-COA: Palmitoleoyl-CoA and palmitoleate (C16:1) exerted similar reciprocal effects. These findings indicate that LC fatty acids and their CoA-linked derivatives may be key physiological modulators of K(ATP) channel activity in the heart.
Collapse
Affiliation(s)
- G X Liu
- Institute of Physiology, Marburg University, Marburg, Germany
| | | | | | | |
Collapse
|
25
|
Affiliation(s)
- A R Brash
- Division of Clinical Pharmacology, Vanderbilt University Medical Center, 23rd Avenue at Pierce, Nashville, Tennessee 37232-6602, USA.
| |
Collapse
|
26
|
Rogalski SL, Chavkin C. Eicosanoids inhibit the G-protein-gated inwardly rectifying potassium channel (Kir3) at the Na+/PIP2 gating site. J Biol Chem 2001; 276:14855-60. [PMID: 11278615 PMCID: PMC1262640 DOI: 10.1074/jbc.m010097200] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We previously showed that activation of the human endothelin A receptor (HETAR) by endothelin-1 (Et-1) selectively inhibits the response to mu opioid receptor (MOR) activation of the G-protein-gated inwardly rectifying potassium channel (Kir3). The Et-1 effect resulted from PLA2 production of an eicosanoid that inhibited Kir3. In this study, we show that Kir3 inhibition by eicosanoids is channel subunit-specific, and we identify the site within the channel required for arachidonic acid sensitivity. Activation of the G-protein-coupled MOR by the selective opioid agonist D-Ala(2)Glyol, enkephalin, released Gbetagamma that activated Kir3. The response to MOR activation was significantly inhibited by Et-1 activation of HETAR in homomeric channels composed of either Kir3.2 or Kir3.4. In contrast, homomeric channels of Kir3.1 were substantially less sensitive. Domain deletion and channel chimera studies suggested that the sites within the channel required for Et-1-induced inhibition were within the region responsible for channel gating. Mutation of a single amino acid in the homomeric Kir3.1 to produce Kir3.1(F137S)(N217D) dramatically increased the channel sensitivity to arachidonic acid and Et-1 treatment. Complementary mutation of the equivalent amino acid in Kir3.4 to produce Kir3.4(S143T)(D223N) significantly reduced the sensitivity of the channel to arachidonic acid- and Et-1-induced inhibition. The critical aspartate residue required for eicosanoid sensitivity is the same residue required for Na(+) regulation of PIP(2) gating. The results suggest a model of Kir3 gating that incorporates a series of regulatory steps, including Gbetagamma, PIP(2), Na(+), and arachidonic acid binding to the channel gating domain.
Collapse
Affiliation(s)
| | - Charles Chavkin
- ‡ To whom correspondence should be addressed: Dept. of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195-7280. Tel.: 206-543-4266; Fax: 206-685-3822; E-mail:
| |
Collapse
|
27
|
Medina I, Krapivinsky G, Arnold S, Kovoor P, Krapivinsky L, Clapham DE. A switch mechanism for G beta gamma activation of I(KACh). J Biol Chem 2000; 275:29709-16. [PMID: 10900209 DOI: 10.1074/jbc.m004989200] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels are a family of K(+)-selective ion channels that slow the firing rate of neurons and cardiac myocytes. GIRK channels are directly bound and activated by the G protein G beta gamma subunit. As heterotetramers, they comprise the GIRK1 and the GIRK2, -3, or -4 subunits. Here we show that GIRK1 but not the GIRK4 subunit is phosphorylated when heterologously expressed. We found also that phosphatase PP2A dephosphorylation of a protein in the excised patch abrogates channel activation by G beta gamma. Experiments with the truncated molecule demonstrated that the GIRK1 C-terminal is critical for both channel phosphorylation and channel regulation by protein phosphorylation, but the critical phosphorylation sites were not located on the C terminus. These data provide evidence for a novel switch mechanism in which protein phosphorylation enables G beta gamma gating of the channel complex.
Collapse
Affiliation(s)
- I Medina
- Howard Hughes Medical Institute, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
28
|
Kobrinsky E, Mirshahi T, Zhang H, Jin T, Logothetis DE. Receptor-mediated hydrolysis of plasma membrane messenger PIP2 leads to K+-current desensitization. Nat Cell Biol 2000; 2:507-14. [PMID: 10934471 DOI: 10.1038/35019544] [Citation(s) in RCA: 199] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphatidylinositol bisphosphate (PIP2) directly regulates functions as diverse as the organization of the cytoskeleton, vesicular transport and ion channel activity. It is not known, however, whether dynamic changes in PIP2 levels have a regulatory role of physiological importance in such functions. Here, we show in both native cardiac cells and heterologous expression systems that receptor-regulated PIP2 hydrolysis results in desensitization of a GTP-binding protein-stimulated potassium current. Two receptor-regulated pathways in the plasma membrane cross-talk at the level of these channels to modulate potassium currents. One pathway signals through the betagamma subunits of G proteins, which bind directly to the channel. Gbetagamma subunits stabilize interactions with PIP2 and lead to persistent channel activation. The second pathway activates phospholipase C (PLC) which hydrolyses PIP2 and limits Gbetagamma-stimulated activity. Our results provide evidence that PIP2 itself is a receptor-regulated second messenger, downregulation of which accounts for a new form of desensitization.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Animals
- Animals, Newborn
- COS Cells
- Cell Membrane/drug effects
- Cell Membrane/enzymology
- Cell Membrane/metabolism
- Cells, Cultured
- Electric Conductivity
- Enzyme Activation/drug effects
- ErbB Receptors/chemistry
- ErbB Receptors/metabolism
- Estrenes/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels
- Heart Atria/cytology
- Heart Atria/drug effects
- Heart Atria/enzymology
- Heart Atria/metabolism
- Heterotrimeric GTP-Binding Proteins/metabolism
- Hydrolysis/drug effects
- Ion Channel Gating/drug effects
- Oocytes/metabolism
- Phosphatidylinositol 4,5-Diphosphate/metabolism
- Potassium/metabolism
- Potassium Channel Blockers
- Potassium Channels/metabolism
- Potassium Channels, Inwardly Rectifying
- Pyrrolidinones/pharmacology
- Rats
- Receptor Cross-Talk/drug effects
- Receptor, Muscarinic M1
- Receptor, Muscarinic M2
- Receptors, Cell Surface/agonists
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/metabolism
- Receptors, Muscarinic/chemistry
- Receptors, Muscarinic/metabolism
- Second Messenger Systems/drug effects
- Type C Phospholipases/antagonists & inhibitors
- Type C Phospholipases/metabolism
- Xenopus laevis
Collapse
Affiliation(s)
- E Kobrinsky
- Department of Physiology & Biophysics, Mount Sinai School of Medicine of the New York University, New York, New York 10029, USA
| | | | | | | | | |
Collapse
|