1
|
Shalomov B, Friesacher T, Yakubovich D, Combista JC, Reddy HP, Dabbah S, Bernsteiner H, Zangerl-Plessl EM, Stary-Weinzinger A, Dascal N. Ethosuximide: Subunit- and Gβγ-dependent blocker and reporter of allosteric changes in GIRK channels. Br J Pharmacol 2025; 182:1704-1718. [PMID: 39814556 DOI: 10.1111/bph.17446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/07/2024] [Accepted: 11/30/2024] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND AND PURPOSE The antiepileptic drug ethosuximide (ETX) suppresses epileptiform activity in a mouse model of GNB1 syndrome, caused by mutations in Gβ1 protein, likely through the inhibition of G-protein gated K+ (GIRK) channels. Here, we investigated the mechanism of ETX inhibition (block) of different GIRKs. EXPERIMENTAL APPROACH We studied ETX inhibition of GIRK channels expressed in Xenopus oocytes with or without their physiological activator, the G protein subunit dimer Gβγ. ETX binding site and mode of action were analysed using molecular dynamic (MD) simulations and kinetic modelling, and the predictions were tested by mutagenesis and functional testing. KEY RESULTS We show that ETX is a subunit-selective, allosteric blocker of GIRKs. The potency of ETX block is increased by Gβγ, in parallel with channel activation. MD simulations and mutagenesis locate the ETX binding site in GIRK2 to a region associated with phosphatidylinositol-4,5-bisphosphate (PIP2) regulation, and suggest that ETX acts by closing the helix bundle crossing (HBC) gate and altering channel's interaction with PIP2. The apparent affinity of ETX block is highly sensitive to changes in channel gating caused by mutations in Gβ1 or GIRK subunits. CONCLUSION AND IMPLICATIONS ETX block of GIRKs is allosteric, subunit-specific, and enhanced by Gβγ through an intricate network of allosteric interactions within the channel molecule. Our findings pose GIRK as a potential therapeutic target for ETX and ETX as a potent allosteric GIRK blocker and a tool for probing gating-related conformational changes in GIRK.
Collapse
Affiliation(s)
- Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | | | - J Carlo Combista
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shoham Dabbah
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Harald Bernsteiner
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Hedger G, Yen HY. The Influence of Phosphoinositide Lipids in the Molecular Biology of Membrane Proteins: Recent Insights from Simulations. J Mol Biol 2025; 437:168937. [PMID: 39793883 PMCID: PMC7617384 DOI: 10.1016/j.jmb.2025.168937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
The phosphoinositide family of membrane lipids play diverse and critical roles in eukaryotic molecular biology. Much of this biological activity derives from interactions of phosphoinositide lipids with integral and peripheral membrane proteins, leading to modulation of protein structure, function, and cellular distribution. Since the discovery of phosphoinositides in the 1940s, combined molecular biology, biophysical, and structural approaches have made enormous progress in untangling this vast and diverse cellular network of interactions. More recently, in silico approaches such as molecular dynamics simulations have proven to be an asset in prospectively identifying, characterising, explaining the structural basis of these interactions, and in the best cases providing atomic level testable hypotheses on how such interactions control the function of a given membrane protein. This review details a number of recent seminal discoveries in phosphoinositide biology, enabled by advanced biomolecular simulation, and its integration with molecular biology, biophysical, and structural biology approaches. The results of the simulation studies agree well with experimental work, and in a number of notable cases have arrived at the key conclusion several years in advance of the experimental structures. SUMMARY: Hedger and Yen review developments in simulations of phosphoinositides and membrane proteins.
Collapse
Affiliation(s)
- George Hedger
- Department of Life Sciences, Sir Ernst Chain Building, Imperial College London, London, SW7 2AZ, UK.
| | - Hsin-Yung Yen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK
| |
Collapse
|
3
|
Mkrtchyan L, Sahakyan H, Eldstrom J, Karapetyan T, Abrahamyan A, Nazaryan K, Schwarz JR, Kneussel M, Fedida D, Vardanyan V. Ion permeation through a narrow cavity constriction in KCNQ1 channels: Mechanism and implications for pathogenic variants. Proc Natl Acad Sci U S A 2024; 121:e2411182121. [PMID: 39671184 DOI: 10.1073/pnas.2411182121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 11/12/2024] [Indexed: 12/14/2024] Open
Abstract
KCNQ1 potassium channels play a pivotal role in the physiology and pathophysiology of several human excitable and epithelial tissues. The latest cryo-electron microscopy (cryo-EM) structures provide unique insights into channel function and pharmacology, opening avenues for different therapeutic strategies against human diseases associated with KCNQ1 mutations. However, these structures also raise fundamental questions about the mechanisms of ion permeation. Cryo-EM structures thought to represent the open state of the channel feature a cavity region not wide enough for accommodation of hydrated K+. To understand how K+ passes through the cavity constriction, we utilized microsecond-scale molecular dynamics (MD) simulations using the KCNQ1/KCNE3 cryo-EM structure, characterized mutants at the G345 residue situated at the narrowest point of the cavity, and recorded single channels. The findings indicate that ions become partially dehydrated at the constriction, which enables permeation. MD simulations demonstrate that the constriction can impede the flow of ions through the channel's pore, a finding that is corroborated by mutational screening and single-channel recordings. Reduced channel conductance is the key mechanism underlying reported pathological KCNQ1 mutations at or near the constriction site.
Collapse
Affiliation(s)
- Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology, Yerevan 0014, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg 20251, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, Yerevan 0014, Armenia
| |
Collapse
|
4
|
Nguyen H, Glaaser IW, Slesinger PA. Direct modulation of G protein-gated inwardly rectifying potassium (GIRK) channels. Front Physiol 2024; 15:1386645. [PMID: 38903913 PMCID: PMC11187414 DOI: 10.3389/fphys.2024.1386645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 06/22/2024] Open
Abstract
Ion channels play a pivotal role in regulating cellular excitability and signal transduction processes. Among the various ion channels, G-protein-coupled inwardly rectifying potassium (GIRK) channels serve as key mediators of neurotransmission and cellular responses to extracellular signals. GIRK channels are members of the larger family of inwardly-rectifying potassium (Kir) channels. Typically, GIRK channels are activated via the direct binding of G-protein βγ subunits upon the activation of G-protein-coupled receptors (GPCRs). GIRK channel activation requires the presence of the lipid signaling molecule, phosphatidylinositol 4,5-bisphosphate (PIP2). GIRK channels are also modulated by endogenous proteins and other molecules, including RGS proteins, cholesterol, and SNX27 as well as exogenous compounds, such as alcohol. In the last decade or so, several groups have developed novel drugs and small molecules, such as ML297, GAT1508 and GiGA1, that activate GIRK channels in a G-protein independent manner. Here, we aim to provide a comprehensive overview focusing on the direct modulation of GIRK channels by G-proteins, PIP2, cholesterol, and novel modulatory compounds. These studies offer valuable insights into the underlying molecular mechanisms of channel function, and have potential implications for both basic research and therapeutic development.
Collapse
Affiliation(s)
| | | | - Paul A. Slesinger
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
5
|
Zhao Y, Zhang X, Liu L, Hu F, Chang F, Han Z, Li C. Insights into Activation Dynamics and Functional Sites of Inwardly Rectifying Potassium Channel Kir3.2 by an Elastic Network Model Combined with Perturbation Methods. J Phys Chem B 2024; 128:1360-1370. [PMID: 38308647 DOI: 10.1021/acs.jpcb.3c06739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
The inwardly rectifying potassium channel Kir3.2, a member of the inward rectifier potassium (Kir) channel family, exerts important biological functions through transporting potassium ions outside of the cell, during which a large-scale synergistic movement occurs among its different domains. Currently, it is not fully understood how the binding of the ligand to the Kir3.2 channel leads to the structural changes and which key residues are responsible for the channel gating and allosteric dynamics. Here, we construct the Gaussian network model (GNM) of the Kir3.2 channel with the secondary structure and covalent interaction information considered (sscGNM), which shows a better performance in reproducing the channel's flexibility compared with the traditional GNM. In addition, the sscANM-based perturbation method is used to simulate the channel's conformational transition caused by the activator PIP2's binding. By applying certain forces to the PIP2 binding pocket, the coarse-grained calculations generate the similar conformational changes to the experimental observation, suggesting that the topology structure as well as PIP2 binding are crucial to the allosteric activation of the Kir3.2 channel. We also utilize the sscGNM-based thermodynamic cycle method developed by us to identify the key residues whose mutations significantly alter the channel's binding free energy with PIP2. We identify not only the residues important for the specific binding but also the ones critical for the allosteric transition coupled with PIP2 binding. This study is helpful for understanding the working mechanism of Kir3.2 channels and can provide important information for related drug design.
Collapse
Affiliation(s)
- Yingchun Zhao
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Xinyu Zhang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Lamei Liu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fangrui Hu
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Fubin Chang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Zhongjie Han
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chunhua Li
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Abrahamyan A, Eldstrom J, Sahakyan H, Karagulyan N, Mkrtchyan L, Karapetyan T, Sargsyan E, Kneussel M, Nazaryan K, Schwarz JR, Fedida D, Vardanyan V. Mechanism of external K+ sensitivity of KCNQ1 channels. J Gen Physiol 2023; 155:213880. [PMID: 36809486 PMCID: PMC9960071 DOI: 10.1085/jgp.202213205] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/20/2022] [Accepted: 01/31/2023] [Indexed: 02/23/2023] Open
Abstract
KCNQ1 voltage-gated K+ channels are involved in a wide variety of fundamental physiological processes and exhibit the unique feature of being markedly inhibited by external K+. Despite the potential role of this regulatory mechanism in distinct physiological and pathological processes, its exact underpinnings are not well understood. In this study, using extensive mutagenesis, molecular dynamics simulations, and single-channel recordings, we delineate the molecular mechanism of KCNQ1 modulation by external K+. First, we demonstrate the involvement of the selectivity filter in the external K+ sensitivity of the channel. Then, we show that external K+ binds to the vacant outermost ion coordination site of the selectivity filter inducing a diminution in the unitary conductance of the channel. The larger reduction in the unitary conductance compared to whole-cell currents suggests an additional modulatory effect of external K+ on the channel. Further, we show that the external K+ sensitivity of the heteromeric KCNQ1/KCNE complexes depends on the type of associated KCNE subunits.
Collapse
Affiliation(s)
- Astghik Abrahamyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Harutyun Sahakyan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Nare Karagulyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Liana Mkrtchyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Tatev Karapetyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Ernest Sargsyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Matthias Kneussel
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - Karen Nazaryan
- Laboratory of Computational Modeling of Biological Processes, Institute of Molecular Biology of National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| | - Jürgen R Schwarz
- Institute for Molecular Neurogenetics, Center for Molecular Neurobiology Hamburg , Hamburg, Germany
| | - David Fedida
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia , Vancouver, BC, Canada
| | - Vitya Vardanyan
- Molecular Neuroscience Group, Institute of Molecular Biology, National Academy of Sciences of the Republic of Armenia , Yerevan, Armenia
| |
Collapse
|
7
|
Lee SJ, Maeda S, Gao J, Nichols CG. Oxidation Driven Reversal of PIP 2-dependent Gating in GIRK2 Channels. FUNCTION 2023; 4:zqad016. [PMID: 37168492 PMCID: PMC10165546 DOI: 10.1093/function/zqad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/24/2023] [Accepted: 04/03/2023] [Indexed: 05/13/2023] Open
Abstract
Physiological activity of G protein gated inward rectifier K+ (GIRK, Kir3) channel, dynamically regulated by three key ligands, phosphoinositol-4,5-bisphosphate (PIP2), Gβγ, and Na+, underlies cellular electrical response to multiple hormones and neurotransmitters in myocytes and neurons. In a reducing environment, matching that inside cells, purified GIRK2 (Kir3.2) channels demonstrate low basal activity, and expected sensitivity to the above ligands. However, under oxidizing conditions, anomalous behavior emerges, including rapid loss of PIP2 and Na+-dependent activation and a high basal activity in the absence of any agonists, that is now paradoxically inhibited by PIP2. Mutagenesis identifies two cysteine residues (C65 and C190) as being responsible for the loss of PIP2 and Na+-dependent activity and the elevated basal activity, respectively. The results explain anomalous findings from earlier studies and illustrate the potential pathophysiologic consequences of oxidation on GIRK channel function, as well as providing insight to reversed ligand-dependence of Kir and KirBac channels.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Shoji Maeda
- Department of Pharmacology, Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | - Jian Gao
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Pettini F, Domene C, Furini S. Early Steps in C-Type Inactivation of the hERG Potassium Channel. J Chem Inf Model 2023; 63:251-258. [PMID: 36512342 PMCID: PMC9832476 DOI: 10.1021/acs.jcim.2c01028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fast C-type inactivation confers distinctive functional properties to the hERG potassium channel, and its association to inherited and acquired cardiac arrythmias makes the study of the inactivation mechanism of hERG at the atomic detail of paramount importance. At present, two models have been proposed to describe C-type inactivation in K+-channels. Experimental data and computational work on the bacterial KcsA channel support the hypothesis that C-type inactivation results from a closure of the selectivity filter that sterically impedes ion conduction. Alternatively, recent experimental structures of a mutated Shaker channel revealed a widening of the extracellular portion of the selectivity filter, which might diminish conductance by interfering with the mechanism of ion permeation. Here, we performed molecular dynamics simulations of the wild-type hERG, a non-inactivating mutant (hERG-N629D), and a mutant that inactivates faster than the wild-type channel (hERG-F627Y) to find out which and if any of the two reported C-type inactivation mechanisms applies to hERG. Closure events of the selectivity filter were not observed in any of the simulated trajectories but instead, the extracellular section of the selectivity filter deviated from the canonical conductive structure of potassium channels. The degree of widening of the potassium binding sites at the extracellular entrance of the channel was directly related to the degree of inactivation with hERG-F627Y > wild-type hERG > hERG-N629D. These findings support the hypothesis that C-type inactivation in hERG entails a widening of the extracellular entrance of the channel rather than a closure of the selectivity filter.
Collapse
Affiliation(s)
- Francesco Pettini
- Department
of Medical Biotechnologies, University of
Siena, viale Mario Bracci 12, Siena 53100, Italy,Department
of Biotechnology, Chemistry and Pharmacy, University of Siena, viale Mario Bracci 12, Siena 53100, Italy
| | - Carmen Domene
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.,Department
of Chemistry, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.,
| | - Simone Furini
- Department
of Electrical, Electronic and Information Engineering ″Guglielmo
Marconi”, University of Bologna, via dell’Università
50, Cesena (FC) 47521, Italy,
| |
Collapse
|
9
|
Jogini V, Jensen MØ, Shaw DE. Gating and modulation of an inward-rectifier potassium channel. J Gen Physiol 2022; 155:213765. [PMID: 36524993 PMCID: PMC9764021 DOI: 10.1085/jgp.202213085] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Inward-rectifier potassium channels (Kirs) are lipid-gated ion channels that differ from other K+ channels in that they allow K+ ions to flow more easily into, rather than out of, the cell. Inward rectification is known to result from endogenous magnesium ions or polyamines (e.g., spermine) binding to Kirs, resulting in a block of outward potassium currents, but questions remain regarding the structural and dynamic basis of the rectification process and lipid-dependent channel activation. Here, we present the results of long-timescale molecular dynamics simulations starting from a crystal structure of phosphatidylinositol 4,5-bisphosphate (PIP2)-bound chicken Kir2.2 with a non-conducting pore. After introducing a mutation (G178R) that is known to increase the open probability of a homologous channel, we were able to observe transitions to a stably open, ion-conducting pore, during which key conformational changes occurred in the main activation gate and the cytoplasmic domain. PIP2 binding appeared to increase stability of the pore in its open and conducting state, as PIP2 removal resulted in pore closure, with a median closure time about half of that with PIP2 present. To investigate structural details of inward rectification, we simulated spermine binding to and unbinding from the open pore conformation at positive and negative voltages, respectively, and identified a spermine-binding site located near a previously hypothesized site between the pore cavity and the selectivity filter. We also studied the effects of long-range electrostatics on conduction and spermine binding by mutating charged residues in the cytoplasmic domain and found that a finely tuned charge density, arising from basic and acidic residues within the cytoplasmic domain, modulated conduction and rectification.
Collapse
Affiliation(s)
| | | | - David E. Shaw
- D. E. Shaw Research, New York, NY, USA,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
10
|
Lee SJ, Nichols CG. Seeing spermine blocking of K+ ion movement through inward rectifier Kir2.2 channels. J Gen Physiol 2022; 155:213764. [PMID: 36524992 PMCID: PMC9764022 DOI: 10.1085/jgp.202213144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Inwardly rectifier potassium (Kir) channels are a major potassium channel sub-class whose function is regulated by ligand-dependent gating and highly voltage-dependent block by polyamines. With molecular dynamics simulations over previously unattainable timescales, Jogini et al. (J. Gen. Physiol. https://doi.org/10.1085/jgp.202213085) provide unprecedented visualization of K+ conduction through open Kir2.2 channels and of the molecular details of channel block by spermine.
Collapse
Affiliation(s)
- Sun-Joo Lee
- Department of Cell Biology and Physiology, Center for Investigation of Membrane Excitability Diseases, Washington University in. St. Louis, St. Louis, MO, USA
| | - Colin G. Nichols
- Department of Cell Biology and Physiology, Center for Investigation of Membrane Excitability Diseases, Washington University in. St. Louis, St. Louis, MO, USA,Correspondence to Colin G. Nichols:
| |
Collapse
|
11
|
Bauer D, Wissmann J, Moroni A, Thiel G, Hamacher K. Weak Cation Selectivity in HCN Channels Results From K +-Mediated Release of Na + From Selectivity Filter Binding Sites. FUNCTION (OXFORD, ENGLAND) 2022; 3:zqac019. [PMID: 36156894 PMCID: PMC9492253 DOI: 10.1093/function/zqac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 04/11/2022] [Indexed: 01/07/2023]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels generate the pacemaker current which plays an important role in the timing of various biological processes like the heart beat. We used umbrella sampling to explore the potential of mean force for the conduction of potassium and sodium through the open HCN4 pore. Our data explain distinct functional features like low unitary conductance and weak selectivity as a result of high energetic barriers inside the selectivity filter of this channel. They exceed the 3-5 kJ/mol threshold which is presumed as maximal barrier for diffusion-limited conductance. Furthermore, simulations provide a thermodynamic explanation for the weak cation selectivity of HCN channels that contain only two ion binding sites in the selectivity filter (SF). We find that sodium ions bind more strongly to the SF than potassium and are easier released by binding of potassium than of another sodium. Hence ion transport and selectivity in HCN channels is not determined by the same mechanism as in potassium-selective channels; it rather relies on sodium as a weak blocker that can only be released by potassium.
Collapse
Affiliation(s)
- Daniel Bauer
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany
| | - Jan Wissmann
- Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| | - Anna Moroni
- Department of Biosciences, University of Milan, via Celoria 26, 20133 Milan, Italy
| | | | - Kay Hamacher
- Department of Biology and Centre for Synthetic Biology, TU Darmstadt, Schnittspahnstrasse 3, 64287 Darmstadt, Germany,Department of Physics, TU Darmstadt, Schlossgartenstrasse 7, 64289 Darmstadt, Germany
| |
Collapse
|
12
|
Friesacher T, Reddy HP, Bernsteiner H, Carlo Combista J, Shalomov B, Bera AK, Zangerl-Plessl EM, Dascal N, Stary-Weinzinger A. A selectivity filter mutation provides insights into gating regulation of a K + channel. Commun Biol 2022; 5:345. [PMID: 35411015 PMCID: PMC9001731 DOI: 10.1038/s42003-022-03303-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 03/22/2022] [Indexed: 11/13/2022] Open
Abstract
G-protein coupled inwardly rectifying potassium (GIRK) channels are key players in inhibitory neurotransmission in heart and brain. We conducted molecular dynamics simulations to investigate the effect of a selectivity filter (SF) mutation, G154S, on GIRK2 structure and function. We observe mutation-induced loss of selectivity, changes in ion occupancy and altered filter geometry. Unexpectedly, we reveal aberrant SF dynamics in the mutant to be correlated with motions in the binding site of the channel activator Gβγ. This coupling is corroborated by electrophysiological experiments, revealing that GIRK2wt activation by Gβγ reduces the affinity of Ba2+ block. We further present a functional characterization of the human GIRK2G154S mutant validating our computational findings. This study identifies an allosteric connection between the SF and a crucial activator binding site. This allosteric gating mechanism may also apply to other potassium channels that are modulated by accessory proteins. Gly selectivity filter (TIGYGYR) mutant of the GIRK2 channel causes rare but severe neurological disorder called the Keppen-Lubinsky syndrome. Here, the authors explore the molecular mechanism of action of this glycine to serine mutant causing disease and identify an allosteric connection between the selectivity filter and a crucial activator binding site.
Collapse
Affiliation(s)
- Theres Friesacher
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Haritha P Reddy
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Harald Bernsteiner
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - J Carlo Combista
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Boris Shalomov
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Eva-Maria Zangerl-Plessl
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria
| | - Nathan Dascal
- Department of Physiology and Pharmacology, School of Medicine, Tel Aviv University, Tel Aviv, 69978, Israel. .,Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, 69978, Israel.
| | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Josef-Holaubek-Platz 2, 1090, Vienna, Austria.
| |
Collapse
|
13
|
Fagnen C, Bannwarth L, Oubella I, Zuniga D, Haouz A, Forest E, Scala R, Bendahhou S, De Zorzi R, Perahia D, Vénien-Bryan C. Integrative Study of the Structural and Dynamical Properties of a KirBac3.1 Mutant: Functional Implication of a Highly Conserved Tryptophan in the Transmembrane Domain. Int J Mol Sci 2021; 23:335. [PMID: 35008764 PMCID: PMC8745282 DOI: 10.3390/ijms23010335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/18/2021] [Accepted: 12/23/2021] [Indexed: 12/02/2022] Open
Abstract
ATP-sensitive potassium (K-ATP) channels are ubiquitously expressed on the plasma membrane of cells in several organs, including the heart, pancreas, and brain, and they govern a wide range of physiological processes. In pancreatic β-cells, K-ATP channels composed of Kir6.2 and SUR1 play a key role in coupling blood glucose and insulin secretion. A tryptophan residue located at the cytosolic end of the transmembrane helix is highly conserved in eukaryote and prokaryote Kir channels. Any mutation on this amino acid causes a gain of function and neonatal diabetes mellitus. In this study, we have investigated the effect of mutation on this highly conserved residue on a KirBac channel (prokaryotic homolog of mammalian Kir6.2). We provide the crystal structure of the mutant KirBac3.1 W46R (equivalent to W68R in Kir6.2) and its conformational flexibility properties using HDX-MS. In addition, the detailed dynamical view of the mutant during the gating was investigated using the in silico method. Finally, functional assays have been performed. A comparison of important structural determinants for the gating mechanism between the wild type KirBac and the mutant W46R suggests interesting structural and dynamical clues and a mechanism of action of the mutation that leads to the gain of function.
Collapse
Affiliation(s)
- Charline Fagnen
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France;
| | - Ludovic Bannwarth
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Iman Oubella
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Dania Zuniga
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| | - Ahmed Haouz
- Institut Pasteur, C2RT-Plate-Forme de Cristallographie CNRS-UMR3528, 75724 Paris, France;
| | - Eric Forest
- CNRS, IBS, CEA, University Grenoble Alpes, 38044 Grenoble, France;
| | - Rosa Scala
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, University Côte d’Azur, 06560 Nice, France; (R.S.); (S.B.)
| | - Saïd Bendahhou
- CNRS UMR7370, LP2M, Labex ICST, Faculté de Médecine, University Côte d’Azur, 06560 Nice, France; (R.S.); (S.B.)
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Licio Giorgeri 1, 34127 Trieste, Italy;
| | - David Perahia
- Laboratoire de Biologie et Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, 4 Ave. des Sciences, 91190 Gif-sur-Yvette, France;
| | - Catherine Vénien-Bryan
- IMPMC, UMR 7590, CNRS, Muséum National d’Histoire Naturelle, Sorbonne Université, 75005 Paris, France; (C.F.); (L.B.); (I.O.); (D.Z.)
| |
Collapse
|
14
|
Structural insights into GIRK2 channel modulation by cholesterol and PIP 2. Cell Rep 2021; 36:109619. [PMID: 34433062 PMCID: PMC8436891 DOI: 10.1016/j.celrep.2021.109619] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/10/2021] [Accepted: 08/05/2021] [Indexed: 12/28/2022] Open
Abstract
G-protein-gated inwardly rectifying potassium (GIRK) channels are important for determining neuronal excitability. In addition to G proteins, GIRK channels are potentiated by membrane cholesterol, which is elevated in the brains of people with neurodegenerative diseases such as Alzheimer’s dementia and Parkinson’s disease. The structural mechanism of cholesterol modulation of GIRK channels is not well understood. In this study, we present cryo-electron microscopy (cryoEM) structures of GIRK2 in the presence and absence of the cholesterol analog cholesteryl hemisuccinate (CHS) and phosphatidylinositol 4,5-bisphosphate (PIP2). The structures reveal that CHS binds near PIP2 in lipid-facing hydrophobic pockets of the transmembrane domain. Our structural analysis suggests that CHS stabilizes PIP2 interaction with the channel and promotes engagement of the cytoplasmic domain onto the transmembrane region. Mutagenesis of one of the CHS binding pockets eliminates cholesterol-dependent potentiation of GIRK2. Elucidating the structural mechanisms underlying cholesterol modulation of GIRK2 channels could facilitate the development of therapeutics for treating neurological diseases. Ion channels are important in determining neuronal excitability. Elevated cholesterol levels found in some neurodegenerative diseases can affect the function of ion channels. Mathiharan et al. take a structural and functional approach to identifying physical sites for cholesterol, and they provide details on how cholesterol potentiates ion channel activity.
Collapse
|
15
|
Weng J, Wang A, Zhang D, Liao C, Li G. A double bilayer to study the nonequilibrium environmental response of GIRK2 in complex states. Phys Chem Chem Phys 2021; 23:15784-15795. [PMID: 34286758 DOI: 10.1039/d1cp01785c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
G protein-gated inwardly rectifying potassium (GIRK) channels play essential roles in electrical signaling in neurons and muscle cells. Nonequilibrium environments provide crucial driving forces behind many cellular events. Here, we apply the antiparallel alignment double bilayer model to study GIRK2 in response to the time-dependent membrane potential. Using molecular dynamics and umbrella sampling, we examined the time-dependent environmental impact on the ion conduction, energy basis, and primary motions of GIRK2 in different complex states with phosphatidylinositol-4,5-bisphosphate (PIP2) and G-protein βγ subunits (Gβγ). The antiparallel alignment double bilayer model enables us to study the transport performance in inward and outward K+ and mixed K+ and Na+. We obtained the recoverable discharge process of GIRK2 complexed with both PIP2 and Gβγ, compared with occasional conduction under PIP2-only regulation. Calculations of potential of mean force suggest different regulation by the helix bundle crossing (HBC) gate and G-loop gate regarding different complex states and under a membrane potential. In a nonequilibrium environment, distinct functional rocking motions of GIRK2 were identified under strengthened correlations between the transmembrane helices and downstream cytoplasmic domains with binding of PIP2, cations, and Gβγ. The findings suggest the potential domain motions and dynamics associated with a nonequilibrium environment and highlight the application of the antiparallel alignment double bilayer model to investigate factors in an asymmetric environment.
Collapse
Affiliation(s)
- Junben Weng
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Anhui Wang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Dinglin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China. and University of Chinese Academy of Sciences, Beijing, China
| | - Chenyi Liao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| | - Guohui Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
16
|
Bründl M, Pellikan S, Stary-Weinzinger A. Simulating PIP 2-Induced Gating Transitions in Kir6.2 Channels. Front Mol Biosci 2021; 8:711975. [PMID: 34447786 PMCID: PMC8384051 DOI: 10.3389/fmolb.2021.711975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
ATP-sensitive potassium (KATP) channels consist of an inwardly rectifying K+ channel (Kir6.2) pore, to which four ATP-sensitive sulfonylurea receptor (SUR) domains are attached, thereby coupling K+ permeation directly to the metabolic state of the cell. Dysfunction is linked to neonatal diabetes and other diseases. K+ flux through these channels is controlled by conformational changes in the helix bundle region, which acts as a physical barrier for K+ permeation. In addition, the G-loop, located in the cytoplasmic domain, and the selectivity filter might contribute to gating, as suggested by different disease-causing mutations. Gating of Kir channels is regulated by different ligands, like Gβγ, H+, Na+, adenosine nucleotides, and the signaling lipid phosphatidyl-inositol 4,5-bisphosphate (PIP2), which is an essential activator for all eukaryotic Kir family members. Although molecular determinants of PIP2 activation of KATP channels have been investigated in functional studies, structural information of the binding site is still lacking as PIP2 could not be resolved in Kir6.2 cryo-EM structures. In this study, we used Molecular Dynamics (MD) simulations to examine the dynamics of residues associated with gating in Kir6.2. By combining this structural information with functional data, we investigated the mechanism underlying Kir6.2 channel regulation by PIP2.
Collapse
Affiliation(s)
| | | | - Anna Stary-Weinzinger
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| |
Collapse
|
17
|
Kir Channel Molecular Physiology, Pharmacology, and Therapeutic Implications. Handb Exp Pharmacol 2021; 267:277-356. [PMID: 34345939 DOI: 10.1007/164_2021_501] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
For the past two decades several scholarly reviews have appeared on the inwardly rectifying potassium (Kir) channels. We would like to highlight two efforts in particular, which have provided comprehensive reviews of the literature up to 2010 (Hibino et al., Physiol Rev 90(1):291-366, 2010; Stanfield et al., Rev Physiol Biochem Pharmacol 145:47-179, 2002). In the past decade, great insights into the 3-D atomic resolution structures of Kir channels have begun to provide the molecular basis for their functional properties. More recently, computational studies are beginning to close the time domain gap between in silico dynamic and patch-clamp functional studies. The pharmacology of these channels has also been expanding and the dynamic structural studies provide hope that we are heading toward successful structure-based drug design for this family of K+ channels. In the present review we focus on placing the physiology and pharmacology of this K+ channel family in the context of atomic resolution structures and in providing a glimpse of the promising future of therapeutic opportunities.
Collapse
|
18
|
Domene C, Ocello R, Masetti M, Furini S. Ion Conduction Mechanism as a Fingerprint of Potassium Channels. J Am Chem Soc 2021; 143:12181-12193. [PMID: 34323472 DOI: 10.1021/jacs.1c04802] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
K+-channels are membrane proteins that regulate the selective conduction of potassium ions across cell membranes. Although the atomic mechanisms of K+ permeation have been extensively investigated, previous work focused on characterizing the selectivity and occupancy of the binding sites, the role of water molecules in the conduction process, or the identification of the minimum energy pathways enabling permeation. Here, we exploit molecular dynamics simulations and the analytical power of Markov state models to perform a comparative study of ion conduction in three distinct channel models. Significant differences emerged in terms of permeation mechanisms and binding site occupancy by potassium ions and/or water molecules from 100 μs cumulative trajectories. We found that, at odds with the current paradigm, each system displays a characteristic permeation mechanism, and thus, there is not a unique way by which potassium ions move through K+-channels. The high functional diversity of K+-channels can be attributed in part to the differences in conduction features that have emerged from this work. This study provides crucial information and further inspiration for wet-lab chemists designing new synthetic strategies to produce versatile artificial ion channels that emulate membrane transport for their applications in diagnosis, sensors, the next generation of water treatment technologies, etc., as the ability of synthetic channels to transport molecular ions across a bilayer in a controlled way is usually governed through the choice of metal ions, their oxidation states, or their coordination geometries.
Collapse
Affiliation(s)
- Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, U.K.,Department of Chemistry, University of Oxford, Mansfield Road, Oxford, OX1 3TA, U.K
| | - Riccardo Ocello
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Matteo Masetti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-Università di Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Furini
- Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
19
|
Fagnen C, Bannwarth L, Zuniga D, Oubella I, De Zorzi R, Forest E, Scala R, Guilbault S, Bendahhou S, Perahia D, Vénien-Bryan C. Unexpected Gating Behaviour of an Engineered Potassium Channel Kir. Front Mol Biosci 2021; 8:691901. [PMID: 34179097 PMCID: PMC8222812 DOI: 10.3389/fmolb.2021.691901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 11/24/2022] Open
Abstract
In this study, we investigated the dynamics and functional characteristics of the KirBac3.1 S129R, a mutated bacterial potassium channel for which the inner pore-lining helix (TM2) was engineered so that the bundle crossing is trapped in an open conformation. The structure of this channel has been previously determined at high atomic resolution. We explored the dynamical characteristics of this open state channel using an in silico method MDeNM that combines molecular dynamics simulations and normal modes. We captured the global and local motions at the mutation level and compared these data with HDX-MS experiments. MDeNM provided also an estimation of the probability of the different opening states that are in agreement with our electrophysiological experiments. In the S129R mutant, the Arg129 mutation releases the two constriction points in the channel that existed in the wild type but interestingly creates another restriction point.
Collapse
Affiliation(s)
- Charline Fagnen
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France.,Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Ludovic Bannwarth
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Dania Zuniga
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Iman Oubella
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy
| | - Eric Forest
- IBS University Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Rosa Scala
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Samuel Guilbault
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - Saïd Bendahhou
- Faculté de Médecine, CNRS UMR7370, LP2M, Labex ICST, University Côte d'Azur, Nice, France
| | - David Perahia
- Laboratoire de Biologie et de Pharmacologie Appliquée, Ecole Normale Supérieure Paris-Saclay, Centre National de la Recherche Scientifique, Gif-sur-Yvette, France
| | - Catherine Vénien-Bryan
- UMR 7590, CNRS, Muséum National d'Histoire Naturelle, Institut de Minéralogie, Physique des Matériaux et Cosmochimie, IMPMC, Sorbonne Université, Paris, France
| |
Collapse
|
20
|
Therapeutic potential of targeting G protein-gated inwardly rectifying potassium (GIRK) channels in the central nervous system. Pharmacol Ther 2021; 223:107808. [PMID: 33476640 DOI: 10.1016/j.pharmthera.2021.107808] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
G protein-gated inwardly rectifying potassium channels (Kir3/GirK) are important for maintaining resting membrane potential, cell excitability and inhibitory neurotransmission. Coupled to numerous G protein-coupled receptors (GPCRs), they mediate the effects of many neurotransmitters, neuromodulators and hormones contributing to the general homeostasis and particular synaptic plasticity processes, learning, memory and pain signaling. A growing number of behavioral and genetic studies suggest a critical role for the appropriate functioning of the central nervous system, as well as their involvement in many neurologic and psychiatric conditions, such as neurodegenerative diseases, mood disorders, attention deficit hyperactivity disorder, schizophrenia, epilepsy, alcoholism and drug addiction. Hence, GirK channels emerge as a very promising tool to be targeted in the current scenario where these conditions already are or will become a global public health problem. This review examines recent findings on the physiology, function, dysfunction, and pharmacology of GirK channels in the central nervous system and highlights the relevance of GirK channels as a worthful potential target to improve therapies for related diseases.
Collapse
|
21
|
Zangerl-Plessl EM, Lee SJ, Maksaev G, Bernsteiner H, Ren F, Yuan P, Stary-Weinzinger A, Nichols CG. Atomistic basis of opening and conduction in mammalian inward rectifier potassium (Kir2.2) channels. J Gen Physiol 2021; 152:jgp.201912422. [PMID: 31744859 PMCID: PMC7034095 DOI: 10.1085/jgp.201912422] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/30/2019] [Indexed: 12/15/2022] Open
Abstract
This paper presents the crystal structure of a forced open inward rectifier Kir2.2 channel. Molecular dynamics reveals the details of ion permeation through the open channel. Potassium ion conduction through open potassium channels is essential to control of membrane potentials in all cells. To elucidate the open conformation and hence the mechanism of K+ ion conduction in the classic inward rectifier Kir2.2, we introduced a negative charge (G178D) at the crossing point of the inner helix bundle, the location of ligand-dependent gating. This “forced open” mutation generated channels that were active even in the complete absence of phosphatidylinositol-4,5-bisphosphate (PIP2), an otherwise essential ligand for Kir channel opening. Crystal structures were obtained at a resolution of 3.6 Å without PIP2 bound, or 2.8 Å in complex with PIP2. The latter revealed a slight widening at the helix bundle crossing (HBC) through backbone movement. MD simulations showed that subsequent spontaneous wetting of the pore through the HBC gate region allowed K+ ion movement across the HBC and conduction through the channel. Further simulations reveal atomistic details of the opening process and highlight the role of pore-lining acidic residues in K+ conduction through Kir2 channels.
Collapse
Affiliation(s)
| | - Sun-Joo Lee
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Grigory Maksaev
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Harald Bernsteiner
- Department of Pharmacology and Toxicology, University of Vienna, Vienna, Austria
| | - Feifei Ren
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | - Peng Yuan
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| | | | - Colin G Nichols
- Department of Cell Biology and Physiology and the Center for Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
22
|
Li DL, Hu L, Wang L, Chen CL. Permeation mechanisms through the selectivity filter and the open helix bundle crossing gate of GIRK2. Comput Struct Biotechnol J 2020; 18:3950-3958. [PMID: 33335691 PMCID: PMC7734222 DOI: 10.1016/j.csbj.2020.11.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/01/2022] Open
Abstract
G protein-gated inwardly rectifying potassium channels (GIRK) are essential for the regulation of cellular excitability, a physiological function that relies critically on the conduction of K+ ions, which is dependent on two molecular mechanisms, namely selectivity and gating. Molecular Dynamics (MD) studies have shown that K+ conduction remains inefficient even with open channel gates, therefore further detailed study on the permeation events is required. In this study, all-atom MD simulations were employed to investigate the permeation mechanism through the GIRK2 selectivity filter (SF) and its open helix bundle crossing (HBC) gate. Our results show that it is the SF rather than the HBC or the G-loop gate that determines the permeation efficiency upon activation of the channel. SF-permeation is accomplished by a water-K+ coupled mechanism and the entry to the S1 coordination site is likely affected by a SF tilt. Moreover, we show that a 4-K+ occupancy in the SF-HBC cavity is required for the permeation through an open HBC, where three K+ ions around E152 help to abolish the unfavorable cation-dipole interactions that function as an energy barrier, while the fourth K+ located near the HBC allows for the inward transport. These findings facilitate further understanding of the dynamic permeation mechanisms through GIRK2 and potentially provide an alternative regulatory approach for the Kir3 family given the overall high evolutionary residue conservation.
Collapse
Affiliation(s)
- Dai-Lin Li
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen 361005, China
| | - Liang Hu
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361005, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology (XMUT), Fujian Province University, Xiamen University of Technology, Xiamen 361005, China
| | - Chin-Ling Chen
- School of Computer and Information Engineering, Xiamen University of Technology, Xiamen 361005, China.,School of Information Engineering, Changchun Sci-Tech University, Changchun 130600, China.,Department of Computer Science and Information Engineering, Chaoyang University of Technology, Taichung 41349, Taiwan
| |
Collapse
|
23
|
Oakes V, Furini S, Domene C. Effect of anionic lipids on ion permeation through the KcsA K+-channel. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183406. [DOI: 10.1016/j.bbamem.2020.183406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022]
|
24
|
Furini S, Domene C. Critical Assessment of Common Force Fields for Molecular Dynamics Simulations of Potassium Channels. J Chem Theory Comput 2020; 16:7148-7159. [DOI: 10.1021/acs.jctc.0c00331] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Simone Furini
- Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Carmen Domene
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K
| |
Collapse
|
25
|
Clinical Importance of the Human Umbilical Artery Potassium Channels. Cells 2020; 9:cells9091956. [PMID: 32854241 PMCID: PMC7565333 DOI: 10.3390/cells9091956] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Potassium (K+) channels are usually predominant in the membranes of vascular smooth muscle cells (SMCs). These channels play an important role in regulating the membrane potential and vessel contractility-a role that depends on the vascular bed. Thus, the activity of K+ channels represents one of the main mechanisms regulating the vascular tone in physiological and pathophysiological conditions. Briefly, the activation of K+ channels in SMC leads to hyperpolarization and vasorelaxation, while its inhibition induces depolarization and consequent vascular contraction. Currently, there are four different types of K+ channels described in SMCs: voltage-dependent K+ (KV) channels, calcium-activated K+ (KCa) channels, inward rectifier K+ (Kir) channels, and 2-pore domain K+ (K2P) channels. Due to the fundamental role of K+ channels in excitable cells, these channels are promising therapeutic targets in clinical practice. Therefore, this review discusses the basic properties of the various types of K+ channels, including structure, cellular mechanisms that regulate their activity, and new advances in the development of activators and blockers of these channels. The vascular functions of these channels will be discussed with a focus on vascular SMCs of the human umbilical artery. Then, the clinical importance of K+ channels in the treatment and prevention of cardiovascular diseases during pregnancy, such as gestational hypertension and preeclampsia, will be explored.
Collapse
|
26
|
Walczewska-Szewc K, Nowak W. Structural Determinants of Insulin Release: Disordered N-Terminal Tail of Kir6.2 Affects Potassium Channel Dynamics through Interactions with Sulfonylurea Binding Region in a SUR1 Partner. J Phys Chem B 2020; 124:6198-6211. [PMID: 32598150 PMCID: PMC7467719 DOI: 10.1021/acs.jpcb.0c02720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
![]()
Inward rectifying
potassium ion channels (KATP), sensitive to the
ATP/ADP concentration ratio, play an important, control role in pancreatic
β cells. The channels close upon the increase of this ratio,
which, in turn, triggers insulin release to blood. Numerous mutations
in KATP lead to severe and widespread medical conditions such as diabetes.
The KATP system consists of a pore made of four Kir6.2 subunits and
four accompanying large SUR1 proteins belonging to the ABCC transporters
group. How SUR1 affects KATP function is not yet known; therefore,
we created simplified models of the Kir6.2 tetramer based on recently
determined cryo-EM KATP structures. Using all-atom molecular dynamics
(MD) with the CHARMM36 force field, targeted MD, and molecular docking,
we revealed functionally important rearrangements in the Kir6.2 pore,
induced by the presence of the SUR1 protein. The cytoplasmic domain
of Kir6.2 (CTD) is brought closer to the membrane due to interactions
with SUR1. Each Kir6.2 subunit has a conserved, functionally important,
disordered N-terminal tail. Using molecular docking, we found that
the Kir6.2 tail easily docks to the sulfonylurea drug binding region
located in the adjacent SUR1 protein. We reveal, for the first time,
dynamical behavior of the Kir6.2/SUR1 system, confirming a physiological
role of the Kir6.2 disordered tail, and we indicate structural determinants
of KATP-dependent insulin release from pancreatic β cells.
Collapse
Affiliation(s)
- Katarzyna Walczewska-Szewc
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland.,Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wileńska 4, 87-100 Toruń, Poland
| | - Wiesław Nowak
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziądzka 5, 87-100 Toruń, Poland
| |
Collapse
|
27
|
A constricted opening in Kir channels does not impede potassium conduction. Nat Commun 2020; 11:3024. [PMID: 32541684 PMCID: PMC7295778 DOI: 10.1038/s41467-020-16842-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/28/2020] [Indexed: 01/07/2023] Open
Abstract
The canonical mechanistic model explaining potassium channel gating is of a conformational change that alternately dilates and constricts a collar-like intracellular entrance to the pore. It is based on the premise that K+ ions maintain a complete hydration shell while passing between the transmembrane cavity and cytosol, which must be accommodated. To put the canonical model to the test, we locked the conformation of a Kir K+ channel to prevent widening of the narrow collar. Unexpectedly, conduction was unimpaired in the locked channels. In parallel, we employed all-atom molecular dynamics to simulate K+ ions moving along the conduction pathway between the lower cavity and cytosol. During simulations, the constriction did not significantly widen. Instead, transient loss of some water molecules facilitated K+ permeation through the collar. The low free energy barrier to partial dehydration in the absence of conformational change indicates Kir channels are not gated by the canonical mechanism.
Collapse
|
28
|
New Structural insights into Kir channel gating from molecular simulations, HDX-MS and functional studies. Sci Rep 2020; 10:8392. [PMID: 32439887 PMCID: PMC7242327 DOI: 10.1038/s41598-020-65246-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 04/29/2020] [Indexed: 11/25/2022] Open
Abstract
Inward rectifier potassium (Kir) channels play diverse and important roles in shaping action potentials in biological membranes. An increasing number of diseases are now known to be directly associated with abnormal Kir function. However, the gating of Kir still remains unknown. To increase our understanding of its gating mechanism, a dynamical view of the entire channel is essential. Here the gating activation was studied using a recent developped in silico method, MDeNM, which combines normal mode analysis and molecular dynamics simulations that showed for the very first time the importance of interrelated collective and localized conformational movements. In particular, we highlighted the role played by concerted movements of the different regions throughout the entire protein, such as the cytoplasmic and transmembrane domains and the slide helices. In addition, the HDX-MS analysis achieved in these studies provided a comprehensive and detailed view of the dynamics associated with open/closed transition of the Kir channel in coherence with the theoretical results. MDeNM gives access to the probability of the different opening states that are in agreement with our electrophysiological experiments. The investigations presented in this article are important to remedy dysfunctional channels and are of interest for designing new pharmacological compounds.
Collapse
|
29
|
Chen X, Bründl M, Friesacher T, Stary-Weinzinger A. Computational Insights Into Voltage Dependence of Polyamine Block in a Strong Inwardly Rectifying K + Channel. Front Pharmacol 2020; 11:721. [PMID: 32499707 PMCID: PMC7243266 DOI: 10.3389/fphar.2020.00721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 04/30/2020] [Indexed: 12/30/2022] Open
Abstract
Inwardly rectifying potassium (KIR) channels play important roles in controlling cellular excitability and K+ ion homeostasis. Under physiological conditions, KIR channels allow large K+ influx at potentials negative to the equilibrium potential of K+ but permit little outward current at potentials positive to the equilibrium potential of K+, due to voltage dependent block of outward K+ flux by cytoplasmic polyamines. These polycationic molecules enter the KIR channel pore from the intracellular side. They block K+ ion movement through the channel at depolarized potentials, thereby ensuring, for instance, the long plateau phase of the cardiac action potential. Key questions concerning how deeply these charged molecules migrate into the pore and how the steep voltage dependence arises remain unclear. Recent MD simulations on GIRK2 (=Kir3.2) crystal structures have provided unprecedented details concerning the conduction mechanism of a KIR channel. Here, we use MD simulations with applied field to provide detailed insights into voltage dependent block of putrescine, using the conductive state of the strong inwardly rectifying K+ channel GIRK2 as starting point. Our µs long simulations elucidate details about binding sites of putrescine in the pore and suggest that voltage-dependent rectification arises from a dual mechanism.
Collapse
|
30
|
Li D, Jin T, Gazgalis D, Cui M, Logothetis DE. On the mechanism of GIRK2 channel gating by phosphatidylinositol bisphosphate, sodium, and the Gβγ dimer. J Biol Chem 2019; 294:18934-18948. [PMID: 31659119 DOI: 10.1074/jbc.ra119.010047] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 10/21/2019] [Indexed: 12/19/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels belong to the inward-rectifier K+ (Kir) family, are abundantly expressed in the heart and the brain, and require that phosphatidylinositol bisphosphate is present so that intracellular channel-gating regulators such as Gβγ and Na+ ions can maintain the channel-open state. However, despite high-resolution structures (GIRK2) and a large number of functional studies, we do not have a coherent picture of how Gβγ and Na+ ions control gating of GIRK2 channels. Here, we utilized computational modeling and all-atom microsecond-scale molecular dynamics simulations to determine which gates are controlled by Na+ and Gβγ and how each regulator uses the channel domain movements to control gate transitions. We found that Na+ ions control the cytosolic gate of the channel through an anti-clockwise rotation, whereas Gβγ stabilizes the transmembrane gate in the open state through a rocking movement of the cytosolic domain. Both effects alter the way in which the channel interacts with phosphatidylinositol bisphosphate and thereby stabilizes the open states of the respective gates. These studies of GIRK channel dynamics present for the first time a comprehensive structural model that is consistent with the great body of literature on GIRK channel function.
Collapse
Affiliation(s)
- Dailin Li
- Key Laboratory of Environmental Biotechnology, Fujian Province University, Xiamen University of Technology, Xiamen, 361024 China; Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115.
| | - Taihao Jin
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115
| | - Dimitris Gazgalis
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115
| | - Meng Cui
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115
| | - Diomedes E Logothetis
- Department of Pharmaceutical Sciences, Northeastern University School of Pharmacy, Bouve College of Health Sciences, Boston, Massachusetts 02115.
| |
Collapse
|
31
|
Short B. Modeling GIRK channel conductance. J Gen Physiol 2019; 151:1159. [PMID: 31515439 PMCID: PMC6785728 DOI: 10.1085/jgp.201912479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
JGP study uses MD simulations to investigate the gating and conductance of the inwardly rectifying potassium channel GIRK2.
Collapse
|