1
|
Thanassoulas A, Riguene E, Theodoridou M, Barrak L, Almaraghi H, Hussain M, Da’as SI, Elrayess MA, Lai FA, Nomikos M. Disparate Molecular Properties of Two Hypertrophic Cardiomyopathy-Associated cMyBP-C Mutants Reveal Distinct Pathogenic Mechanisms Beyond Haploinsufficiency. Biomedicines 2025; 13:1010. [PMID: 40426840 PMCID: PMC12109454 DOI: 10.3390/biomedicines13051010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Hypertrophic cardiomyopathy (HCM) is a common genetic cardiac disorder marked by abnormal thickening of the left ventricular myocardium, often leading to arrhythmias and heart failure. Mutations in sarcomeric protein genes, particularly MYBPC3, which encodes cardiac myosin-binding protein C (cMyBP-C), are major contributors to HCM pathogenesis. This study aims to investigate the structural and functional effects of two HCM-associated missense mutations, p.S236G and p.E334K, located within the C0-C2 domains of cMyBP-C. Methods: Following in silico analysis, a bacterial expression system was applied, enabling the discrete C0-C2 domains of wild-type (cMyBP-CWT) and mutant (cMyBP-CS236G and cMyBP-CE334K) cMyBP-C proteins to be expressed and purified as recombinant proteins. Structural and stability changes were assessed using circular dichroism (CD), differential scanning calorimetry (DSC), and chemical denaturation assays. Functional impact on actin binding was also evaluated in vitro. Results: CD analysis revealed altered secondary structure in both mutants compared to the wild-type protein. Thermal and chemical stability assays indicated increased stability in the cMyBP-CE334K mutant, suggesting that it exhibits a more rigid conformation. This increased rigidity corresponded with a significant reduction in the actin-binding affinity relative to the wild-type protein. Conclusions: Our findings demonstrate specific detrimental effects of the p.E334K mutation and underscore the importance of understanding the structural and functional consequences of HCM-associated mutations to assist the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Angelos Thanassoulas
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| | - Emna Riguene
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| | - Maria Theodoridou
- Biomedical Research Center, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Laila Barrak
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| | - Hamad Almaraghi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| | - Mohammed Hussain
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| | - Sahar Isa Da’as
- Research Department, Sidra Medicine, Doha P.O. Box 26999, Qatar;
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Mohamed A. Elrayess
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
- Biomedical Research Center, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - F. Anthony Lai
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| | - Michail Nomikos
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar (L.B.)
| |
Collapse
|
2
|
Kochurova AM, Beldiia EA, Antonets JY, Nefedova VV, Ryabkova NS, Katrukha IA, Bershitsky SY, Matyushenko AM, Kopylova GV, Shchepkin DV. Mavacamten Inhibits the Effect of the N-Terminal Fragment of Cardiac Myosin-Binding Protein C with the L352P Mutation on the Actin-Myosin Interaction at Low Calcium Concentrations. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:389-399. [PMID: 40367081 DOI: 10.1134/s0006297924604131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 05/16/2025]
Abstract
Hypertrophic cardiomyopathy (HCM)-associated mutations in sarcomeric proteins lead to the disruption of the actin-myosin interaction and its calcium regulation and cause myocardial hypercontractility. About half of such mutations are found in the MYBPC3 gene encoding cardiac myosin-binding protein C (cMyBP-C). A new approach to normalize cardiac contractile function in HCM is the use of β-cardiac myosin function inhibitors, one of which is mavacamten. We studied the effect of mavacamten on the calcium regulation of the actin-myosin interaction using isolated cardiac contractile proteins in the in vitro motility assay. The L352P mutation did not affect the maximum sliding velocity of regulated thin filaments on myosin in the in vitro motility assay and the calcium sensitivity of the velocity but led to the underinhibition of the actin-myosin interaction at low calcium concentrations. Mavacamten decreased the maximum sliding velocity of thin filaments in the presence of the WT and L352P C0-C2 fragments, and abolished their movement in the presence of the L352P C0-C2 fragment at low calcium concentrations. Slowing down the kinetics of cross-bridges and inhibition of actin-myosin interaction at low calcium concentrations by mavacamten may reduce the hypercontractility in HCM and the degree of myocardial hypertrophy.
Collapse
Affiliation(s)
- Anastasia M Kochurova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Evgenia A Beldiia
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Julia Y Antonets
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Victoria V Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, Moscow, 119071, Russia
| | - Natalia S Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, 20520, Finland
| | - Ivan A Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Hytest Ltd., Turku, 20520, Finland
| | - Sergey Y Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | | | - Galina V Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia
| | - Daniil V Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, Yekaterinburg, 620049, Russia.
| |
Collapse
|
3
|
Wood PT, Seffrood MM, Colson BA, Stelzer JE. cMyBP-C in hypertrophic cardiomyopathy: gene therapy and small-molecule innovations. Front Cardiovasc Med 2025; 12:1550649. [PMID: 40134985 PMCID: PMC11935118 DOI: 10.3389/fcvm.2025.1550649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is a genetic disorder in the heart caused by variants in sarcomeric proteins that disrupt myocardial function, leading to hypercontractility, hypertrophy, and fibrosis. Optimal cardiac function relies on the precise coordination of thin and thick filament proteins that control the timing, magnitude of cellular force generation and relaxation, and in vivo systolic and diastolic function. Sarcomeric proteins, such as cardiac myosin binding protein C (cMyBP-C) play a crucial role in myocardial contractile function by modulating actomyosin interactions. Genetic variants in cMyBP-C are a frequent cause of HCM, highlighting its importance in cardiac health. This review explores the molecular mechanisms underpinning HCM and the rapidly advancing field of HCM translational research, including gene therapy and small-molecule interventions targeting sarcomere function. We will highlight novel approaches, including gene therapy using recombinant AAV vectors and small-molecule drugs targeting sarcomere function.
Collapse
Affiliation(s)
- Patrick T. Wood
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Morgan M. Seffrood
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Brett A. Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, AZ, United States
| | - Julian E. Stelzer
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
4
|
Nabiev SR, Kopylova GV, Nefedova VV, Matyushenko AM, Shchepkin DV, Bershitsky SY. The N-Terminal Mutations of cMyBP-C Affect Calcium Regulation, Kinetics, and Force of Muscle Contraction. Int J Mol Sci 2024; 25:13405. [PMID: 39769170 PMCID: PMC11677233 DOI: 10.3390/ijms252413405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The cardiac myosin binding protein-C (cMyBP-C) regulates cross-bridge formation and controls the duration of systole and diastole at the whole heart level. As known, mutations in cMyBP-C increase the cross-bridge number and rate of their cycling, hypercontractility, and myocardial hypertrophy. We investigated the effects of the mutations D75N and P161S of cMyBP-C related to hypertrophic cardiomyopathy on the mechanism of force generation in isolated slow skeletal muscle fibers. The mutation D75N slowed the kinetics of force development but did not affect the relaxation rate. The mutation P161S slowed both the relaxation and force development. The mutation D75N increased the calcium sensitivity of force, and the mutation P161S decreased it. The mutation D75N decreased the maximal isometric tension and increased the tension and stiffness at low calcium. Both mutations studied disrupt the calcium regulation of contractile force and affect the kinetics of its development and thus may impair cardiac diastolic function and cause myocardial hypertrophy.
Collapse
Affiliation(s)
- Salavat R. Nabiev
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.N.); (A.M.M.)
| | - Alexander M. Matyushenko
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia; (V.V.N.); (A.M.M.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology, Russian Academy of Sciences, 620049 Yekaterinburg, Russia; (S.R.N.); (G.V.K.); (D.V.S.)
| |
Collapse
|
5
|
Kochurova AM, Beldiia EA, Nefedova VV, Yampolskaya DS, Koubassova NA, Kleymenov SY, Antonets JY, Ryabkova NS, Katrukha IA, Bershitsky SY, Matyushenko AM, Kopylova GV, Shchepkin DV. The D75N and P161S Mutations in the C0-C2 Fragment of cMyBP-C Associated with Hypertrophic Cardiomyopathy Disturb the Thin Filament Activation, Nucleotide Exchange in Myosin, and Actin-Myosin Interaction. Int J Mol Sci 2024; 25:11195. [PMID: 39456977 PMCID: PMC11508426 DOI: 10.3390/ijms252011195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/17/2024] [Accepted: 09/20/2024] [Indexed: 10/28/2024] Open
Abstract
About half of the mutations that lead to hypertrophic cardiomyopathy (HCM) occur in the MYBPC3 gene. However, the molecular mechanisms of pathogenicity of point mutations in cardiac myosin-binding protein C (cMyBP-C) remain poorly understood. In this study, we examined the effects of the D75N and P161S substitutions in the C0 and C1 domains of cMyBP-C on the structural and functional properties of the C0-C1-m-C2 fragment (C0-C2). Differential scanning calorimetry revealed that these mutations disorder the tertiary structure of the C0-C2 molecule. Functionally, the D75N mutation reduced the maximum sliding velocity of regulated thin filaments in an in vitro motility assay, while the P161S mutation increased it. Both mutations significantly reduced the calcium sensitivity of the actin-myosin interaction and impaired thin filament activation by cross-bridges. D75N and P161S C0-C2 fragments substantially decreased the sliding velocity of the F-actin-tropomyosin filament. ADP dose-dependently reduced filament sliding velocity in the presence of WT and P161S fragments, but the velocity remained unchanged with the D75N fragment. We suppose that the D75N mutation alters nucleotide exchange kinetics by decreasing ADP affinity to the ATPase pocket and slowing the myosin cycle. Our molecular dynamics simulations mean that the D75N mutation affects myosin S1 function. Both mutations impair cardiac contractility by disrupting thin filament activation. The results offer new insights into the HCM pathogenesis caused by missense mutations in N-terminal domains of cMyBP-C, highlighting the distinct effects of D75N and P161S mutations on cardiac contractile function.
Collapse
Affiliation(s)
- Anastasia M. Kochurova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Evgenia A. Beldiia
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Victoria V. Nefedova
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Daria S. Yampolskaya
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | | | - Sergey Y. Kleymenov
- Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Julia Y. Antonets
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Natalia S. Ryabkova
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Ivan A. Katrukha
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- HyTest Ltd., 20520 Turku, Finland
| | - Sergey Y. Bershitsky
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | | | - Galina V. Kopylova
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology of the Russian Academy of Sciences, 620049 Yekaterinburg, Russia (D.V.S.)
| |
Collapse
|
6
|
Wong FL, Bunch TA, Lepak VC, Steedman AL, Colson BA. Cardiac myosin-binding protein C N-terminal interactions with myosin and actin filaments: Opposite effects of phosphorylation and M-domain mutations. J Mol Cell Cardiol 2024; 186:125-137. [PMID: 38008210 PMCID: PMC10872421 DOI: 10.1016/j.yjmcc.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 11/28/2023]
Abstract
N-terminal cardiac myosin-binding protein C (cMyBP-C) domains (C0-C2) bind to thick (myosin) and thin (actin) filaments to coordinate contraction and relaxation of the heart. These interactions are regulated by phosphorylation of the M-domain situated between domains C1 and C2. In cardiomyopathies and heart failure, phosphorylation of cMyBP-C is significantly altered. We aimed to investigate how cMyBP-C interacts with myosin and actin. We developed complementary, high-throughput, C0-C2 FRET-based binding assays for myosin and actin to characterize the effects due to 5 HCM-linked variants or functional mutations in unphosphorylated and phosphorylated C0-C2. The assays indicated that phosphorylation decreases binding to both myosin and actin, whereas the HCM mutations in M-domain generally increase binding. The effects of mutations were greatest in phosphorylated C0-C2, and some mutations had a larger effect on actin than myosin binding. Phosphorylation also altered the spatial relationship of the probes on C0-C2 and actin. The magnitude of these structural changes was dependent on C0-C2 probe location (C0, C1, or M-domain). We conclude that binding can differ between myosin and actin due to phosphorylation or mutations. Additionally, these variables can change the mode of binding, affecting which of the interactions in cMyBP-C N-terminal domains with myosin or actin take place. The opposite effects of phosphorylation and M-domain mutations is consistent with the idea that cMyBP-C phosphorylation is critical for normal cardiac function. The precision of these assays is indicative of their usefulness in high-throughput screening of drug libraries for targeting cMyBP-C as therapy.
Collapse
Affiliation(s)
- Fiona L Wong
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Allison L Steedman
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
| |
Collapse
|
7
|
Bunch TA, Guhathakurta P, Thompson AR, Lepak VC, Carter AL, Thomas JJ, Thomas DD, Colson BA. Drug discovery for heart failure targeting myosin-binding protein C. J Biol Chem 2023; 299:105369. [PMID: 37865311 PMCID: PMC10692721 DOI: 10.1016/j.jbc.2023.105369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023] Open
Abstract
Cardiac MyBP-C (cMyBP-C) interacts with actin and myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces the binding of cMyBP-C to actin and myosin, is often decreased in patients with heart failure (HF) and is cardioprotective in model systems of HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic its phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL) and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethylrhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized the specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish the feasibility of the discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Victoria C Lepak
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, USA
| | - Anna L Carter
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA; Photonic Pharma LLC, Minneapolis, Minnesota, USA.
| | - Brett A Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
8
|
Bunch TA, Guhathakurta P, Thompson AR, Lepak VC, Carter AL, Thomas JJ, Thomas DD, Colson BA. Drug discovery for heart failure targeting myosin-binding protein C. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535496. [PMID: 37066417 PMCID: PMC10104056 DOI: 10.1101/2023.04.03.535496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Cardiac MyBP-C (cMyBP-C) interacts with actin-myosin to fine-tune cardiac muscle contractility. Phosphorylation of cMyBP-C, which reduces binding of cMyBP-C to actin or myosin, is often decreased in heart failure (HF) patients, and is cardioprotective in model systems for HF. Therefore, cMyBP-C is a potential target for HF drugs that mimic phosphorylation and/or perturb its interactions with actin or myosin. We labeled actin with fluorescein-5-maleimide (FMAL), and the C0-C2 fragment of cMyBP-C (cC0-C2) with tetramethyl rhodamine (TMR). We performed two complementary high-throughput screens (HTS) on an FDA-approved drug library, to discover small molecules that specifically bind to cMyBP-C and affect its interactions with actin or myosin, using fluorescence lifetime (FLT) detection. We first excited FMAL and detected its FLT, to measure changes in fluorescence resonance energy transfer (FRET) from FMAL (donor) to TMR (acceptor), indicating binding and/or structural changes in the protein complex. Using the same samples, we then excited TMR directly, using a longer wavelength laser, to detect the effects of compounds on the environmentally sensitive FLT of TMR, to identify compounds that bind directly to cC0-C2. Secondary assays, performed on selected modulators with the most promising effects in the primary HTS assays, characterized specificity of these compounds for phosphorylated versus unphosphorylated cC0-C2 and for cC0-C2 versus C1-C2 of fast skeletal muscle (fskC1-C2). A subset of identified compounds modulated ATPase activity in cardiac and/or skeletal myofibrils. These assays establish feasibility for discovery of small-molecule modulators of the cMyBP-C-actin/myosin interaction, with the ultimate goal of developing therapies for HF.
Collapse
|
9
|
Dvornikov AV, Bunch TA, Lepak VC, Colson BA. Fluorescence lifetime-based assay reports structural changes in cardiac muscle mediated by effectors of contractile regulation. J Gen Physiol 2023; 155:e202113054. [PMID: 36633587 PMCID: PMC9859762 DOI: 10.1085/jgp.202113054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023] Open
Abstract
Cardiac muscle contraction is regulated by Ca2+-induced structural changes of the thin filaments to permit myosin cross-bridge cycling driven by ATP hydrolysis in the sarcomere. In congestive heart failure, contraction is weakened, and thus targeting the contractile proteins of the sarcomere is a promising approach to therapy. However, development of novel therapeutic interventions has been challenging due to a lack of precise discovery tools. We have developed a fluorescence lifetime-based assay using an existing site-directed probe, N,N'-dimethyl-N-(iodoacetyl)-N'-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine (IANBD) attached to human cardiac troponin C (cTnC) mutant cTnCT53C, exchanged into porcine cardiac myofibrils. We hypothesized that IANBD-cTnCT53C fluorescence lifetime measurements provide insight into the activation state of the thin filament. The sensitivity and precision of detecting structural changes in cTnC due to physiological and therapeutic modulators of thick and thin filament functions were determined. The effects of Ca2+ binding to cTnC and myosin binding to the thin filament were readily detected by this assay in mock high-throughput screen tests using a fluorescence lifetime plate reader. We then evaluated known effectors of altered cTnC-Ca2+ binding, W7 and pimobendan, and myosin-binding drugs, mavacamten and omecamtiv mecarbil, used to treat cardiac diseases. Screening assays were determined to be of high quality as indicated by the Z' factor. We conclude that cTnC lifetime-based probes allow for precise evaluation of the thin filament activation in functioning myofibrils that can be used in future high-throughput screens of small-molecule modulators of function of the thin and thick filaments.
Collapse
Affiliation(s)
- Alexey V. Dvornikov
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Thomas A. Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Victoria C. Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| | - Brett A. Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
10
|
Kanassatega RS, Bunch TA, Lepak VC, Wang C, Colson BA. Human cardiac myosin-binding protein C phosphorylation- and mutation-dependent structural dynamics monitored by time-resolved FRET. J Mol Cell Cardiol 2022; 166:116-126. [PMID: 35227736 PMCID: PMC9067379 DOI: 10.1016/j.yjmcc.2022.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 01/31/2022] [Accepted: 02/21/2022] [Indexed: 11/27/2022]
Abstract
Cardiac myosin-binding protein C (cMyBP-C) is a thick filament-associated protein of the sarcomere and a potential therapeutic target for treating contractile dysfunction in heart failure. Mimicking the structural dynamics of phosphorylated cMyBP-C by small-molecule drug binding could lead to therapies that modulate cMyBP-C conformational states, and thereby function, to improve contractility. We have developed a human cMyBP-C biosensor capable of detecting intramolecular structural changes due to phosphorylation and mutation. Using site-directed mutagenesis and time-resolved fluorescence resonance energy transfer (TR-FRET), we substituted cysteines in cMyBP-C N-terminal domains C0 through C2 (C0-C2) for thiol-reactive fluorescent probe labeling to examine C0-C2 structure. We identified a cysteine pair that upon donor-acceptor labeling reports phosphorylation-sensitive structural changes between the C1 domain and the tri-helix bundle of the M-domain that links C1 to C2. Phosphorylation reduced FRET efficiency by ~18%, corresponding to a ~11% increase in the distance between probes and a ~30% increase in disorder between them. The magnitude and precision of phosphorylation-mediated TR-FRET changes, as quantified by the Z'-factor, demonstrate the assay's potential for structure-based high-throughput screening of compounds for cMyBP-C-targeted therapies to improve cardiac performance in heart failure. Additionally, by probing C1's spatial positioning relative to the tri-helix bundle, these findings provide new molecular insight into the structural dynamics of phosphoregulation as well as mutations in cMyBP-C. Biosensor sensitivity to disease-relevant mutations in C0-C2 was demonstrated by examination of the hypertrophic cardiomyopathy mutation R282W. The results presented here support a screening platform to identify small molecules that regulate N-terminal cMyBP-C conformational states.
Collapse
Affiliation(s)
- Rhye-Samuel Kanassatega
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States of America
| | - Thomas A Bunch
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States of America
| | - Victoria C Lepak
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States of America
| | - Christopher Wang
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States of America
| | - Brett A Colson
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States of America.
| |
Collapse
|
11
|
Bunch TA, Guhathakurta P, Lepak VC, Thompson AR, Kanassatega RS, Wilson A, Thomas DD, Colson BA. Cardiac myosin-binding protein C interaction with actin is inhibited by compounds identified in a high-throughput fluorescence lifetime screen. J Biol Chem 2021; 297:100840. [PMID: 34052227 PMCID: PMC8233204 DOI: 10.1016/j.jbc.2021.100840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/19/2021] [Accepted: 05/26/2021] [Indexed: 11/26/2022] Open
Abstract
Cardiac myosin-binding protein C (cMyBP-C) interacts with actin and myosin to modulate cardiac muscle contractility. These interactions are disfavored by cMyBP-C phosphorylation. Heart failure patients often display decreased cMyBP-C phosphorylation, and phosphorylation in model systems has been shown to be cardioprotective against heart failure. Therefore, cMyBP-C is a potential target for heart failure drugs that mimic phosphorylation or perturb its interactions with actin/myosin. Here we have used a novel fluorescence lifetime-based assay to identify small-molecule inhibitors of actin-cMyBP-C binding. Actin was labeled with a fluorescent dye (Alexa Fluor 568, AF568) near its cMyBP-C binding sites; when combined with the cMyBP-C N-terminal fragment, C0-C2, the fluorescence lifetime of AF568-actin decreases. Using this reduction in lifetime as a readout of actin binding, a high-throughput screen of a 1280-compound library identified three reproducible hit compounds (suramin, NF023, and aurintricarboxylic acid) that reduced C0-C2 binding to actin in the micromolar range. Binding of phosphorylated C0-C2 was also blocked by these compounds. That they specifically block binding was confirmed by an actin-C0-C2 time-resolved FRET (TR-FRET) binding assay. Isothermal titration calorimetry (ITC) and transient phosphorescence anisotropy (TPA) confirmed that these compounds bind to cMyBP-C, but not to actin. TPA results were also consistent with these compounds inhibiting C0-C2 binding to actin. We conclude that the actin-cMyBP-C fluorescence lifetime assay permits detection of pharmacologically active compounds that affect cMyBP-C-actin binding. We now have, for the first time, a validated high-throughput screen focused on cMyBP-C, a regulator of cardiac muscle contractility and known key factor in heart failure.
Collapse
Affiliation(s)
- Thomas A Bunch
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Piyali Guhathakurta
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Victoria C Lepak
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA
| | - Andrew R Thompson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Anna Wilson
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - David D Thomas
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brett A Colson
- Department of Cellular & Molecular Medicine, University of Arizona, Tucson Arizona, USA.
| |
Collapse
|
12
|
Moss RL, Cremo C, Granzier HL. Toward an understanding of myofibrillar function in health and disease. J Gen Physiol 2021; 153:211822. [PMID: 33620422 PMCID: PMC7905996 DOI: 10.1085/jgp.202112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Richard L Moss
- Cardiovascular Research Center, Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI
| | - Christine Cremo
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, Reno, NV
| | - Henk L Granzier
- Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|