1
|
Marrocchio R, Ó Maoiléidigh D. Links regulate deflection fluctuations in the sensory cells of hearing. Phys Rev E 2025; 111:034403. [PMID: 40247582 DOI: 10.1103/physreve.111.034403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/11/2025] [Indexed: 04/19/2025]
Abstract
In our ears, inner-hair-cell hair bundles (IHBs) convert sound-induced forces into electrical signals, which are ultimately transmitted to the brain. An IHB comprises filamentous stereocilia emanating from the inner-hair-cell apex. Stereocilium deflections promote ion-channel opening and closing, causing receptor currents. This process is limited by fluctuations in the deflections, which compete with the sound signal, limiting the threshold of hearing. Stereocilia are viscoelastic structures and are coupled by fluid and viscoelastic links. The stiffness and damping of the system's components constrain stereocilium deflections, but increasing damping increases thermal deflection fluctuations. Competition between the constraining forces and thermal forces determines the deflection fluctuations. To better understand the deflection fluctuations, we build a mathematical model that relates the IHB's mechanical properties to deflection fluctuations. We find that the coherency of neighboring stereocilium deflections is less than 0.75 at frequencies corresponding to the physiological range of sound frequencies. The coherency for pairs of stereocilia decreases exponentially with the distance between them and is approximately zero between stereocilia at the center and edge of the IHB. We determine how the deflection fluctuations depend on the stiffness and damping of the links. In the absence of stiff links between stereocilia, neighboring stereocilia are weakly or negatively correlated in the physiological frequency range. We show how the sign of the coherency between stereocilium pairs is determined by the eigendecomposition of the deflection power spectral density matrix. Increasing the number of stereocilia in the IHB decreases the coherency between stereocilium pairs. The model also predicts that the threshold of hearing corresponds to IHB stereocilium deflections owing to sound of < 1.5 nm and that links of physiological stiffness decrease the threshold of hearing by at least 10dB. Predictions of the mathematical model are experimentally testable using recently developed techniques.
Collapse
Affiliation(s)
- Riccardo Marrocchio
- Stanford University, Department of Otolaryngology & Head and Neck Surgery, Stanford, California, USA
| | - Dáibhid Ó Maoiléidigh
- Stanford University, Department of Otolaryngology & Head and Neck Surgery, Stanford, California, USA
| |
Collapse
|
2
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Aponte Rivera R, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. eLife 2025; 12:RP89719. [PMID: 39773557 PMCID: PMC11709434 DOI: 10.7554/elife.89719] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here, we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud PJ Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of HealthBethesdaUnited States
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill UniversityMontrealCanada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical SchoolBostonUnited States
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State UniversityColumbusUnited States
- Biophysics Graduate Program, The Ohio State UniversityColumbusUnited States
- Ohio State Biochemistry Program, The Ohio State UniversityColumbusUnited States
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of MedicineBaltimoreUnited States
- Department of Biochemistry and Molecular Biology, University of Maryland School of MedicineBaltimoreUnited States
- Department of Ophthalmology and Visual Sciences, University of Maryland School of MedicineBaltimoreUnited States
| |
Collapse
|
3
|
Zhu Z, Reid W, George SS, Ou V, Ó Maoiléidigh D. 3D morphology of an outer-hair-cell hair bundle increases its displacement and dynamic range. Biophys J 2024; 123:3433-3451. [PMID: 39161094 PMCID: PMC11480765 DOI: 10.1016/j.bpj.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 05/22/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
In mammals, outer-hair-cell hair bundles (OHBs) transduce sound-induced forces into receptor currents and are required for the wide dynamic range and high sensitivity of hearing. OHBs differ conspicuously in morphology from other types of bundles. Here, we show that the 3D morphology of an OHB greatly impacts its mechanics and transduction. An OHB comprises rod-like stereocilia, which pivot on the surface of its sensory outer hair cell. Stereocilium pivot positions are arranged in columns and form a V shape. We measure the pivot positions and determine that OHB columns are far from parallel. To calculate the consequences of an OHB's V shape and far-from-parallel columns, we develop a mathematical model of an OHB that relates its pivot positions, 3D morphology, mechanics, and receptor current. We find that the 3D morphology of the OHB can halve its stiffness, can double its damping coefficient, and causes stereocilium displacements driven by stimulus forces to differ substantially across the OHB. Stereocilium displacements drive the opening and closing of ion channels through which the receptor current flows. Owing to the stereocilium-displacement differences, the currents passing through the ion channels can peak versus the stimulus frequency and vary considerably across the OHB. Consequently, the receptor current peaks versus the stimulus frequency. Ultimately, the OHB's 3D morphology can increase its receptor-current dynamic range more than twofold. Our findings imply that potential pivot-position changes owing to development, mutations, or location within the mammalian auditory organ might greatly alter OHB function.
Collapse
Affiliation(s)
- Zenghao Zhu
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Wisam Reid
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California; Harvard Medical School, Boston, Massachusetts
| | - Shefin Sam George
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Victoria Ou
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California
| | - Dáibhid Ó Maoiléidigh
- Department of Otolaryngology-Head and Neck Surgery, Stanford University, Stanford, California.
| |
Collapse
|
4
|
Giese APJ, Weng WH, Kindt KS, Chang HHV, Montgomery JS, Ratzan EM, Beirl AJ, Rivera RA, Lotthammer JM, Walujkar S, Foster MP, Zobeiri OA, Holt JR, Riazuddin S, Cullen KE, Sotomayor M, Ahmed ZM. Complexes of vertebrate TMC1/2 and CIB2/3 proteins form hair-cell mechanotransduction cation channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.26.542533. [PMID: 37398045 PMCID: PMC10312449 DOI: 10.1101/2023.05.26.542533] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Calcium and integrin-binding protein 2 (CIB2) and CIB3 bind to transmembrane channel-like 1 (TMC1) and TMC2, the pore-forming subunits of the inner-ear mechano-electrical transduction (MET) apparatus. These interactions have been proposed to be functionally relevant across mechanosensory organs and vertebrate species. Here we show that both CIB2 and CIB3 can form heteromeric complexes with TMC1 and TMC2 and are integral for MET function in mouse cochlea and vestibular end organs as well as in zebrafish inner ear and lateral line. Our AlphaFold 2 models suggest that vertebrate CIB proteins can simultaneously interact with at least two cytoplasmic domains of TMC1 and TMC2 as validated using nuclear magnetic resonance spectroscopy of TMC1 fragments interacting with CIB2 and CIB3. Molecular dynamics simulations of TMC1/2 complexes with CIB2/3 predict that TMCs are structurally stabilized by CIB proteins to form cation channels. Overall, our work demonstrates that intact CIB2/3 and TMC1/2 complexes are integral to hair-cell MET function in vertebrate mechanosensory epithelia.
Collapse
Affiliation(s)
- Arnaud P J Giese
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wei-Hsiang Weng
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Katie S Kindt
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | | | - Jonathan S Montgomery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Evan M Ratzan
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alisha J Beirl
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Roberto Aponte Rivera
- Section on Sensory Cell Development and Function, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, USA
| | - Jeffrey M Lotthammer
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Sanket Walujkar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Mark P Foster
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Omid A Zobeiri
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Jeffrey R Holt
- Departments of Otolaryngology and Neurology, F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Saima Riazuddin
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kathleen E Cullen
- Departments of Biomedical Engineering, Neuroscience, and Otolaryngology and Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
- Ohio State Biochemistry Program, The Ohio State University, Columbus, OH, USA
| | - Zubair M Ahmed
- Department of Otorhinolaryngology - Head & Neck Surgery, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology and Visual Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
5
|
Beurg M, Schwalbach ET, Fettiplace R. LHFPL5 is a key element in force transmission from the tip link to the hair cell mechanotransducer channel. Proc Natl Acad Sci U S A 2024; 121:e2318270121. [PMID: 38194445 PMCID: PMC10801851 DOI: 10.1073/pnas.2318270121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/30/2023] [Indexed: 01/11/2024] Open
Abstract
During auditory transduction, sound-evoked vibrations of the hair cell stereociliary bundles open mechanotransducer (MET) ion channels via tip links extending from one stereocilium to its neighbor. How tension in the tip link is delivered to the channel is not fully understood. The MET channel comprises a pore-forming subunit, transmembrane channel-like protein (TMC1 or TMC2), aided by several accessory proteins, including LHFPL5 (lipoma HMGIC fusion partner-like 5). We investigated the role of LHFPL5 in transduction by comparing MET channel activation in outer hair cells of Lhfpl5-/- knockout mice with those in Lhfpl5+/- heterozygotes. The 10 to 90 percent working range of transduction in Tmc1+/+; Lhfpl5+/- was 52 nm, from which the single-channel gating force, Z, was evaluated as 0.34 pN. However, in Tmc1+/+; Lhfpl5-/- mice, the working range increased to 123 nm and Z more than halved to 0.13 pN, indicating reduced sensitivity. Tip link tension is thought to activate the channel via a gating spring, whose stiffness is inferred from the stiffness change on tip link destruction. The gating stiffness was ~40 percent of the total bundle stiffness in wild type but was virtually abolished in Lhfpl5-/-, implicating LHFPL5 as a principal component of the gating spring. The mutation Tmc1 p.D569N reduced the LHFPL5 immunolabeling in the stereocilia and like Lhfpl5-/- doubled the MET working range, but other deafness mutations had no effect on the dynamic range. We conclude that tip-link tension is transmitted to the channel primarily via LHFPL5; residual activation without LHFPL5 may occur by direct interaction between PCDH15 and TMC1.
Collapse
Affiliation(s)
- Maryline Beurg
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Evan Travis Schwalbach
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| | - Robert Fettiplace
- Department of Neuroscience, University of WisconsinSchool of Medicine and Public Health, Madison, WI53706
| |
Collapse
|
6
|
Altoè A, Shera CA. Noise within: Signal-to-noise enhancement via coherent wave amplification in the mammalian cochlea. PHYSICAL REVIEW RESEARCH 2024; 6:013084. [PMID: 38525155 PMCID: PMC10959500 DOI: 10.1103/physrevresearch.6.013084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The extraordinary sensitivity of the mammalian inner ear has captivated scientists for decades, largely due to the crucial role played by the outer hair cells (OHCs) and their unique electromotile properties. Typically arranged in three rows along the sensory epithelium, the OHCs work in concert via mechanisms collectively referred to as the "cochlear amplifier" to boost the cochlear response to faint sounds. While simplistic views attribute this enhancement solely to the OHC-based increase in cochlear gain, the inevitable presence of internal noise requires a more rigorous analysis. Achieving a genuine boost in sensitivity through amplification requires that signals be amplified more than internal noise, and this requirement presents the cochlea with an intriguing challenge. Here we analyze the effects of spatially distributed cochlear-like amplification on both signals and internal noise. By combining a straightforward mathematical analysis with a simplified model of cochlear mechanics designed to capture the essential physics, we generalize previous results about the impact of spatially coherent amplification on signal degradation in active gain media. We identify and describe the strategy employed by the cochlea to amplify signals more than internal noise and thereby enhance the sensitivity of hearing. For narrow-band signals, this effective, wave-based strategy consists of spatially amplifying the signal within a localized cochlear region, followed by rapid attenuation. Location-dependent wave amplification and attenuation meet the necessary conditions for amplifying near-characteristic frequency (CF) signals more than internal noise components of the same frequency. Our analysis reveals that the sharp wave cutoff past the CF location greatly reduces noise contamination. The distinctive asymmetric shape of the "cochlear filters" thus underlies a crucial but previously unrecognized mechanism of cochlear noise reduction.
Collapse
Affiliation(s)
- Alessandro Altoè
- Auditory Research Center, Caruso Department of Otolaryngology, University of Southern California Los Angeles, Los Angeles, California 90033, USA
| | | |
Collapse
|
7
|
Tichacek O, Mistrík P, Jungwirth P. From the outer ear to the nerve: A complete computer model of the peripheral auditory system. Hear Res 2023; 440:108900. [PMID: 37944408 DOI: 10.1016/j.heares.2023.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 11/12/2023]
Abstract
Computer models of the individual components of the peripheral auditory system - the outer, middle, and inner ears and the auditory nerve - have been developed in the past, with varying level of detail, breadth, and faithfulness of the underlying parameters. Building on previous work, we advance the modeling of the ear by presenting a complete, physiologically justified, bottom-up computer model based on up-to-date experimental data that integrates all of these parts together seamlessly. The detailed bottom-up design of the present model allows for the investigation of partial hearing mechanisms and their defects, including genetic, molecular, and microscopic factors. Also, thanks to the completeness of the model, one can study microscopic effects in the context of their implications on hearing as a whole, enabling the correlation with neural recordings and non-invasive psychoacoustic methods. Such a model is instrumental for advancing quantitative understanding of the mechanism of hearing, for investigating various forms of hearing impairment, as well as for devising next generation hearing aids and cochlear implants.
Collapse
Affiliation(s)
- Ondrej Tichacek
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| | | | - Pavel Jungwirth
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nam. 2, 160 00 Prague 6, Czech Republic.
| |
Collapse
|
8
|
Derudas M, O’Reilly M, Kirkwood NK, Kenyon EJ, Grimsey S, Kitcher SR, Workman S, Bull JC, Ward SE, Kros CJ, Richardson GP. Charge and lipophilicity are required for effective block of the hair-cell mechano-electrical transducer channel by FM1-43 and its derivatives. Front Cell Dev Biol 2023; 11:1247324. [PMID: 37900280 PMCID: PMC10601989 DOI: 10.3389/fcell.2023.1247324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/19/2023] [Indexed: 10/31/2023] Open
Abstract
The styryl dye FM1-43 is widely used to study endocytosis but behaves as a permeant blocker of the mechano-electrical transducer (MET) channel in sensory hair cells, loading rapidly and specifically into the cytoplasm of hair cells in a MET channel-dependent manner. Patch clamp recordings of mouse outer hair cells (OHCs) were used to determine how a series of structural modifications of FM1-43 affect MET channel block. Fluorescence microscopy was used to assess how the modifications influence hair-cell loading in mouse cochlear cultures and zebrafish neuromasts. Cochlear cultures were also used to evaluate otoprotective potential of the modified FM1-43 derivatives. Structure-activity relationships reveal that the lipophilic tail and the cationic head group of FM1-43 are both required for MET channel block in mouse cochlear OHCs; neither moiety alone is sufficient. The extent of MET channel block is augmented by increasing the lipophilicity/bulkiness of the tail, by reducing the number of positive charges in the head group from two to one, or by increasing the distance between the two charged head groups. Loading assays with zebrafish neuromasts and mouse cochlear cultures are broadly in accordance with these observations but reveal a loss of hair-cell specific labelling with increasing lipophilicity. Although FM1-43 and many of its derivatives are generally cytotoxic when tested on cochlear cultures in the presence of an equimolar concentration of the ototoxic antibiotic gentamicin (5 µM), at a 10-fold lower concentration (0.5 µM), two of the derivatives protect OHCs from cell death caused by 48 h-exposure to 5 µM gentamicin.
Collapse
Affiliation(s)
- Marco Derudas
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Molly O’Reilly
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Department of Experimental Cardiology, Academic Medical Center, Amsterdam, Netherlands
| | - Nerissa K. Kirkwood
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Emma J. Kenyon
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- School of Medicine, Institute of Life Sciences, Swansea University, Swansea, United Kingdom
| | - Sybil Grimsey
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Siân R. Kitcher
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders NIH, Bethesda, MD, United States
| | - Shawna Workman
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - James C. Bull
- Department of Biosciences, College of Science, Swansea University, Swansea, United Kingdom
| | - Simon E. Ward
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
- Medicines Discovery Institute, Cardiff University, Cardiff, United Kingdom
| | - Corné J. Kros
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| | - Guy P. Richardson
- Sussex Neuroscience, School of Life Sciences, University of Sussex, Brighton, United Kingdom
| |
Collapse
|
9
|
Aristizábal-Ramírez I, Dragich AK, Giese APJ, Sofia Zuluaga-Osorio K, Watkins J, Davies GK, Hadi SE, Riazuddin S, Vander Kooi CW, Ahmed ZM, Frolenkov GI. Calcium and Integrin-binding protein 2 (CIB2) controls force sensitivity of the mechanotransducer channels in cochlear outer hair cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.09.545606. [PMID: 37461484 PMCID: PMC10350036 DOI: 10.1101/2023.07.09.545606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Calcium and Integrin-Binding Protein 2 (CIB2) is an essential subunit of the mechano-electrical transduction (MET) complex in mammalian auditory hair cells. CIB2 binds to pore-forming subunits of the MET channel, TMC1/2 and is required for their transport and/or retention at the tips of mechanosensory stereocilia. Since genetic ablation of CIB2 results in complete loss of MET currents, the exact role of CIB2 in the MET complex remains elusive. Here, we generated a new mouse strain with deafness-causing p.R186W mutation in Cib2 and recorded small but still measurable MET currents in the cochlear outer hair cells. We found that R186W variant causes increase of the resting open probability of MET channels, steeper MET current dependence on hair bundle deflection (I-X curve), loss of fast adaptation, and increased leftward shifts of I-X curves upon hair cell depolarization. Combined with AlphaFold2 prediction that R186W disrupts one of the multiple interacting sites between CIB2 and TMC1/2, our data suggest that CIB2 mechanically constraints TMC1/2 conformations to ensure proper force sensitivity and dynamic range of the MET channels. Using a custom piezo-driven stiff probe deflecting the hair bundles in less than 10 µs, we also found that R186W variant slows down the activation of MET channels. This phenomenon, however, is unlikely to be due to direct effect on MET channels, since we also observed R186W-evoked disruption of the electron-dense material at the tips of mechanotransducing stereocilia and the loss of membrane-shaping BAIAP2L2 protein from the same location. We concluded that R186W variant of CIB2 disrupts force sensitivity of the MET channels and force transmission to these channels.
Collapse
|
10
|
Altoè A, Shera CA. The Long Outer-Hair-Cell RC Time Constant: A Feature, Not a Bug, of the Mammalian Cochlea. J Assoc Res Otolaryngol 2023; 24:129-145. [PMID: 36725778 PMCID: PMC10121995 DOI: 10.1007/s10162-022-00884-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/23/2022] [Indexed: 02/03/2023] Open
Abstract
The cochlea of the mammalian inner ear includes an active, hydromechanical amplifier thought to arise via the piezoelectric action of the outer hair cells (OHCs). A classic problem of cochlear biophysics is that the RC (resistance-capacitance) time constant of the hair-cell membrane appears inconveniently long, producing an effective cut-off frequency much lower than that of most audible sounds. The long RC time constant implies that the OHC receptor potential-and hence its electromotile response-decreases by roughly two orders of magnitude over the frequency range of mammalian hearing, casting doubt on the hypothesized role of cycle-by-cycle OHC-based amplification in mammalian hearing. Here, we review published data and basic physics to show that the "RC problem" has been magnified by viewing it through the wrong lens. Our analysis finds no appreciable mismatch between the expected magnitude of high-frequency electromotility and the sound-evoked displacements of the organ of Corti. Rather than precluding significant OHC-based boosts to auditory sensitivity, the long RC time constant appears beneficial for hearing, reducing the effects of internal noise and distortion while increasing the fidelity of cochlear amplification.
Collapse
Affiliation(s)
- Alessandro Altoè
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
| | - Christopher A Shera
- Caruso Department of Otolaryngology, University of Southern California, Los Angeles, CA, USA.
- Department of Physics & Astronomy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
11
|
Qiu X, Müller U. Sensing sound: Cellular specializations and molecular force sensors. Neuron 2022; 110:3667-3687. [PMID: 36223766 PMCID: PMC9671866 DOI: 10.1016/j.neuron.2022.09.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/03/2022] [Accepted: 09/14/2022] [Indexed: 11/08/2022]
Abstract
Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive. Others depend on accessory proteins to regulate their response to mechanical force. The mechanotransduction machinery of cochlear hair cells provides a particularly striking example of a complex force-sensing machine. This molecular ensemble is embedded into a specialized cellular compartment that is crucial for its function. Notably, mechanotransduction channels of cochlear hair cells are not only critical for auditory perception. They also shape their cellular environment and regulate the development of auditory circuitry. Here, we summarize recent discoveries that have shed light on the composition of the mechanotransduction machinery of cochlear hair cells and how this machinery contributes to the development and function of the auditory system.
Collapse
Affiliation(s)
- Xufeng Qiu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
12
|
The conductance and organization of the TMC1-containing mechanotransducer channel complex in auditory hair cells. Proc Natl Acad Sci U S A 2022; 119:e2210849119. [PMID: 36191207 PMCID: PMC9564823 DOI: 10.1073/pnas.2210849119] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We studied the role of TMC1 as the central component of the hair cell mechanotransducer (MET) channel by characterizing transduction in mice harboring mutations in the pore region. All Tmc1 mutations reduced the Ca2+ influx into the hair bundle. Two mutations (Tmc1 p.D528N or Tmc1 p.E520Q) also decreased channel conductance and two (Tmc1 p. D569N or Tmc1 p.W554L) lowered expression. These mutations endorse TMC1 as the pore of the MET channel. The MET channel also contains accessory subunits, LHFPL5 and TMIE. MET currents were small in Lhfpl5 or Tmie knockout mice. Nevertheless, MET channels could still be activated by hair bundle displacement; single-channel conductance was unaffected in Lhfpl5−/− but reduced in Tmie−/−, suggesting TMIE likely contributes to the pore. Transmembrane channel-like protein 1 (TMC1) is thought to form the ion-conducting pore of the mechanoelectrical transducer (MET) channel in auditory hair cells. Using single-channel analysis and ionic permeability measurements, we characterized six missense mutations in the purported pore region of mouse TMC1. All mutations reduced the Ca2+ permeability of the MET channel, triggering hair cell apoptosis and deafness. In addition, Tmc1 p.E520Q and Tmc1 p.D528N reduced channel conductance, whereas Tmc1 p.W554L and Tmc1 p.D569N lowered channel expression without affecting the conductance. Tmc1 p.M412K and Tmc1 p.T416K reduced only the Ca2+ permeability. The consequences of these mutations endorse TMC1 as the pore of the MET channel. The accessory subunits, LHFPL5 and TMIE, are thought to be involved in targeting TMC1 to the tips of the stereocilia. We found sufficient expression of TMC1 in outer hair cells of Lhfpl5 and Tmie knockout mice to determine the properties of the channels, which could still be gated by hair bundle displacement. Single-channel conductance was unaffected in Lhfpl5−/− but was reduced in Tmie−/−, implying TMIE very likely contributes to the pore. Both the working range and half-saturation point of the residual MET current in Lhfpl5−/− were substantially increased, suggesting that LHFPL5 is part of the mechanical coupling between the tip-link and the MET channel. Based on counts of numbers of stereocilia per bundle, we estimate that each PCDH15 and LHFPL5 monomer may contact two channels irrespective of location.
Collapse
|
13
|
Akyuz N, Karavitaki KD, Pan B, Tamvakologos PI, Brock KP, Li Y, Marks DS, Corey DP. Mechanical gating of the auditory transduction channel TMC1 involves the fourth and sixth transmembrane helices. SCIENCE ADVANCES 2022; 8:eabo1126. [PMID: 35857511 PMCID: PMC9278870 DOI: 10.1126/sciadv.abo1126] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 05/27/2022] [Indexed: 05/27/2023]
Abstract
The transmembrane (TM) channel-like 1 (TMC1) and TMC2 proteins play a central role in auditory transduction, forming ion channels that convert sound into electrical signals. However, the molecular mechanism of their gating remains unknown. Here, using predicted structural models as a guide, we probed the effects of 12 mutations on the mechanical gating of the transduction currents in native hair cells of Tmc1/2-null mice expressing virally introduced TMC1 variants. Whole-cell electrophysiological recordings revealed that mutations within the pore-lining TM4 and TM6 helices modified gating, reducing the force sensitivity or shifting the open probability of the channels, or both. For some of the mutants, these changes were accompanied by a change in single-channel conductance. Our observations are in line with a model wherein conformational changes in the TM4 and TM6 helices are involved in the mechanical gating of the transduction channel.
Collapse
Affiliation(s)
- Nurunisa Akyuz
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bifeng Pan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | | - Kelly P. Brock
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yaqiao Li
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Debora S. Marks
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - David P. Corey
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Caprara GA, Peng AW. Mechanotransduction in mammalian sensory hair cells. Mol Cell Neurosci 2022; 120:103706. [PMID: 35218890 PMCID: PMC9177625 DOI: 10.1016/j.mcn.2022.103706] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/14/2022] [Accepted: 02/18/2022] [Indexed: 11/23/2022] Open
Abstract
In the inner ear, the auditory and vestibular systems detect and translate sensory information regarding sound and balance. The sensory cells that transform mechanical input into an electrical signal in these systems are called hair cells. A specialized organelle on the apical surface of hair cells called the hair bundle detects mechanical signals. Displacement of the hair bundle causes mechanotransduction channels to open. The morphology and organization of the hair bundle, as well as the properties and characteristics of the mechanotransduction process, differ between the different hair cell types in the auditory and vestibular systems. These differences likely contribute to maximizing the transduction of specific signals in each system. This review will discuss the molecules essential for mechanotransduction and the properties of the mechanotransduction process, focusing our attention on recent data and differences between the auditory and vestibular systems.
Collapse
Affiliation(s)
- Giusy A Caprara
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Anthony W Peng
- Department of Physiology and Biophysics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America.
| |
Collapse
|
15
|
Signatures of cochlear processing in neuronal coding of auditory information. Mol Cell Neurosci 2022; 120:103732. [PMID: 35489636 DOI: 10.1016/j.mcn.2022.103732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022] Open
Abstract
The vertebrate ear is endowed with remarkable perceptual capabilities. The faintest sounds produce vibrations of magnitudes comparable to those generated by thermal noise and can nonetheless be detected through efficient amplification of small acoustic stimuli. Two mechanisms have been proposed to underlie such sound amplification in the mammalian cochlea: somatic electromotility and active hair-bundle motility. These biomechanical mechanisms may work in concert to tune auditory sensitivity. In addition to amplitude sensitivity, the hearing system shows exceptional frequency discrimination allowing mammals to distinguish complex sounds with great accuracy. For instance, although the wide hearing range of humans encompasses frequencies from 20 Hz to 20 kHz, our frequency resolution extends to one-thirtieth of the interval between successive keys on a piano. In this article, we review the different cochlear mechanisms underlying sound encoding in the auditory system, with a particular focus on the frequency decomposition of sounds. The relation between peak frequency of activation and location along the cochlea - known as tonotopy - arises from multiple gradients in biophysical properties of the sensory epithelium. Tonotopic mapping represents a major organizational principle both in the peripheral hearing system and in higher processing levels and permits the spectral decomposition of complex tones. The ribbon synapses connecting sensory hair cells to auditory afferents and the downstream spiral ganglion neurons are also tuned to process periodic stimuli according to their preferred frequency. Though sensory hair cells and neurons necessarily filter signals beyond a few kHz, many animals can hear well beyond this range. We finally describe how the cochlear structure shapes the neural code for further processing in order to send meaningful information to the brain. Both the phase-locked response of auditory nerve fibers and tonotopy are key to decode sound frequency information and place specific constraints on the downstream neuronal network.
Collapse
|